1
|
Wu J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Flavonoids from Scutellaria baicalensis: Promising Alternatives for Enhancing Swine Production and Health. Int J Mol Sci 2025; 26:3703. [PMID: 40332337 PMCID: PMC12027786 DOI: 10.3390/ijms26083703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Concerns over vaccine safety, bacterial resistance, and drug residues have led to increased interest in plant extracts for improving swine nutrition and health. Scutellaria baicalensis Georgi, rich in four primary flavonoids-baicalin, baicalein, wogonoside, and wogonin-demonstrates significant pharmacological properties, including anti-inflammatory, antioxidant, antibacterial, and antiviral activities in swine. These flavonoids have been shown to enhance growth performance, improve immunity, modulate gut microbiota, and aid in the prevention and treatment of various diseases. This review highlights the pharmacological effects of these flavonoids in swine, with a focus on network pharmacology to reveal the underlying molecular mechanisms. By constructing drug-target networks and identifying key signaling pathways, the review reveals how these flavonoids interact with biological systems to promote health. Furthermore, it discusses the practical applications of Scutellaria baicalensis flavonoids in swine production and outlines potential future research directions. This work provides a theoretical framework for understanding the therapeutic targets of these flavonoids, offering valuable insights for advancing sustainable and healthy pig farming practices.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| |
Collapse
|
2
|
Guo Y, Miao Y, Chen H, Wang K, Wang S, Wang R, Wu Z, Li J. Revealing the mechanism: the influence of Baicalin on M1/M2 and Th1/Th2 imbalances in mycoplasma gallisepticum infection. Poult Sci 2024; 103:104145. [PMID: 39127004 PMCID: PMC11367134 DOI: 10.1016/j.psj.2024.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Mycoplasma gallisepticum (MG) is a pathogen that induces chronic respiratory illnesses in chickens, leading to tracheal and lung injury, and eliciting immune reactions that support sustained colonization. Baicalin, a compound found in scutellaria baicalensis, exhibits anti-inflammatory, antioxidant, and antibacterial properties. This study aimed to investigate the potential of baicalin in alleviating lung and cell damage caused by MG by restoring imbalances in M1/M2 and Th1/Th2 differentiation and to explore its underlying mechanism. In this research, a model for M1/M2 polarization induced by MG was initially developed. Specifically, infection with MG at a multiplicity of infection (MOI) of 400 for 6 h represented the M1 model, while infection for 10 h represented the M2 model. The polarization markers were subsequently validated using qRT-PCR, ELISA, and Western blot analysis. Baicalin disrupts the activation of M1 cells induced by MG and has the potential to restore the balance between M1 and M2 cells, thereby mitigating the inflammatory damage resulting from MG. Subsequent studies on MG-infected chickens detected imbalances in M1/M2 and Th1/Th2 differentiation in alveolar lavage fluid, as well as imbalances in macrophages and Th cells in the lung. The M1/Th1 model was exposed to MG for 5 d, while the M2/Th2 model was infected with MG for 7 d. The utilization of both light and electron transmission microscopes revealed that the administration of baicalin resulted in a reduction in the number of M1 cells, a decrease in cytoplasmic vacuoles, restoration of mitochondrial swelling and chromatin agglutination, as well as alleviation of alveolar rupture and inflammatory cell infiltration. Furthermore, baicalin restored MG-induced M1/M2 and Th1/Th2 imbalances and inhibited the phosphorylation of p38 and p65 proteins, thereby hindering the activation of the TLR4-p38 MAPK/NF-κB pathway. This study provides insights into the potential long-term effects of baicalin in MG infection and offers a theoretical basis for practical applications.
