1
|
Zhou J, Yang Y, Tian J, Liu C, Chen J, Yang M, Zhang M, Duan Y, Zhang T, Sun Y, Yu Q, Xia Z, Wan X, Duan W, Xu S. Diquat exposure causes brainstem demyelination by upregulating the mitochondrial calcium uniporter. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138063. [PMID: 40163990 DOI: 10.1016/j.jhazmat.2025.138063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Diquat (DQ) is a widely used new herbicide that poses a great threat to the environment, ecological systems and human health. Although the central nervous system (CNS) is a sensitive target of DQ exposure, the major brain regions, pathological changes and underlying mechanisms of DQ damage to the CNS remain obscure. We demonstrated that the brainstem was the primary region where DQ damaged the CNS. DQ exposure damaged both neurons and glial cells and disrupted neurotransmitter metabolism. DQ caused brainstem demyelination, as indicated by the loss of myelin sheaths, decreased levels of myelination biomarkers, and abnormal myelin morphology. Mechanistically, the expression of the mitochondrial calcium uniporter (MCU) was increased in the DQ-exposed brainstem, and MCU knockdown mice were less sensitive to DQ-induced demyelination and CNS injury by attenuating disturbances in brain energy metabolism via the AMPK pathway. Moreover, the inhibition of MCU efficiently improved DQ-induced mitochondrial dysfunction in vitro. Overall, this study is the first to reveal that the brainstem is the key injured brain region and that demyelination is the prominent pathological feature induced by DQ exposure. The MCU is a potential therapeutic target for DQ-induced demyelination and CNS injury. These novel findings expand our understanding of DQ-induced CNS injury and offer a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jie Zhou
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Yingli Yang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Cong Liu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mei Yang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Mengran Zhang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Duan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Tian Zhang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Yapei Sun
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Qin Yu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Zhiqin Xia
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Xinglin Wan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Weixia Duan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China.
| | - Shangcheng Xu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
He C, Cai G, Jia Y, Jiang R, Wei X, Tao N. Effect of Diquat on gut health: molecular mechanisms, toxic effects, and protective strategies. Front Pharmacol 2025; 16:1562182. [PMID: 40421207 PMCID: PMC12104255 DOI: 10.3389/fphar.2025.1562182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Diquat is a widely used bipyridyl herbicide that is extensively applied in agricultural production and water management due to its high efficacy in weed control. However, its environmental persistence and the toxic effects it induces have raised widespread concern. Studies show that Diquat primarily enters the body through the digestive tract, leading to poisoning. The core mechanism of its toxicity involves reactive oxygen species (ROS)-induced oxidative stress, which not only directly damages the intestinal barrier function but also exacerbates inflammation and systemic toxicity by disrupting the balance of the gut microbiota and the normal production of metabolic products. This review systematically summarizes the physicochemical properties of Diquat, with a focus on analyzing the mechanisms by which it damages the gut tissue structure, barrier function, and microbiota after digestive tract exposure. The aim is to provide theoretical support for a deeper understanding of Diquat's toxic mechanisms and its digestive tract-centered toxic characteristics, laying a scientific foundation for the development of effective interventions and protective strategies against its toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolan Wei
- Department of Emergency, Suining Central Hospital in Sichuan Province, Suining, Sichuan, China
| | - Ning Tao
- Department of Emergency, Suining Central Hospital in Sichuan Province, Suining, Sichuan, China
| |
Collapse
|
3
|
Xiong N, Liu S, Hu W, Liu Y, Ding X, Xu D, Ling Y, Fang M, Liu B, Zheng L, Zheng W, Wu B. Selenium yeast alleviates diquat-induced oxidative stress and testicular damage in roosters. Anim Reprod Sci 2025; 273:107760. [PMID: 39756356 DOI: 10.1016/j.anireprosci.2024.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Diquat (DQ) is a pro-oxidant that generates free radicals in cells through redox reactions, leading to the induction of oxidative stress. During the processes of growth and reproduction, poultry are particularly vulnerable to oxidative stress. Selenium yeast (SeY) serves as an organic selenium source characterized by high activity and low toxicity, imparting antioxidant effects. The objective of this study was to assess the protective effects of SeY against DQ-induced oxidative stress in rooster testicles.The results demonstrated that SeY pretreatment mitigated DQ-induced oxidative damage in the testes. This mitigation encompassed the alleviation of inhibited spermatogenesis, reduced spermatogenic cell abundance, and the alleviation of decreased expression of genes StAR, P450scc, and 3β-HSD which related to testosterone synthesis. Specifically, SeY pretreatment counteracted DQ-induced oxidative stress by activating the Nrf2/HO-1 antioxidant signaling pathway, enhancing the activity of antioxidant enzymes such as catalase (CAT) and total superoxide dismutase (T-SOD), and reducing the concentration of malondialdehyde (MDA). Furthermore, SeY pretreatment attenuated DQ-induced spermatogonia apoptosis by modulating the expression of apoptosis-related genes and proteins, including Bax, Bcl-2, Caspase3, and NF-κB. Additionally, SeY restored the proliferative capacity of spermatogenic cells by promoting the expression of the proliferation-related protein Ki67. The aforementioned findings signify that SeY effectively safeguards the testes against DQ-induced damage through mechanisms involving the reduction of oxidative stress, inhibition of apoptosis, promotion of proliferation, and enhancing the expression of testosterone synthesis related genes. This study lays a solid theoretical foundation for future research aimed at safeguarding the reproductive health of male poultry exposed to agricultural pesticides.
