1
|
Tong X, Barkema HW, Nobrega DB, Xu C, Han B, Zhang C, Yang J, Li X, Gao J. Virulence of Bacteria Causing Mastitis in Dairy Cows: A Literature Review. Microorganisms 2025; 13:167. [PMID: 39858935 PMCID: PMC11767654 DOI: 10.3390/microorganisms13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g., Staphylococcus spp., Streptococcus spp.) and Gram-negative bacilli (e.g., Escherichia coli, Klebsiella pneumoniae). These pathogens induce mastitis through diverse mechanisms, intricately linked to the virulence factors they carry. Despite previous research on the virulence factors of mastitis-causing bacteria in dairy cattle, there remains a significant gap in our comprehensive understanding of these factors. To bridge these gaps, this manuscript reviews and compiles research on the virulence factors of these pathogens, focusing on their roles in mammary tissue infection, immune evasion, adherence to mammary epithelial cells, and invasion and colonization of the mammary gland. These processes are analyzed in depth to provide a comprehensive framework to promote a deeper understanding of dairy pathogenic bacteria and their pathogenic mechanisms and to provide new insights into the control of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Xiaofang Tong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Chenyibo Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jingyue Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Xiaoping Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| |
Collapse
|
2
|
Myrenås M, Fasth C, Waller KP, Pedersen K. Genomic analyses of Streptococcus uberis reveal high diversity but few antibiotic resistance genes. Vet Microbiol 2025; 300:110319. [PMID: 39637769 DOI: 10.1016/j.vetmic.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
This study aimed to investigate the diversity of milk isolates of Streptococcus uberis from Swedish dairy cows with mastitis, focusing on antibiotic resistance and virulence genes. We analyzed 115 S. uberis isolates using whole genome sequencing revealing a high level of diversity. Within the same farms, we identified both indistinguishable strains with identical sequence types (ST), and distinct isolates belonging to different ST types. This suggests both clonal and non-clonal spread of the bacterium, although primarily non-clonal. We found small clusters of two to eight closely related isolates both within and between farms. Differences in penicillin susceptibility were observed, probably linked to specific variants of penicillin-binding proteins. Few isolates were resistant to antibiotics, and few resistance genes were detected. In most cases, only one or two resistance genes were present, and only one isolate was multi-drug resistant. Two isolates had resistance genes against tetracyclines, a tet(M) and a tet(O) gene, two had a resistance gene against lincosamides, an lnu(C) and an lnu(D) gene, while a single isolate had an erm(B) gene conferring resistance to both macrolides and lincosamides. A single isolate carried a mef(A) gene, which confers resistance to macrolides via an efflux pump mechanism. However, we found aminoglycoside genes in 10 isolates, all 10 had the ant(6)-Ia gene, and one in addition aph(3')-IIIa, and a spectinomycin resistance gene, spw, in eight isolates. Finally, one isolate carried a streptothricin resistance gene, sat4. The genes sat4 and spw have apparently not previously been reported in S. uberis. Interestingly, isolates with elevated MIC to penicillin also significantly more often carried other resistance factors. Most isolates carried several virulence genes, including genes for capsule formation, adhesion to host cells or extracellular matrix proteins, and acquisition of essential nutritional factors, such as amino acids, iron and manganese.
Collapse
Affiliation(s)
- Mattias Myrenås
- Swedish Veterinary Agency, Ulls väg 2B, Uppsala SE-751 89, Sweden.
| | - Charlotta Fasth
- Swedish Veterinary Agency, Ulls väg 2B, Uppsala SE-751 89, Sweden.
| | | | - Karl Pedersen
- Swedish Veterinary Agency, Ulls väg 2B, Uppsala SE-751 89, Sweden; Aarhus University, Department of Animal and Veterinary Science, Blichers Allé 20, Tjele 8830, Denmark.