Collapse
Affiliation(s)
- Yuquan Guo
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yusong Miao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Hao Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shun Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Wang
- Shandong Tianmu Technology Co. LTD, Dongying, 257500, PR China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Ye C, Chen Y, Yu R, Zhao M, Yin R, Qiu Y, Fu S, Liu Y, Wu Z. Baicalin-aluminum complex on the regulation of IPEC-1 infected with enterotoxigenic Escherichia coli. Heliyon 2024; 10:e33038. [PMID: 39027442 PMCID: PMC11254522 DOI: 10.1016/j.heliyon.2024.e33038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the main bacterial cause of diarrhea in weaned piglets. Baicalin-aluminum (BA) complex is the main active ingredient of Scutellaria baicalensis Georgi extracted-aluminum complex, which has been used to treat diarrhea in weaning piglets, however the underlying mechanism remains unclear. To investigate the effects of the BA complex on the regulation of porcine intestinal epithelial (IPEC-1) cells infected with ETEC, IPEC-1 cells were incubated with an ETEC bacterial strain at a multiplicity of infection of 1 for 6 h and then treated with different concentrations of the BA complex for 6 h. ETEC infection increased the levels of cAMP and cGMP, upregulated CFTR (cystic fibrosis transmembrane conductance regulator) mRNA, and downregulated NHE4 mRNA in IPEC-1 cells. Treatment with the BA complex inhibited ETEC adhesion and the production of cAMP and cGMP, reduced CFTR mRNA expression, and increased NHE4 mRNA expression. Overall, the BA complex weakened the adhesion of ETEC to IPEC-1 cells, and inhibited cAMP/cGMP-CFTR signaling in IPEC-1 cells.
Collapse
Affiliation(s)
- Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Yuqian Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Ruixue Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Ming Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Ronghua Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| |
Collapse
|
4
|
Sun P, Yang Y, Yang L, Qian Y, Liang M, Chen H, Zhang J, Qiu Y, Guo L, Fu S. Quercetin Protects Blood-Brain Barrier Integrity via the PI3K/Akt/Erk Signaling Pathway in a Mouse Model of Meningitis Induced by Glaesserella parasuis. Biomolecules 2024; 14:696. [PMID: 38927100 PMCID: PMC11201931 DOI: 10.3390/biom14060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Glaesserella parasuis (G. parasuis) causes serious inflammation and meningitis in piglets. Quercetin has anti-inflammatory and anti-bacterial activities; however, whether quercetin can alleviate brain inflammation and provide protective effects during G. parasuis infection has not been studied. Here, we established a mouse model of G. parasuis infection in vivo and in vitro to investigate transcriptome changes in the mouse cerebrum and determine the protective effects of quercetin on brain inflammation and blood-brain barrier (BBB) integrity during G. parasuis infection. The results showed that G. parasuis induced brain inflammation, destroyed BBB integrity, and suppressed PI3K/Akt/Erk signaling-pathway activation in mice. Quercetin decreased the expression of inflammatory cytokines (Il-18, Il-6, Il-8, and Tnf-α) and BBB-permeability marker genes (Mmp9, Vegf, Ang-2, and Et-1), increased the expression of angiogenetic genes (Sema4D and PlexinB1), reduced G. parasuis-induced tight junction disruption, and reactivated G. parasuis-induced suppression of the PI3K/Akt/Erk signaling pathway in vitro. Thus, we concluded that quercetin may protect BBB integrity via the PI3K/Akt/Erk signaling pathway during G. parasuis infection. This was the first attempt to explore the protective effects of quercetin on brain inflammation and BBB integrity in a G. parasuis-infected mouse model. Our findings indicated that quercetin is a promising natural agent for the prevention and treatment of G. parasuis infection.