Collapse
Affiliation(s)
- Ningna Xiong
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China
| | - Sili Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China; Laboratory of Animal Pathogenic Microbiology, Yichun University, Yichun, Jiangxi 336000, China.
| | - Yamei Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China
| | - Xiang Ding
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China
| | - Deming Xu
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China
| | - Yiqiang Ling
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China
| | - Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China; Laboratory of Animal Pathogenic Microbiology, Yichun University, Yichun, Jiangxi 336000, China
| | - Lucheng Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China
| | - Wenya Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China
| | - Bingyan Wu
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China
| |
Collapse
|
4
|
Kelemen A, Garda T, Kónya Z, Erdődi F, Ujlaky-Nagy L, Juhász GP, Freytag C, M-Hamvas M, Máthé C. Treatments with Diquat Reveal the Relationship between Protein Phosphatases (PP2A) and Oxidative Stress during Mitosis in Arabidopsis thaliana Root Meristems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1896. [PMID: 39065423 PMCID: PMC11279869 DOI: 10.3390/plants13141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.
Collapse
Affiliation(s)
- Adrienn Kelemen
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary;
| | - Gabriella Petra Juhász
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
- “One Health” Institute, Faculty of Health Science, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - Márta M-Hamvas
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| |
Collapse
|
5
|
Xia Z, Liu W, Liu L. Clinical and pathological characteristics of diquat poisoning-related acute kidney injury. Ren Fail 2023; 45:2283590. [PMID: 38010163 PMCID: PMC11001306 DOI: 10.1080/0886022x.2023.2283590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Objectives: Diquat has replaced paraquat in agricultural areas as a herbicide but has led to extensive poisoning. Unlike paraquat, which targets the lungs, diquat primarily targets the kidneys. Autopsies and animal experiments suggest that interstitial kidney damage is the most critical renal lesion. Diquat is a nonselective chemical widely used for terrestrial and aquatic plants after the ban on paraquat. Although diquat is known to affect the kidneys mainly, no study has reported renal biopsy in patients with diquat poisoning.Methods: We investigated the histopathologic feature in a young man with diquat poisoning who developed acute kidney injury by renal biopsy.Results: Autopsy and animal experiments suggest that interstitial kidney inflammation is the most critical renal lesion. Surprisingly, our results showed that lipid degeneration and acute tubular injury with limited interstitial inflammation were the dominant histologic findings in this patient. Conclusions: Based on a renal biopsy, this was the first study describing the characteristics of the kidney affected by diquat poisoning. Our findings might provide information for managing patients who develop AKI due to diquat poisoning.
