1
|
Wang J, Cui J, Li G, Yu L. Research advances in replication-deficient viral vector vaccines. Front Vet Sci 2025; 12:1535328. [PMID: 40098886 PMCID: PMC11911334 DOI: 10.3389/fvets.2025.1535328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, replication-deficient viral vector vaccines have attracted much attention in the field of vaccine research and development due to their high safety and immunogenicity. These vaccines use genetic modifications to engineer viral vectors that make them unable to replicate but effective in expressing recombinant proteins and induce immune responses. Currently, replication-deficient adenovirus vectors and poxvirus vectors are widely used in vaccine R&D for a variety of infectious diseases in humans and animals, including AIDS, hepatitis B, pseudorabies, avian influenza, infectious bronchitis in poultry, and foot-and-mouth disease. Replication-deficient viral vaccines have been shown to effectively induce neutralizing antibodies and cellular immune responses, thereby providing effective immune protection. Future development of genetic engineering technology and continuous in-depth research on viral vectors should lead to replication-deficient viral vector platforms that have an essential role in preventing and controlling existing and emerging infectious diseases.
Collapse
Affiliation(s)
- Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
2
|
Xu L, Ren J, Li L, Wang M, Zhu G, Zheng H, Zeng Q, Shang Y, Li D. Vimentin inhibits peste des petits ruminants virus replication by interaction with nucleocapsid protein. Virology 2024; 595:110056. [PMID: 38552409 DOI: 10.1016/j.virol.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 05/18/2024]
Abstract
The Peste des petits ruminant virus (PPRV) is a member of the Paramyxoviridae family and is classified into the genus Measles virus. PPRV predominantly infects small ruminants, leading to mortality rates of nearly 100%, which have caused significant economic losses in developing countries. Host proteins are important in virus replication, but the PPRV nucleocapsid (N) protein-host interacting partners for regulating PPRV replication remain unclear. The present study confirmed the interaction between PPRV-N and the host protein vimentin by co-immunoprecipitation and co-localization experiments. Overexpression of vimentin suppressed PPRV replication, whereas vimentin knockdown had the opposite effect. Mechanistically, N was subjected to degradation via the ubiquitin/proteasome pathway, where vimentin recruits the E3 ubiquitin ligase NEDD4L to fulfill N-ubiquitination, resulting in the degradation of the N protein. These findings suggest that the host protein vimentin and E3 ubiquitin ligase NEDD4L have an anti-PPRV effect.
Collapse
Affiliation(s)
- Long Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Lingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Mengyi Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
3
|
Darpel KE, Corla A, Stedman A, Bellamy F, Flannery J, Rajko-Nenow P, Powers C, Wilson S, Charleston B, Baron MD, Batten C. Long-term trial of protection provided by adenovirus-vectored vaccine expressing the PPRV H protein. NPJ Vaccines 2024; 9:98. [PMID: 38830899 PMCID: PMC11148195 DOI: 10.1038/s41541-024-00892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
A recombinant, replication-defective, adenovirus-vectored vaccine expressing the H surface glycoprotein of peste des petits ruminants virus (PPRV) has previously been shown to protect goats from challenge with wild-type PPRV at up to 4 months post vaccination. Here, we present the results of a longer-term trial of the protection provided by such a vaccine, challenging animals at 6, 9, 12 and 15 months post vaccination. Vaccinated animals developed high levels of anti-PPRV H protein antibodies, which were virus-neutralising, and the level of these antibodies was maintained for the duration of the trial. The vaccinated animals were largely protected against overt clinical disease from the challenge virus. Although viral genome was intermittently detected in blood samples, nasal and/or ocular swabs of vaccinated goats post challenge, viral RNA levels were significantly lower compared to unvaccinated control animals and vaccinated goats did not appear to excrete live virus. This protection, like the antibody response, was maintained at the same level for at least 15 months after vaccination. In addition, we showed that animals that have been vaccinated with the adenovirus-based vaccine can be revaccinated with the same vaccine after 12 months and showed an increased anti-PPRV antibody response after this boost vaccination. Such vaccines, which provide a DIVA capability, would therefore be suitable for use when the current live attenuated PPRV vaccines are withdrawn at the end of the ongoing global PPR eradication campaign.