Collapse
Affiliation(s)
- Peiyan Sun
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yaqiong Yang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Linrong Yang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanzhuo Qian
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingxia Liang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, China
| | - Jing Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China
| | - Ling Guo
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China
| |
Collapse
|
5
|
Fu S, Tian X, Peng C, Zhang D, Zhou L, Yuan Y, He J, Guo L, Qiu Y, Ye C, Liu Y, Zong B. Baicalin inhibited PANX-1/P2Y6 signaling pathway activation in porcine aortic vascular endothelial cells infected by Glaesserella parasuis. Heliyon 2024; 10:e23632. [PMID: 38187335 PMCID: PMC10770501 DOI: 10.1016/j.heliyon.2023.e23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Glaesserella parasuis can induce endothelial barrier damage in piglets, although the mechanism by which this pathogen triggers inflammatory damage remains unclear. Baicalin possesses anti-inflammatory and anti-oxidant activities. However, whether baicalin can relieve endothelial barrier damage caused by Glaesserella parasuis infection has not yet been studied. Hence, we evaluated the ability of baicalin to counteract the changes induced by Glaesserella parasuis in porcine aortic vascular endothelial cells. The results showed that Glaesserella parasuis could upregulate the expression of pannexin 1 channel protein and promote the release of adenosine triphosphate, adenosine diphosphate, adenosine 3'-monophosphate, uridine triphosphate, uridine diphosphate, and uridine monophosphate in porcine aortic vascular endothelial cells. The expression level of purinergic receptor P2Y6 was upregulated in porcine aortic vascular endothelial cells triggered by Glaesserella parasuis. In addition, Glaesserella parasuis could activate phospholipase C-protein kinase C and myosin light chain kinase-myosin light chain signaling pathways in porcine aortic vascular endothelial cells. Baicalin could inhibit pannexin 1 channel protein expression, reduce adenosine triphosphate, adenosine diphosphate, adenosine 3'-monophosphate, uridine triphosphate, uridine diphosphate, and uridine monophosphate release, and attenuate the expression level of P2Y6 in porcine aortic vascular endothelial cells induced by Glaesserella parasuis. Baicalin could also reduce the activation of phospholipase C-protein kinase C and myosin light chain kinase-myosin light chain signaling pathways in porcine aortic vascular endothelial cells triggered by Glaesserella parasuis. Our study report that Glaesserella parasuis could promote pannexin 1 channel protein expression, induce nucleosides substance release, and P2Y6 expression in porcine aortic vascular endothelial cells and baicalin could inhibit the expression levels of pannexin 1, nucleosides substance, and P2Y6 in the porcine aortic vascular endothelial cells induced by Glaesserella parasuis, which might be served as some targets for treatment of inflammation disease caused by Glaesserella parasuis.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Xinyue Tian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Chun Peng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Dan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Linglu Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yuzhen Yuan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Jing He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| |
Collapse
|
6
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
7
|
Yang D, Yin R, Lei Q, Zhu J, Nan S, Ma N, Zhu H, Chen J, Han L, Ding M, Ding Y. Baicalin alleviates endometrial inflammatory injury through regulation of tight junction proteins. Food Funct 2022; 13:6522-6533. [PMID: 35640273 DOI: 10.1039/d2fo00594h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endometritis is the foremost reason for reduced reproductive performance, which impedes the establishment of pregnancy in ruminants. Baicalin is extensively acknowledged as a tocolytic drug. However, the preventive effect of baicalin on endometrial inflammatory injury remains unclear. The present study aimed to determine the potential benefits of baicalin on endometrial inflammatory injury in animal and cellular models. The results showed that baicalin alleviated the impairment of tight junctions (TJs) and inflammation in the endometrium induced by LPS treatment. Baicalin increased claudin 3 (CLDN3) and tight junction protein 1 (TJP1) levels in a dose-dependent manner in endometrial epithelial cells (EECs) accompanied by autophagy activation with or without LPS treatment. Immunofluorescence staining revealed that baicalin pretreatment prompted MAP1LC3B-positive structures to surround TJ proteins in the cytoplasm and decreased the abnormal aggregation of CLDN3 and TJP1 in the cytosol of EECs. Activation or blockage of autophagy using pharmacologic methods affected the redistribution of TJ proteins by baicalin pretreatment with LPS treatment. The role of autophagy in the modulation of TJ proteins was also confirmed by ATG7 and TFEB overexpression, as evidenced by accelerated redistribution of CLDN3 and TJP1 from the EEC cytosol to the membrane and a loss of membranous CLDN2 in EECs. These data demonstrate that baicalin influences the redistribution of TJ proteins to maintain the barrier function during LPS-induced endometrial inflammatory injury by regulating autophagy and provides a new therapeutic to potentially prevent embryo loss and endometritis.
Collapse
Affiliation(s)
- Diqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruiling Yin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qianghui Lei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiandi Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ning Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|