| |
Collapse
|
3
|
Srithanasuwan A, Schukken YH, Pangprasit N, Chuammitri P, Suriyasathaporn W. Different cellular and molecular responses of Bovine milk phagocytes to persistent and transient strains of Streptococcus uberis causing mastitis. PLoS One 2024; 19:e0295547. [PMID: 38206970 PMCID: PMC10783761 DOI: 10.1371/journal.pone.0295547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
Streptococcus uberis is frequently isolated from milk collected from dairy cows with mastitis. According to the host's immunity, bacterial virulence, and their interaction, infection with some strains can induce persistent subclinical inflammation, while infection with others induces severe inflammation and transient mastitis. This study compared the inflammatory response of milk-isolated white blood cells (mWBCs) to persistent and transient S. uberis strains. Quarter milk samples were collected aseptically for bacterial culture from all lactating cows once a week over a 10-week period. A transient and noncapsular strain with a 1-week intramammary infection duration was selected from this herd, while a persistent and capsular S. uberis strain with an intramammary infection longer than 2 months from our previous study was selected based on an identical pulse field gel electrophoresis pattern during the IMI episode. Cellular and molecular responses of mWBCs were tested, and the data were analyzed using repeated analysis of variance. The results showed a higher response in migration, reactive oxygen species generation, and bacterial killing when cells were stimulated with transient S. uberis. In contrast, the persistent strain led to increased neutrophil extracellular trap release. This study also highlighted several important molecular aspects of mWBCs. Gene expression analyses by real-time RT-PCR revealed a significant elevation in the expression of Toll-like receptors (TLR-1, TLR-2, TLR-6) and proinflammatory cytokines (tumor necrosis factor-alpha or TNF-α) with the transient strain. Additionally, Streptococcus uberis capsule formation might contribute to the capability of these strains to induce different immune responses. Altogether, these results focus on the immune function of activated mWBCs which demonstrate that a transient strain can elicit a stronger local immune response and, subsequently, lead to rapid recovery from mastitis.
Collapse
Affiliation(s)
- Anyaphat Srithanasuwan
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Ynte H. Schukken
- Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
- GD Animal Health, Deventer, the Netherlands
- Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Noppason Pangprasit
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Phongsakorn Chuammitri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
| | - Witaya Suriyasathaporn
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
- Asian Satellite Campuses Institute-Cambodian Campus, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Zouharová M, Matiašovic J, Gebauer J, Matiašková K, Nedbalcová K. Survey of Genotype Diversity, Virulence, and Antimicrobial Resistance Genes in Mastitis-Causing Streptococcus uberis in Dairy Herds Using Whole-Genome Sequencing. Pathogens 2023; 12:1378. [PMID: 38133263 PMCID: PMC10745719 DOI: 10.3390/pathogens12121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Streptococcus uberis is one of the primary causative agents of mastitis, a clinically and economically significant disease that affects dairy cattle worldwide. In this study, we analyzed 140 S. uberis strains isolated from mastitis milk samples collected from 74 cow herds in the Czech Republic. We employed whole-genome sequencing to screen for the presence of antimicrobial resistance (AMR) genes and genes encoding virulence factors, and to assess their genetic relationships. Our analysis revealed the presence of 88 different sequence types (STs), with 41% of the isolates assigned to global clonal complexes (GCCs), the majority of which were affiliated with GCC5. The STs identified were distributed across the major phylogenetic branches of all currently known STs. We identified fifty-one putative virulence factor genes, and the majority of isolates carried between 27 and 29 of these genes. A tendency of virulence factors and AMR genes to cluster with specific STs was observed, although such clustering was not evident within GCCs. Principal component analysis did not reveal significant diversity among isolates when grouped by GCC or ST prevalence. The substantial genomic diversity and the wide array of virulence factors found in S. uberis strains present a challenge for the implementation of effective anti-mastitis measures.
Collapse
Affiliation(s)
- Monika Zouharová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (J.M.); (J.G.); (K.M.); (K.N.)