Collapse
Affiliation(s)
- Karin E Darpel
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Amanda Corla
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Anna Stedman
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Veterinary Medicines Directorate, Woodham Lane, Addlestone, Surrey, KT15 3LS, UK
| | | | - John Flannery
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, Athlone, Ireland
| | - Paulina Rajko-Nenow
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, Athlone, Ireland
| | - Claire Powers
- Viral Vector Core Facility, Pandemic Sciences Institute, Oxford University, Oxford, UK
| | - Steve Wilson
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, UK
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Michael D Baron
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| |
Collapse
|
4
|
Zhang R, Hu Z, Wei D, Li R, Li Y, Zhang Z. Carboplatin restricts peste des petits ruminants virus replication by suppressing the STING-mediated autophagy. Front Vet Sci 2024; 11:1383927. [PMID: 38812563 PMCID: PMC11133560 DOI: 10.3389/fvets.2024.1383927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that causes the acute and highly pathogenic infectious disease peste des petits ruminants (PPR) in small ruminants and poses a major threat to the goat and sheep industries. Currently, there is no effective treatment for PPRV infection. Here, we propose Carboplatin, a platinum-based regimen designed to treat a range of malignancies, as a potential antiviral agent. We showed that Carboplatin exhibits significant antiviral activity against PPRV in a cell culture model. The mechanism of action of Carboplatin against PPRV is mainly attributed to its ability to block STING mediated autophagy. Together, our study supports the discovery of Carboplatin as an antiviral against PPRV and potentially other closely related viruses, sheds light on its mode of action, and establishes STING as a valid and attractive target to counteract viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Yanmin Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Sun M, Wang C, Luo H, Chen Y, Qu G, Chen J, Li L, Zhang M, Xue Q. Development and characterization of a novel nanobody with SRMV neutralizing activity. Microb Cell Fact 2024; 23:45. [PMID: 38341572 PMCID: PMC10858559 DOI: 10.1186/s12934-024-02311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Peste des petits ruminants (PPR) is an acute, contact infectious disease caused by the small ruminant morbillivirus (SRMV), and its morbidity in goats and sheep can be up to 100% with significant mortality. Nanobody generated from camelid animals such as alpaca has attracted wide attention because of its unique advantages compared with conventional antibodies. The main objective of this study was to produce specific nanobodies against SRMV and identify its characteristics. To obtain the coding gene of SRMV-specific nanobodies, we first constructed an immune phage-displayed library from the VHH repertoire of alpaca that was immunized with SRMV-F and -H proteins. By using phage display technology, the target antigen-specific VHHs can be obtained after four consecutive rounds of biopanning. Results showed that the size of this VHH library was 2.26 × 1010 CFU/mL and the SRMV-F and -H specific phage particles were greatly enriched after four rounds of biopanning. The positive phage clones were selected and sequenced, and total of five independent different sequences of SRMV-specific nanobodies were identified. Subsequently, the DNA fragments of the five nanobodies were cloned into E. coli BL21(DE3), respectively, and three of them were successfully expressed and purified. Specificity and affinity towards inactivated SRMV of these purified nanobodies were then evaluated using the ELISA method. Results demonstrated that NbSRMV-1-1, NbSRMV-2-10, and NbSRMV-1-21 showed no cross-reactivity with other antigens, such as inactivated BTV, inactivated FMDV, His-tag labeled protein, and BSA. The ELISA titer of these three nanobodies against inactivated SRMV was up to 1:1000. However, only NbSRMV-1-21 displayed SRMV neutralizing activity at a maximum dilution of 1:4. The results indicate that the nanobodies against SRMV generated in this study could be useful in future applications. This study provided a novel antibody tool and laid a foundation for the treatment and detection of SRMV.
