1
|
Raouf AA, El-Kadem AH, Sokar SS, Oraby MA, El-Shitany NA. Cilostazol attenuates cisplatin-induced acute liver injury by targeting the SIRT1/AMPK/PGC-1α signaling pathway, with an impact on miRNA-34a. Eur J Pharmacol 2025; 997:177609. [PMID: 40216180 DOI: 10.1016/j.ejphar.2025.177609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The dominant chemotherapeutic agent, cisplatin (CP), is widely used to manage various cancer types. Despite its effectiveness, CP use is associated with severe hepatotoxicity. Cilostazol (CSZ), a selective phosphodiesterase III inhibitor, has recently demonstrated remarkable anti-inflammatory and anti-apoptotic properties in different diseases. Additionally, it exhibits hepatoprotective effects against various forms of liver injury. Hence, this study aimed to assess the potential hepatoprotective and ameliorative effects of CSZ on CP-induced acute liver injury (ALI) and to elucidate the underlying molecular mechanisms. To achieve this, ALI was induced by a single injection of CP (20 mg/kg; i.p.) in male Wistar rats pretreated with CSZ (5 or 10 mg/kg) administered orally for one week. The findings revealed that CSZ effectively reversed CP-induced hepatic dysfunction, as evidenced by notable liver function tests and improvements in histological examination. Additionally, CSZ protected against CP-mediated liver oxidative stress by decreasing MDA levels while increasing GSH and GPx levels and enhancing SOD activity. Furthermore, CSZ exhibited a potent anti-inflammatory effect, reducing the expression of pro-inflammatory cytokines, including NF-κB, IL-1β, and TNF-α. Regarding hepatocyte apoptosis, CSZ suppressed Bax immunoexpression and caspase-3 and caspase-9 levels while enhancing Bcl-2 expression, thereby mitigating hepatic cell death. The hepatoprotective effects of CSZ could be attributed to the regulation of the miRNA-34a/AMPK/SIRT1/PGC-1α signaling pathway, leading to the activation of the Nrf2/HO-1-mediated antioxidative defense mechanism. In conclusion, CSZ could be a promising therapeutic agent for preventing CP-induced ALI, potentially improving the quality of life for cancer patients.
Collapse
Affiliation(s)
- Ahmed Amr Raouf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Aya H El-Kadem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Samia S Sokar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Mamdouh A Oraby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Nagla A El-Shitany
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
2
|
El-Shehawi AM, Sayed S, Elseehy MM, Alotaibi S, Alharthi SB, Alsharif G, Soliman M. Screening of Salsola imbricata extract impacts against acrylamide induced hepatic toxicity in rats through the regulation of different global gene expression. Toxicol Res (Camb) 2025; 14:tfaf038. [PMID: 40103578 PMCID: PMC11912560 DOI: 10.1093/toxres/tfaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Acrylamide (A) is known for its biological toxicity and S. imbricata is recognized for its various biological activities. The leaf extract of S. imbricata was utilized as a protective approach from acrylamide-induced oxidative stress at the transcriptome level by analyzing global gene expression, biological processes and pathways. Three groups of rats were used to investigate the protective effect of S. imbricata leaf extract on the liver transcriptome: Group C (Control), group A (received acrylamide), and group A_S (received acrylamide and S. imbricata extract). Transcriptome analysis was conducted using RNAseq with the Illumina NovaSeq 6,000. The results identified 53 differentially expressed genes (DEGs) in A/C and 91 genes in A_S/C comparisons. Various GO terms were significantly enriched, with 19 terms in the A/C comparison and 6 terms in the A_S/C comparison. In addition, several pathways were enriched, including ATP biosynthesis, mitochondrial inner membrane, and iron binding. The extract of S. imbricata exhibited various effects, including A-like, A-antagonistic, or A-agonistic on gene expression. This explains the observed contradiction of S. imbricata extract on the global gene expression of rat liver. The identified DEGs in the current study are associated with various pathways, including electron transport chain, mitochondrial apoptosis, ribosome function, iron binding, and homeostasis. The findings indicate an A-like transcriptomic toxicity of S. imbricata, although its previously reported antioxidant and anti-inflammatory activities. This raises concerns about the safety of medicinal plants and their widespread use in food supplements and alternative medicine, emphasizing the need for their assessment at various biological levels.