| | | | | | | | | |
Collapse
|
5
|
Srithanasuwan A, Tata L, Tananupak W, Jaraja W, Suriyasathaporn W, Chuammitri P. Exploring the distinct immunological reactions of bovine neutrophils towards major and minor pathogens responsible for mastitis. Int J Vet Sci Med 2023; 11:106-120. [PMID: 37841527 PMCID: PMC10569347 DOI: 10.1080/23144599.2023.2262250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Bovine mastitis is primarily caused by a group of bacteria known as Staphylococcus and Streptococcus. However, additional types of bacteria, such as bovine non-aureus staphylococci and mammaliicocci (NASM) as well as lactic acid bacteria (LAB), are considered minor pathogens and have less impact on cows. Modulating bovine neutrophil activities and gene expressions in response to bacterial stimuli prompted the cells to execute effector functions to combat udder infections. Although neutrophils can manage major mastitis-causing bacteria, this strategy has not been tested against minor pathogens, i.e. NASM, Weissella spp. Our main objective was to investigate how neutrophils interacted with major and minor pathogens during in vitro bacterial stimulation. The results reveal that neutrophils performed offensive duties regardless of the type of bacteria encountered. Neutrophils generated high levels of reactive oxygen species, efficiently phagocytosed both types of bacteria, and facilitated extracellular killing by releasing NET structures against all bacteria. In addition, neutrophils migrated preferentially towards the majors rather than the minors, although myeloperoxidase (MPO) degranulation did not differ substantially across bacteria. Furthermore, the killing capacity of neutrophils was not dependent on any particular bacterium. The correlation of effector functions is intimately linked to the up-regulation of genes associated with the above functions, except for IL6, which was down-regulated. Furthermore, neutrophil apoptosis can be modulated by altering apoptosis-associated genes in response to harmful stimuli. These findings provide valuable information on how neutrophils react to major and minor mastitis-causing bacteria. However, future research should explore the interplay between minor pathogens and the host's responses.
Collapse
Affiliation(s)
- Anyaphat Srithanasuwan
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
- Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Laorat Tata
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
| | - Warunya Tananupak
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
| | - Weerin Jaraja
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
| | - Witaya Suriyasathaporn
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Nagoya University Asian Satellite Campuses, Institute-Cambodian Campus, Royal University of Agriculture, Phnom Penh, Cambodia
| | - Phongsakorn Chuammitri
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
In Vitro Bacterial Competition of Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli against Coagulase-Negative Staphylococci from Bovine Mastitis Milk. Antibiotics (Basel) 2023; 12:antibiotics12030600. [PMID: 36978467 PMCID: PMC10044639 DOI: 10.3390/antibiotics12030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Intramammary infection (IMI) from the environment and infected quarters can cause co-infection. The objective of this study was to determine the ability of coagulase-negative staphylococci (CNS) to survive in the same environment as Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli as major pathogens. In total, 15 and 242 CNS strains were used in Experiment I and Experiment II, respectively. Both experiments were separated into three conditions: culture with CNS 24 h before (PRIOR), after (AFTER), and at the same time (EQUAL). The lack of a clear zone, regardless of size, was determined to be the key to the survival of both. The CNS species’ percentages of survival against major pathogens were tested using Fisher’s exact test. Differences in the percentages of survival were evident among the CNS species in all conditions. For the PRIOR condition, all CNS mostly survived when living with major strains; however, S. chromogenes could degrade S. agalactiae. Although most CNS strains were degraded in the AFTER and EQUAL conditions, some strains of S. hominis and S. simulans could resist S. aureus and S. agalactiae. In conclusion, some specific strains of CNS are able to survive in an environment with major pathogens. Research into the survival strains may indicate that the concept of novel bacteria with bacteriolytic capabilities might be possible as a novel mastitis treatment.
Collapse
|
7
|
Iqomah M, Arisona A, Daru Prasetya I, Soedarmanto A, Yanuartono, Indarjulianto S. Mini Review: Lactoferrin-binding protein of Streptococcus in Bovine Mastitis. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bovine mastitis is an udder inflammation mostly found in dairy cattle that causes enormous economic losses. Streptococcus is a bacterium that is often found in mastitis, including Streptococcus agalactiae, Streptococcus dysgalactiae, and Streptococcus uberis. These three species have lactoferrinbinding protein (LBP) as one of their virulence factors. Lactoferrin is a host innate immune protein that acts as antibacterial, immunomodulator, anti-adhesion, and has iron-binding properties. The LBP on the surface of Streptococcus could bind to lactoferrin produced by host cells. Uniquely, the three Streptococcus bacteria showed different responses to lactoferrin. The lactoferrin-LBP bound on S. agalactiae and S. dysgalactiae was known to inhibit their penetration ability into the host epithelial cells, on the contrary, in S. uberis it could enhance their ability to invade the cells. This paper aims to review the role of the lactoferrin-binding protein of Streptococcus in bovine mastitis.
Collapse
|