Collapse
Affiliation(s)
- Miao Sun
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yanfei Chen
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jian Chen
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Ling Li
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Min Zhang
- Tech-Bank Food Corporation Limited, Nanjing, China
| | - Qinghong Xue
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China.
| |
Collapse
|
6
|
Mahony TJ, Briody TE, Ommeh SC. Can the Revolution in mRNA-Based Vaccine Technologies Solve the Intractable Health Issues of Current Ruminant Production Systems? Vaccines (Basel) 2024; 12:152. [PMID: 38400135 PMCID: PMC10893269 DOI: 10.3390/vaccines12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
To achieve the World Health Organization's global Sustainable Development Goals, increased production of high-quality protein for human consumption is required while minimizing, ideally reducing, environmental impacts. One way to achieve these goals is to address losses within current livestock production systems. Infectious diseases are key limiters of edible protein production, affecting both quantity and quality. In addition, some of these diseases are zoonotic threats and potential contributors to the emergence of antimicrobial resistance. Vaccination has proven to be highly successful in controlling and even eliminating several livestock diseases of economic importance. However, many livestock diseases, both existing and emerging, have proven to be recalcitrant targets for conventional vaccination technologies. The threat posed by the COVID-19 pandemic resulted in unprecedented global investment in vaccine technologies to accelerate the development of safe and efficacious vaccines. While several vaccination platforms emerged as front runners to meet this challenge, the clear winner is mRNA-based vaccination. The challenge now is for livestock industries and relevant stakeholders to harness these rapid advances in vaccination to address key diseases affecting livestock production. This review examines the key features of mRNA vaccines, as this technology has the potential to control infectious diseases of importance to livestock production that have proven otherwise difficult to control using conventional approaches. This review focuses on the challenging diseases of ruminants due to their importance in global protein production. Overall, the current literature suggests that, while mRNA vaccines have the potential to address challenges in veterinary medicine, further developments are likely to be required for this promise to be realized for ruminant and other livestock species.
Collapse
Affiliation(s)
- Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (T.E.B.); (S.C.O.)
| | | | | |
Collapse
|
7
|
Ayaz Kök S, Üstün S, Taşkent Sezgin H. Diagnosis of Ruminant Viral Diseases with Loop-Mediated Isothermal Amplification. Mol Biotechnol 2023; 65:1228-1241. [PMID: 36719638 PMCID: PMC9888337 DOI: 10.1007/s12033-023-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Infectious diseases in livestock industry are major problems for animal health, food safety, and the economy. Zoonotic diseases from farm animals are significant threat to human population as well. These are notifiable diseases listed by the World Organization for Animal Health (OIE). Rapid diagnostic methods can help keep infectious diseases under control in herds. Loop-mediated isothermal amplification (LAMP) is a simple and rapid nucleic acid amplification method that is studied widely for detection of many infectious diseases in the field. LAMP allows biosensing of target DNA or RNA under isothermal conditions with high specificity in a short period of time. An untrained user can analyze results based on color change or turbidity. Here we review LAMP assays to diagnose OIE notifiable ruminant viral diseases in literature highlighting properties of LAMP method considering what is expected from an efficient, field usable diagnostic test.
Collapse
Affiliation(s)
- Sanem Ayaz Kök
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Selcen Üstün
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Hümeyra Taşkent Sezgin
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430.
