1
|
Gola C, Maniscalco L, Iussich S, Morello E, Olimpo M, Martignani E, Accornero P, Giacobino D, Mazzone E, Modesto P, Varello K, Aresu L, De Maria R. Hypoxia-associated markers in the prognosis of oral canine melanoma. Vet Pathol 2024; 61:721-731. [PMID: 38613423 DOI: 10.1177/03009858241244853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Canine oral malignant melanoma (COMM) is the most common neoplasm in the oral cavity characterized by local invasiveness and high metastatic potential. Hypoxia represents a crucial feature of the solid tumor microenvironment promoting cancer progression and drug resistance. Hypoxia-inducible factor-1α (HIF-1α) and its downstream effectors, vascular endothelial growth factor A (VEGF-A), glucose transporter isoform 1 (GLUT1), C-X-C chemokine receptor type 4 (CXCR4), and carbonic anhydrase IX (CAIX), are the main regulators of the adaptive response to low oxygen availability. The prognostic value of these markers was evaluated in 36 COMMs using immunohistochemistry. In addition, the effects of cobalt chloride-mediated hypoxia were evaluated in 1 primary COMM cell line. HIF-1α expression was observed in the nucleus, and this localization correlated with the presence or enhanced expression of HIF-1α-regulated genes at the protein level. Multivariate analysis revealed that in dogs given chondroitin sulfate proteoglycan-4 (CSPG4) DNA vaccine, COMMs expressing HIF-1α, VEGF-A, and CXCR4 were associated with shorter disease-free intervals (DFI) compared with tumors that were negative for these markers (P = .03), suggesting hypoxia can influence immunotherapy response. Western blotting showed that, under chemically induced hypoxia, COMM cells accumulate HIF-1α and smaller amounts of CAIX. HIF-1α induction and stabilization triggered by hypoxia was corroborated by immunofluorescence, showing its nuclear translocation. These findings reinforce the role of an hypoxic microenvironment in tumor progression and patient outcome in COMM, as previously established in several human and canine cancers. In addition, hypoxic markers may represent promising prognostic markers, highlighting opportunities for their use in therapeutic strategies for COMMs.
Collapse
Affiliation(s)
- Cecilia Gola
- University of Surrey, Guildford, UK
- University of Turin, Grugliasco, Turin, Italy
| | | | | | | | | | | | | | | | | | - Paola Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Luca Aresu
- University of Turin, Grugliasco, Turin, Italy
| | | |
Collapse
|
2
|
Kelly B, Thamm D, Rosengren RJ. The second-generation curcumin analogue RL71 elicits G2/M cell cycle arrest and apoptosis in canine osteosarcoma cells. Vet Comp Oncol 2023; 21:595-604. [PMID: 37435770 DOI: 10.1111/vco.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
Canine osteosarcoma is an aggressive cancer, comprising 85% of canine bone neoplasms. Current treatment practices of surgery and chemotherapy increase 1-year survival by only 45%. The curcumin analogue RL71, has demonstrated potent in vitro and in vivo efficacy in several models of human breast cancer through increased apoptosis and cell cycle arrest. Thus, the present study aimed to investigate efficacy of curcumin analogues in two canine osteosarcoma cell lines. Osteosarcoma cell viability was assessed using the sulforhodamine B assay and mechanisms of action were determined by analysing the levels of cell cycle and apoptotic regulatory proteins via Western blotting. Further evidence was obtained using flow cytometry to detect cell cycle distribution and the number of apoptotic cells. RL71 was the most potent curcumin analogue with EC50 values of 0.64 ± 0.04 and 0.38 ± 0.009 μM (n = 3) in D-17 (commercial) and Gracie canine osteosarcoma cells, respectively. RL71 significantly increased the ratio of cleaved-caspase 3 to pro-caspase 3 and the level of apoptotic cells at the 2× and 5× EC50 concentration (p < 0.001, n = 3). Furthermore, at the same concentration, RL71 significantly increased the number of cells in the G2/M phase. In conclusion, RL71 has potent cytotoxic activity in canine osteosarcoma cells triggering G2/M arrest and apoptosis at concentrations achievable in vivo. Future research should further investigate molecular mechanisms for these changes in other canine osteosarcoma cell lines prior to in vivo investigation.
