1
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Li LM, Xiang WT, Li T, Xiang MM, Liu F, Li JM. Efficacy of Brucella Vaccines in Sheep: A Systematic Review and Meta-Analysis. Transbound Emerg Dis 2024; 2024:5524768. [PMID: 40303105 PMCID: PMC12016899 DOI: 10.1155/2024/5524768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 05/02/2025]
Abstract
Background Brucellosis is a major worldwide public health problem with economic and zoonotic implications. Despite the importance of vaccines in preventing brucellosis, no previous systematic evaluation of vaccination in sheep has been conducted. Materials and Methods Articles were searched in databases such as PubMed, Science Direct, Cochrane, VIP, Wan Fang, and CNKI by screening the articles, and articles reporting Brucella vaccination in sheep were included in the study. Meta-analysis was performed using random effects models to calculate pooled risk ratios for vaccines and to calculate vaccine effectiveness. Results A total of 2,605 articles were retrieved, and 17 articles were obtained through screening for analysis. The effectiveness of vaccination was 65% (RR = 0.35, 95% CI: 0.27-0.36; VE = 65%), with the M5 vaccine being significantly more effective at 84% (RR = 0.1587, 95% CI: 0.0256-0.9858; VE = 84%) than the other vaccines, and intramuscular injection could be the best route of immunization. Rev.1 was indicated for female sheep, especially for pregnant ewes (RR = 0.2016, 95% CI: 0.1139-0.3569; VE = 80%), and for reduced abortions (RR = 0.0978, 95% CI: 0.0459-0.2085). Conclusion This meta-analysis was conducted to identify the relevant factors affecting vaccine efficacy. We recommend that sheep be inoculated intramuscularly with Rev.1, different inoculation protocols be adopted for sheep of different ages, and pregnant ewes be inoculated with Rev.1 to prevent abortion.
Collapse
Affiliation(s)
- Lian-Min Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Wen-Tao Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Ting Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Mei-Mei Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Fei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| |
Collapse
|
3
|
Chen S, Chen Y, Jiao Z, Wang C, Zhao D, Liu Y, Zhang W, Zhao S, Yang B, Zhao Q, Fu S, He X, Chen Q, Man C, Liu G, Wei X, Du L, Wang F. Clearance of bacteria from lymph nodes in sheep immunized with Brucella suis S2 vaccine is associated with M1 macrophage activation. Vet Res 2023; 54:20. [PMID: 36918910 PMCID: PMC10013293 DOI: 10.1186/s13567-023-01147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 03/16/2023] Open
Abstract
Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 persisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were performed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.
Collapse
Affiliation(s)
- Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zizhuo Jiao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Chengqiang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Dantong Zhao
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Yongbin Liu
- Inner Mongolia University, College Road No. 235, Hohhot, Inner Mongolia, China
| | - Wenguang Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shihua Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Bin Yang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qinan Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Shaoyin Fu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Xiaolong He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Guoying Liu
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Xuefeng Wei
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Du X, He X, Liu Q, Liu Q, Di R, Chu M. Identification of photoperiod-induced specific miRNAs in the adrenal glands of Sunite sheep (Ovis aries). Front Vet Sci 2022; 9:888207. [PMID: 35937294 PMCID: PMC9354845 DOI: 10.3389/fvets.2022.888207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
In seasonal estrus, it is well known that melatonin-regulated biorhythm plays a key role. Some studies indicate that the adrenal gland plays an important role in reproduction in mammals, but the molecular mechanism is not clear. This study used an artificially controlled light photoperiod model, combined with RNA-seq technology and bioinformatics analysis, to analyze the messenger RNA (mRNA) and microRNA (miRNA) of ewe (Sunite) adrenal glands under different photoperiod treatments. After identification, the key candidate genes GRHL2, CENPF, FGF16 and SLC25A30 that photoperiod affects reproduction were confirmed. The miRNAs (oar-miR-544-3p, oar-miR-411b-5p, oar-miR-376e-3p, oar-miR-376d, oar-miR-376b-3p, oar-miR-376a-3p) were specifically expressed in the adrenal gland. The candidate mRNA-miRNA pairs (e.g., SLC25A30 coagulated by novel miRNA554, novel miRNA555 and novel miRNA559) may affect seasonal estrus. In summary, we constructed relation network of the mRNAs and miRNAs of sheep adrenal glands using RNA sequencing and bioinformatics analysis, thereby, providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingqing Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu
| |
Collapse
|