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
| |
Collapse
|
8
|
Peste Des Petits Ruminants Virus N Protein Is a Critical Proinflammation Factor That Promotes MyD88 and NLRP3 Complex Assembly. J Virol 2022; 96:e0030922. [PMID: 35502911 DOI: 10.1128/jvi.00309-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammatory responses play a central role in host defense against invading pathogens. Peste des petits ruminants virus (PPRV) causes highly contagious acute or subacute disease of small ruminants. However, the precise mechanism by which PPRV regulates inflammatory responses remains unknown. Here, we revealed a novel mechanism by which PPRV induces inflammation. Our study showed that PPRV induced the secretion of interleukin 1β (IL-1β) by activating the NF-κB signaling pathway and the NLRP3 inflammasome. Moreover, PPRV replication and protein synthesis were essential for NLRP3 inflammasome activation. Importantly, PPRV N protein promoted NF-κB signaling pathway and NLRP3 inflammasome via direct binding of MyD88 and NLPR3, respectively, and induced caspase-1 cleavage and IL-1β maturation. Biochemically, N protein interacted with MyD88 to potentiate the assembly of MyD88 complex and interacted with NLPR3 to facilitate NLRP3 inflammasome complex assembly by forming an N-NLRP3-ASC ring-like structure, leading to IL-1β secretion. These findings demonstrate a new function of PPRV N protein as an important proinflammation factor and identify a novel underlying mechanism modulating inflammasome assembly and function induced by PPRV. IMPORTANCE An important part of the innate immune response is the activation of NF-κB signaling pathway and NLPR3 inflammasome, which is induced upon exposure to pathogens. Peste des petits ruminants virus (PPRV) is a highly contagious virus causing fever, stomatitis, and pneumoenteritis in goats by inducing many proinflammatory cytokines. Although the NF-κB signaling pathway and NLRP3 inflammasome play an important role in regulating host immunity and viral infection, the precise mechanism by which PPRV regulates inflammatory responses remains unknown. This study demonstrates that PPRV induces inflammatory responses. Mechanistically, PPRV N protein facilitates the MyD88 complex assembly by directly binding to MyD88 and promotes the NLRP3 inflammasome complex assembly by directly binding to NLRP3 to form ring-like structures of N-NLRP3-ASC. These findings provide insights into the prevention and treatment of PPRV infection.
Collapse
|
9
|
Li L, Wu J, Cao X, He J, Liu X, Shang Y. Analysis and Sequence Alignment of Peste des Petits Ruminants Virus ChinaSX2020. Vet Sci 2021; 8:vetsci8110285. [PMID: 34822658 PMCID: PMC8623451 DOI: 10.3390/vetsci8110285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
The peste des petits ruminants virus (PPRV) mainly infects goats and sheep and causes a highly contagious disease, PPR. Recently, a PPRV strain named ChinaSX2020 was isolated and confirmed following an indirect immunofluorescence assay and PCR using PPRV-specific antibody and primers, respectively. A sequencing of the ChinaSX2020 strain showed a genome length of 15,954 nucleotides. A phylogenetic tree analysis showed that the ChinaSX2020 genome was classified into lineage IV of the PRRV genotypes. The genome of the ChinaSX2020 strain was found to be closely related to PPRVs isolated in China between 2013 and 2014. These findings revealed that not a variety of PRRVs but similar PPRVs were continuously spreading and causing sporadic outbreaks in China.
Collapse
|
10
|
Vaccination as a Strategy to Prevent Bluetongue Virus Vertical Transmission. Pathogens 2021; 10:pathogens10111528. [PMID: 34832683 PMCID: PMC8622840 DOI: 10.3390/pathogens10111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue virus (BTV) produces an economically important disease in ruminants of compulsory notification to the OIE. BTV is typically transmitted by the bite of Culicoides spp., however, some BTV strains can be transmitted vertically, and this is associated with fetus malformations and abortions. The viral factors associated with the virus potency to cross the placental barrier are not well defined. The potency of vertical transmission is retained and sometimes even increased in live attenuated BTV vaccine strains. Because BTV possesses a segmented genome, the possibility of reassortment of vaccination strains with wild-type virus could even favor the transmission of this phenotype. In the present review, we will describe the non-vector-based BTV infection routes and discuss the experimental vaccination strategies that offer advantages over this drawback of some live attenuated BTV vaccines.
Collapse
|