Collapse
Affiliation(s)
- Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Aflatoun St., El Shatby, Alexandria 21526, Egypt
| | - Saqer Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Siraj B Alharthi
- Molecular Diagnostic Unit, Alhada Armed Forces Hospital, Al Hada, Taif 26792, Saudi Arabia
- Department of Biological Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, P.O.Box 9515, Jeddah 21423,Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center, P.O.Box 9515 Jeddah 21423, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University 21995, Saudi Arabia
| |
Collapse
|
3
|
Eldeen AZE, El-Aziz FEZAA, Sayed AM, Mousa SAS, Asmaey MA. Exploring the phytochemical composition of Salsola imbricata: investigating its protective potential against UV-C radiation in earthworms and isopods models. 3 Biotech 2025; 15:97. [PMID: 40130210 PMCID: PMC11929650 DOI: 10.1007/s13205-025-04233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025] Open
Abstract
The aqueous ethanolic extract of Salsola imbricata (AEESI) demonstrated significant protective effects against UV-C radiation damage, using earthworms and isopods as models for human skin and eyes, respectively. High-performance liquid chromatography (HPLC) analysis identified 15 bioactive polyphenolic compounds in AEESI, with chlorogenic acid (55.51 µg/ml) and gallic acid (46.69 µg/ml) as the dominant phenolic acids, and naringenin (40.42 µg/ml) as the primary flavonoid. The extract effectively mitigated histological and ultrastructural damage caused by UV-C radiation in both models. Additionally, quality control parameters, including moisture content, pH, acidity index, ash content, and elemental composition, were determined for the first time. These findings highlight the potential of S. imbricata extract as a protective agent against UV-C radiation-induced damage, attributed to its rich polyphenolic content.
Collapse
Affiliation(s)
- Ahmed Z. Ezz Eldeen
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| | | | - Ahmed M. Sayed
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Sayed A. S. Mousa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| | - Mostafa A. Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| |
Collapse
|
4
|
Zakaria A, Kassem FF, Ghareeb DA, Shams Eldin SM, Selim DA. A comprehensive metabolomic study of three Egyptian Salsola species revealed their potential anti-inflammatory activity. Sci Rep 2025; 15:5056. [PMID: 39934136 PMCID: PMC11814127 DOI: 10.1038/s41598-024-80807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/21/2024] [Indexed: 02/13/2025] Open
Abstract
Salsola plants are halophytic crops that are distributed worldwide, with more than 100 species figured out in Asia, the Mediterranean region and North Africa. Different Salsola species were reported to exert marked anti-inflammatory activities, whereas the potential anti-inflammatory activities of the three species, S. tetrandra, S. tetragona and S. vermiculata, have not been evaluated. This study provides a comprehensive metabolic study of the shoots and roots of those three species to identify potential anti-inflammatory candidates. An ultra-high performance liquid chromatography mass-mass spectrometry (UHPLC MS/MS) method in conjunction with multivariate analysis principles was utilized in an attempt to decipher their bio-active metabolites and their relevant anti-inflammatory activities. Eighty metabolites were identified in the tested extracts, where nitrogenous compounds and phenolics were highly detected in S. tetragona samples, meanwhile, saponins and phenolic acids were highly dominant in S. tetrendra sample and S. vermiculata samples have a similar chemical profile as S. tetrandra. Concerning the anti-inflammatory activity of the tested extracts, the safety margin of all the tested extracts was higher than that of the standard drug piroxicam. The shoots of the three species demonstrated more potent anti-inflammatory activities compared to the roots. The shoot extract of S. tetrandra was the most biologically active fraction. The obtained results revealed the shoots of the three Salosla species to be promising anti-inflammatory drug candidates of high safety and efficacy that could be used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Abdelrhman Zakaria
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Fahima F Kassem
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research and Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University in Alexandria, Alexandria, Egypt
| | - Safa M Shams Eldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Dina A Selim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
5
|
Liu Z, Daniels T, Campen MJ, Alvidrez RIM. Inflammatory atherosclerotic plaque identification by SPECT/CT imaging of LFA-1 using [ 111In] In-DANBIRT in a novel dyslipidemic rat model. Ann Nucl Med 2023; 37:635-643. [PMID: 37742306 DOI: 10.1007/s12149-023-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Atherosclerosis is prevalent globally, closely associated with dyslipidemia and other metabolic dysfunction. Early diagnosis of atherosclerosis is challenging due to limited diagnostic capabilities that need to be expanded with animal models with enhanced vascular biology like rats. Our previous research showed [111In] In-DANBIRT has potential as a diagnostic tool for detecting atherosclerosis in mice. The primary aim of the present study is to evaluate [111In] In-DANBIRT in a novel atherosclerotic rat with early- and late-stage atherosclerosis and metabolic disease. METHODS We characterized metabolic and body composition differences in these novel dyslipidemic rats under different diets using serum chemistry and dual-energy X-ray absorptiometry (DEXA) scan, respectively. We performed 1-h post-injection in vivo molecular imaging of ApoE knockout, lean Zucker (LZ) male rats at baseline and followed them into 10 weeks of either normal or high-fat/cholesterol diet implementation (22 weeks of age). RESULTS We identified significant differences in body composition and metabolic changes in ApoE knockout rats compared to ApoE wildtype rats. Our findings indicate an increased uptake of [111In] In-DANBIRT in ApoE knockout, lean Zucker (LZ) rats, particularly in the descending aorta, a location where early-stage atherosclerosis is commonly found. Our findings, however, also revealed that the ApoE knockout, Zucker diabetic fatty (ZDF) model has high mortality rate, which may be attributed to alterations of critical enzymes involved in regulating metabolism and liver function. CONCLUSION Our results are highly encouraging as they demonstrated the potential of [111In] In-DANBIRT to detect early-stage atherosclerosis in rats that might otherwise go unnoticed by other methods, showcasing the high sensitivity of [111In] In-DANBIRT. Our future studies will aim to establish a viable T2D atherosclerosis model in rats with more advanced stages of the disease to further demonstrate the reliability of [111In] In-DANBIRT as a diagnostic tool for patients in all stages of atherosclerosis.