Collapse
Affiliation(s)
- Ziqin Xia
- Department of Nephrology, Qinghai Provincial People’s Hospital, Xining, China
| | - Wenjun Liu
- Department of Nephrology, Xishui County People’s Hospital Affiliated to Hubei University of Science and Technology, Huanggang, China
| | - Liu Liu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen Y, Li HY, Liu JS, Jiang DL, Zheng HN, Dong XS. Analysis of Human microRNA Expression Profiling During Diquat-Induced Renal Proximal Tubular Epithelial Cell Injury. J Inflamm Res 2023; 16:4953-4965. [PMID: 37927960 PMCID: PMC10625323 DOI: 10.2147/jir.s427004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Background We established a diquat-induced human kidney-2 cells (HK-2 cells) apoptosis model in this study to identify differentially expressed microRNAs (miRNAs) and signaling pathways involved in diquat poisoning via gene sequencing and bioinformatics analysis and explored the related therapeutic benefits. Methods The effects of diquat on the viability and apoptosis of HK-2 cells were explored using the CCK-8 and Annexin V-FITC/PI double staining methods. Total RNAs were extracted using the TRizol method and detected by Illumina HiSeq 2500. Bioinformatics analysis was performed to explore differentially expressed (DE) miRNAs, their enriched biological processes, pathways, and potential target genes. The RT-qPCR method was used to verify the reliability of the results. Results Diquat led to HK-2 cell injury and apoptosis played an important role, hence an HK-2 cell apoptosis model in diquat poisoning was established. Thirty-six DE miRNAs were screened in diquat-treated HK-2 cells. The enriched biological process terms were mainly cell growth, regulation of apoptotic signaling pathway, extrinsic apoptotic signaling pathway, and Ras protein signal transduction. The enriched cellular components were mainly cell-cell junction, cell-substrate junction, ubiquitin ligase complex, and protein kinase complex. The enriched molecular functions were mainly Ras GTPase binding, ubiquitin-like protein transferase activity, DNA-binding transcription factor binding, ubiquitin-protein transferase activity, nucleoside-triphosphatase regulator activity, transcription coactivator activity, and ubiquitin-like protein ligase binding. Signaling pathways such as MAPK, FoxO, Ras, PIK3-Akt, and Wnt were also enriched. Conclusion These findings aid in understanding the mechanisms of diquat poisoning and the related pathways, where DE miRNAs serve as targets for gene therapy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Hui-Yi Li
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jian-Shu Liu
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Dao-long Jiang
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Hao-nan Zheng
- No.105 Phase, The First Clinical College of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Xue-Song Dong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| |
Collapse
|
7
|
Freytag C, Garda T, Kónya Z, M-Hamvas M, Tóth-Várady B, Juhász GP, Ujlaky-Nagy L, Kelemen A, Vasas G, Máthé C. B" and C subunits of PP2A regulate the levels of reactive oxygen species and superoxide dismutase activities in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:182-192. [PMID: 36640685 DOI: 10.1016/j.plaphy.2022.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The serine-threonine protein phosphatases PP2A regulate many cellular processes, however their role in oxidative stress responses and defence is less known. We show the involvement of its C (catalytic) and B" (a regulatory) subunits. The c3c4 (C subunit) and fass (B") subunit mutants and Col wt of Arabidopsis were used. Controls and treatments with the PP2A inhibitor microcystin-LR (MCY-LR) and reactive oxygen species (ROS) inducer diquat (DQ) were employed. ROS levels of primary roots were largely genotype dependent and both C and B" subunit mutants had increased sensitivity to MCY-LR and DQ indicating the involvement of these subunits in oxidative stress induction. Superoxide dismutases (SOD), mainly the Cu/Zn-SOD isoform, as key enzymes involved in ROS scavenging are also showing altered (mostly increased) activities in both c3c4 and fass mutants and have opposite relations to ROS induction. This indicates that the two types of subunits involved have partially different regulatory roles. In relation to this, control and MCY-LR/DQ treated B" subunit mutants were proven to have altered levels of phosphorylation of histone H2AX. γH2AX, the phosphorylated form indicates double stranded DNA damage during oxidative stress. Overall we point out the probable pivotal role of several PP2A subunits in the regulation of oxidative stress responses in plants and pave the way for future research to reveal the signaling pathways involved.
Collapse
Affiliation(s)
- Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Zoltán Kónya
- Department of Medical Chemisty, Faculty of Medicine, University of Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Balázs Tóth-Várady
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gabriella Petra Juhász
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary.
| | - Adrienn Kelemen
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| |
Collapse
|
8
|
Liu Y, Zhang S, Wang W, Tang S, Zhu Y, Wang M, Cao B, Zhu Y, Tang L, Liu Y, Mo C, Zhao B, Lu H. Swainsonine-induced vacuolar degeneration is regulated by mTOR-mediated autophagy in HT22 cells. Toxicol Lett 2023; 373:41-52. [PMID: 36402259 DOI: 10.1016/j.toxlet.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The indolizidine alkaloid, swainsonine (SW), is the main toxic component of locoweed, which can cause locoism in animals with characteristic neurological dysfunction. Pathological manifestations at cellular level include extensive vacuolar degeneration. Studies have shown that SW can induces autophagy, but the role and mechanism of autophagy in SW-induced vacuolar degeneration is unclear. In this study, we analyzed the role of autophagy in SW-induced cell injury in mouse hippocampal neurons cell line (HT22) using western blotting, qRT-PCR, transmission electron microscopy and immunofluorescence microscopy. The results showed that the expressions of LC3-II, ATG5, Beclin1 and p62 proteins and their mRNAs in HT22 cells were induced by SW treatment. The SW treatment increased the number of autophagosomes with enhanced fluorescence intensity of monodansylcadaverine (MDC) and LC3-II in a time-dose dependent manner. The results of lysosome staining showed that SW could increase the number of lysosomes, increase the intraluminal pH. Transmission electron microscopy results indicate that SW induced autophagosomes, and Baf A1 could effectively alleviate SW-induced vacuolar degeneration. At the molecular level, SW treatment inhibited the expression of p-PI3K, p-AKT, p-ERK, p-AMPK, p-mTOR, p-p70S6K and p-4EBP1 and promoted the expression of p53. Our results collectively suggest, PI3K/AKT/mTOR, ERK/mTOR and p53/mTOR signaling pathways are involved in the regulation of SW-induced autophagy in HT22 cells, while the AMPK/mTOR signaling pathway is not involved in this regulation. Inhibition of autophagic degradation can effectively alleviate SW-induced vacuolar degeneration.