Collapse
Affiliation(s)
- Barnaby Kelly
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Douglas Thamm
- Flint Animal Cancer Center, Colorado State University, Ft. Collins, Colorado, USA
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Leitner N, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I, Hlavaty J. Isolation and Characterization of Novel Canine Osteosarcoma Cell Lines from Chemotherapy-Naïve Patients. Cells 2023; 12:cells12071026. [PMID: 37048099 PMCID: PMC10093184 DOI: 10.3390/cells12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to establish novel canine osteosarcoma cell lines (COS3600, COS3600B, COS4074) and characterize the recently described COS4288 cells. The established D-17 cell line served as a reference. Analyzed cell lines differed notably in their biological characteristics. Calculated doubling times were between 22 h for COS3600B and 426 h for COS4074 cells. COS3600B and COS4288 cells produced visible colonies after anchorage-independent growth in soft agar. COS4288 cells were identified as cells with the highest migratory capacity. All cells displayed the ability to invade through an artificial basement membrane matrix. Immunohistochemical analyses revealed the mesenchymal origin of all COS cell lines as well as positive staining for the osteosarcoma-relevant proteins alkaline phosphatase and karyopherin α2. Expression of p53 was confirmed in all tested cell lines. Gene expression analyses of selected genes linked to cellular immune checkpoints (CD270, CD274, CD276), kinase activity (MET, ERBB2), and metastatic potential (MMP-2, MMP-9) as well as selected long non-coding RNA (MALAT1) and microRNAs (miR-9, miR-34a, miR-93) are provided. All tested cell lines were able to grow as multicellular spheroids. In all spheroids except COS4288, calcium deposition was detected by von Kossa staining. We believe that these new cell lines serve as useful biological models for future studies.
Collapse
Affiliation(s)
- Natascha Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Simone Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Juraj Hlavaty
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +431-250-77-3402; Fax: +431-250-77-3490
| |
Collapse
|
4
|
Gola C, Licenziato L, Accornero P, Iussich S, Morello E, Buracco P, Modesto P, Aresu L, De Maria R. The mitotic regulator polo-like kinase 1 as a potential therapeutic target for c-Myc-overexpressing canine osteosarcomas. Vet Comp Oncol 2022; 20:890-900. [PMID: 36054794 PMCID: PMC9804590 DOI: 10.1111/vco.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in dogs, characterized by a locally aggressive and highly metastatic behaviour. Despite the current standards of care, most dogs succumb to the disease, indicating the need for novel treatment strategies. Polo-like kinase 1 (PLK1) is dysregulated in a variety of human cancer types, including osteosarcoma, and induces c-Myc accumulation. The crosstalk between the two molecules coordinates cell proliferation, differentiation, self-renewal and apoptosis. Therefore, PLK1 has recently emerged as a potential therapeutic target, mainly in tumours overexpressing c-Myc. BI 2536 is a selective PLK1 inhibitor promoting mitotic arrest and apoptosis in a variety of cancer cells. This research aimed at evaluating PLK1 and c-Myc protein expression in 53 appendicular canine osteosarcoma (cOSA) samples and the in vitro effects of BI 2536 on a c-Myc and PLK1-overexpressing cOSA cell line (D17). PLK1 and c-Myc expression in cOSA samples showed no correlation with clinicopathological data. However, c-Myc overexpression was associated with a significantly reduced overall survival (p = .003). Western Blot and RT-qPCR assays revealed that D17 expressed high protein and transcript levels of both PLK1 and MYC. When treated with BI 2536 (range 2.5-15 nM) for 24 h, D17 showed a substantial decrease in cell growth, inducing apoptosis and G2 /M cell cycle arrest. Interestingly, under BI 2536 treatment, D17 showed decreased c-Myc protein levels. Consistent with human OSA, these preliminary data outline the prognostic value of c-Myc expression in cOSA and highlight the potential role of PLK1 as an antiproliferative therapeutic target for tumours overexpressing c-Myc.
Collapse
Affiliation(s)
- Cecilia Gola
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Luca Licenziato
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Accornero
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Selina Iussich
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Emanuela Morello
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Buracco
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paola Modesto
- SC Diagnostica SpecialisticaIstituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'AostaTurinTOItaly
| | - Luca Aresu
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | | |
Collapse
|
5
|
Salaroli R, Andreani G, Bernardini C, Zannoni A, La Mantia D, Protti M, Forni M, Mercolini L, Isani G. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines. Res Vet Sci 2022; 152:476-484. [PMID: 36156377 DOI: 10.1016/j.rvsc.2022.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Since ancient times, Artemisia annua (A. annua) has been used as a medicinal plant in Traditional Chinese Medicine. In addition, recent studies have investigated the cytotoxic effects of A. annua extracts towards cancer cells. The leading aim of the present research is to evaluate the cytotoxic effects of an hydroalcoholic extract of A. annua on two canine osteosarcoma (OSA) cell lines, OSCA-8 and OSCA-40, focusing on the possible involvement of ferroptosis. The quantitative determination of artemisinin concentration in the extract, culture medium and OSA cells was carried out through the use of an instrumental analytical method based on liquid chromatography coupled with spectrophotometric detection and tandem mass spectrometry (LC-DAD-MS/MS). OSCA-8 and OSCA-40 were exposed to different dilutions of the extract for the EC50 calculation then the uptake of artemisinin by the cells, the effects on the cell cycle, the intracellular iron level, the cellular morphology and the lipid oxidation state were evaluated. A concentration of artemisinin of 63.8 ± 3.4 μg/mL was detected in the extract. A dose-dependent cytotoxic effect was evidenced. In OSCA-40 alterations of the cell cycle and a significantly higher intracellular iron content were observed. In both cell lines the treatment with the extract was associated with lipid peroxidation and with the appearance of a "ballooning" phenotype suggesting the activation of ferroptosis. In conclusion the A. annua idroalcoholic extract utilized in this study showed anticancer activity on canine OSA cell lines that could be useful in treating drug resistant canine OSAs.