Collapse
Affiliation(s)
- Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Tamara Daniels
- Department of Radiopharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Matthew J Campen
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Roberto Ivan Mota Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Department of Radiopharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA.
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA.
- Pittsburgh Liver Research Center Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM, 87131, USA.
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA.
| |
Collapse
|
6
|
Research Progress of Programmed Cell Death Induced by Acrylamide. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Acrylamide exposure through environment pollution and diet is very common in daily life. With the deepening of the study on the toxicity of acrylamide, it has attracted widespread attention for the effects of acrylamide on multiple organs through affecting a variety of programmed cell death. Multiple studies have shown that acrylamide could exert its toxic effect by inducing programmed cell death, but its specific molecular mechanism is still unclear. In this review, the research on the main forms of programmed cell death (apoptosis, autophagy, and programmed necrosis) induced by acrylamide and their possible mechanisms are reviewed. This review may provide basic data for further research of acrylamide and prevention of its toxicity.
Collapse
|
7
|
Selim DA, Shawky E, Ghareeb DA, Abdulmalek SA, Abu El-Khair RM. Comparative metabolomics of the different fractions of two saltwort (Salsola L.) species in relation to their anti-inflammatory activity. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Characterization of the Impacts of Living at High Altitude in Taif: Oxidative Stress Biomarker Alterations and Immunohistochemical Changes. Curr Issues Mol Biol 2022; 44:1610-1625. [PMID: 35723368 PMCID: PMC9164078 DOI: 10.3390/cimb44040110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
At high elevations, the human body experiences a number of pathological, physiological, and biochemical changes, all of which have adverse impacts on human health and organ vitality. This study aimed to investigate the alterations in the liver and kidney biomarkers, oxidative stress markers, gene expression, and cellular histology of rats maintained at high altitudes and normal sea level. A total of twenty male Wistar rats at 2 months of age were randomly assigned to two groups. The rats in group A were maintained at normal sea level in Jeddah, whereas rats in group B were maintained in an area in Taif 2600 m above sea level. After 2 months of housing, orbital blood samples were collected for the analysis of significant biochemical indicators of oxidative stress biomarkers of the liver and kidneys. Liver and kidney tissues from both groups were taken to examine the hepatorenal changes occurring at the biochemical, histological, immunohistochemical, and genetic levels. The results revealed substantial increases in the serum levels of liver and kidney biomarkers (GPT, GOT, urea, and creatinine) and decreases in the serum levels of antioxidant biomarkers (SOD, catalase, GSH, and NO). In parallel, the levels of the malondialdehyde (MDA) tissue damage marker and inflammatory cytokines (IL-1β, TNF-α, and IFN-γ) were increased in the high-altitude group compared to the normal sea level group. In addition, there were significant alterations in the oxidative and inflammatory status of rats that lived at high altitude, with considerable upregulation in the expression of hepatic VEGF, type 1 collagen, Cox-2, TNF-α, and iNOS as well as renal EPASI, CMYC, HIF-α, and EGLN-2 genes in the high-altitude group compared with controls housed at normal sea level. In conclusion, living at high altitude induces hepatorenal damage and biochemical and molecular alterations, all of which may serve as critical factors that must be taken into account for organisms living at high altitudes.
Collapse
|