Collapse
Affiliation(s)
- Yanbing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weina Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shiyu Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiru Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingqian Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanli Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihui Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiling Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chonghui Mo
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Zhou JN, Lu YQ. Lethal diquat poisoning manifests as acute central nervous system injury and circulatory failure: A retrospective cohort study of 50 cases. EClinicalMedicine 2022; 52:101609. [PMID: 35990582 PMCID: PMC9386369 DOI: 10.1016/j.eclinm.2022.101609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The mortality rate of patients with diquat (DQ) poisoning is extremely high due to insufficient understanding of DQ-induced injury. This study aimed to summarize the characteristics of DQ poisoning as well as analyse the correlation between plasma DQ concentration and patient outcomes, thus providing a new strategy for diagnosis and treatment. METHODS This single-centre retrospective cohort study was conducted at the Emergency Department of the First Affiliated Hospital, Zhejiang University School of Medicine, China, between Oct 9, 2019 and March 10, 2022. 50 patients, whose plasma or urine samples tested positive for diquat and negative for paraquat by high performance liquid chromatography-tandem mass spectrometry, were included in the study. FINDINGS The mortality rate of acute DQ poisoning was 25 (50%) of 50. Compared with the survival group, the death group presented significantly higher initial plasma DQ concentration (Cp1), aspartate aminotransferase, alanine aminotransferase, serum creatinine, and creatine kinase-MB (P < 0.05). We found that six (24.0%) patients died of central nervous system injury, six (24.0%) patients died of refractory circulatory failure, and 13 (52.0%) patients died of central nervous system injury combined with circulatory failure. Receiver operator characteristic curve analysis showed that the area under the curve of Cp1 was 0.967 (95% CI: 0.911, 1.000), and the cut-off value was 3516.885 ng/mL (sensitivity, 90.9%; specificity, 96.0%). INTERPRETATION Lethal DQ poisoning is primarily associated with serious brain and vascular injury, as well as a high rate of mortality. Further research into the mechanisms of refractory circulatory failure and central nerve system damage could help reduce mortality. FUNDING There are no funding sources to declare.
Collapse
Affiliation(s)
- Jia-Ning Zhou
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, Zhejiang, People's Republic of China
- Correspondence author at: 79 Qingchun Road, Hangzhou 310003, People's Republic of China.
| |
Collapse
|
10
|
Xiong Z, Xing C, Xu T, Yang Y, Liu G, Hu G, Cao H, Zhang C, Guo X, Yang F. Vanadium Induces Oxidative Stress and Mitochondrial Quality Control Disorder in the Heart of Ducks. Front Vet Sci 2021; 8:756534. [PMID: 34765669 PMCID: PMC8577801 DOI: 10.3389/fvets.2021.756534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Vanadium (V) is an ultra-trace element presenting in humans and animals, but excessive V can cause toxic effects. Mitochondrial quality control (MQC) is an essential process for maintaining mitochondrial functions, but the relationship between V toxicity and MQC is unclear. To investigate the effects of excessive V on oxidative stress and MQC in duck hearts, 72 ducks were randomly divided into two groups, including the control group and the V group (30 mg of V/kg dry matter). The cardiac tissues were collected for the histomorphology observation and oxidative stress status evaluation at 22 and 44 days. In addition, the mRNA and protein levels of MQC-related factors were also analyzed. The results showed that excessive V could trigger vacuolar degeneration, granular degeneration, as well as mitochondrial vacuolization and swelling in myocardial cells. In addition, CAT activity was elevated in two time points, while T-SOD activity was increased in 22 days but decreased in 44 days after V treatment. Meanwhile, excessive V intake could also increase the number of Drp1 puncta, the mRNA levels of mitochondrial fission–related factors (Drp1and MFF), and protein (MFF) level, but decrease the number of Parkin puncta and the mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM), mitochondrial fusion (OPA1, Mfn1, and Mfn2), and mitophagy (Parkin, PINK1, P62, and LC3B) related mRNA levels and protein (PGC-1α, Mfn1, Mfn2, PINK1) levels. Collectively, our results suggested that excessive V could induce oxidative stress and MQC disorder in the heart of ducks.
Collapse
Affiliation(s)
- Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Yan Yang
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Guohui Liu
- Ganzhou Agriculture and Rural Affairs, Ganzhou, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|