Collapse
Affiliation(s)
- Roberta Salaroli
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Giulia Andreani
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Debora La Mantia
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| | - Monica Forni
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| | - Gloria Isani
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
6
|
Megquier K, Turner-Maier J, Morrill K, Li X, Johnson J, Karlsson EK, London CA, Gardner HL. The genomic landscape of canine osteosarcoma cell lines reveals conserved structural complexity and pathway alterations. PLoS One 2022; 17:e0274383. [PMID: 36099278 PMCID: PMC9469990 DOI: 10.1371/journal.pone.0274383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
The characterization of immortalized canine osteosarcoma (OS) cell lines used for research has historically been based on phenotypic features such as cellular morphology and expression of bone specific markers. With the increasing use of these cell lines to investigate novel therapeutic approaches prior to in vivo translation, a much more detailed understanding regarding the genomic landscape of these lines is required to ensure accurate interpretation of findings. Here we report the first whole genome characterization of eight canine OS cell lines, including single nucleotide variants, copy number variants and other structural variants. Many alterations previously characterized in primary canine OS tissue were observed in these cell lines, including TP53 mutations, MYC copy number gains, loss of CDKN2A, PTEN, DLG2, MAGI2, and RB1 and structural variants involving SETD2, DLG2 and DMD. These data provide a new framework for understanding how best to incorporate in vitro findings generated using these cell lines into the design of future clinical studies involving dogs with spontaneous OS.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason Turner-Maier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kathleen Morrill
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Cheryl A. London
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Heather L. Gardner
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
7
|
Rutland CS, Cockcroft JM, Lothion-Roy J, Harris AE, Jeyapalan JN, Simpson S, Alibhai A, Bailey C, Ballard-Reisch AC, Rizvanov AA, Dunning MD, de Brot S, Mongan NP. Immunohistochemical Characterisation of GLUT1, MMP3 and NRF2 in Osteosarcoma. Front Vet Sci 2021; 8:704598. [PMID: 34414229 PMCID: PMC8369506 DOI: 10.3389/fvets.2021.704598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OSA) is an aggressive bone malignancy. Unlike many other malignancies, OSA outcomes have not improved in recent decades. One challenge to the development of better diagnostic and therapeutic methods for OSA has been the lack of well characterized experimental model systems. Spontaneous OSA in dogs provides a good model for the disease seen in people and also remains an important veterinary clinical challenge. We recently used RNA sequencing and qRT-PCR to provide a detailed molecular characterization of OSA relative to non-malignant bone in dogs. We identified differential mRNA expression of the solute carrier family 2 member 1 (SLC2A1/GLUT1), matrix metallopeptidase 3 (MMP3) and nuclear factor erythroid 2–related factor 2 (NFE2L2/NRF2) genes in canine OSA tissue in comparison to paired non-tumor tissue. Our present work characterizes protein expression of GLUT1, MMP3 and NRF2 using immunohistochemistry. As these proteins affect key processes such as Wnt activation, heme biosynthesis, glucose transport, understanding their expression and the enriched pathways and gene ontologies enables us to further understand the potential molecular pathways and mechanisms involved in OSA. This study further supports spontaneous OSA in dogs as a model system to inform the development of new methods to diagnose and treat OSA in both dogs and people.
Collapse
Affiliation(s)
- Catrin S Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James M Cockcroft
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jennifer Lothion-Roy
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Anna E Harris
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jennie N Jeyapalan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Siobhan Simpson
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aziza Alibhai
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Clara Bailey
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Albert A Rizvanov
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Mark D Dunning
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Willows Veterinary Centre and Referral Service, Solihull, United Kingdom
| | - Simone de Brot
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|