1
|
Luo JX, Gao XT, Rong Z, Zhang LH, Sun YF, Qi ZL, Yu Q, Waiho K, Zhao WX, Xu YH, Zhao CL, Wu CB. Transcriptome Sequencing Reveals Effects of Artificial Feed Domestication on Intestinal Performance and Gene Expression of Carnivorous Mandarin Fish (Siniperca chuatsi) and Related Mechanisms. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:41. [PMID: 39891779 DOI: 10.1007/s10126-025-10420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Mandarin fish (Siniperca chuatsi) is a voracious carnivorous species, usually consuming only live bait fish, but dietary acclimation enables it to accept artificial feed. However, the effects of dietary acclimation on intestinal performance and gene expression in mandarin fish and related mechanisms remain largely unknown. Therefore, this study investigated the effects of artificial feed on intestinal physicochemical and biochemical performance and gene expression in mandarin fish. Mandarin fish were sampled on day 10 after feeding with live dace (LD), at day 40 after subsequent feeding with dead dace plus artificial feed (DD + AF) from day 11 to day 40, and at day 90 after continuous feeding with artificial feed (AF) alone from day 41 to day 90 for transcriptome sequencing. The biochemical analysis results indicated that artificial feed significantly increased the activity of antioxidant enzymes glutathione peroxidase and superoxide dismutase in the intestine, liver, and stomach. Histological analysis demonstrated intestinal damage in mandarin fish fed with artificial feed. The GO and KEGG enrichment analyses indicated that the DEGs in AF vs. DD + AF were significantly enriched in the pentose phosphate pathway, and the DEGs in AF vs. LD were mainly significantly enriched in glycolysis/gluconeogenesis and PPAR signaling pathways. Nineteen feed acclimation-related key genes such as gene pfkfb4a and scd were identified in the intestine and found to exhibit upregulated expressions. These results revealed that artificial feed domestication enhanced the antioxidant capacity of the mandarin fish intestine and reduced hepatic lipid deposition by upregulating the related gene expression of mandarin fish and that the regulation of carbon metabolisms, including sugar, lipid, and steroid metabolisms, might be fundamental mechanisms for mandarin fish to acclimatize to dietary changes. These findings provide novel insights into the feed acclimation mechanism of mandarin fish, holding implications for promoting large-scale artificial feed aquaculture of mandarin fish and improving economic efficiency.
Collapse
Affiliation(s)
- Jia-Xing Luo
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Xiao-Tian Gao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao, 066200, Hebei, China
| | - Zhen Rong
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Li-Han Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
- Hebei Key Laboratory of Nutritional Regulation and Disease Control for Aquaculture, Qinhuangdao, 066003, Hebei, China
| | - Yan-Feng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
- Hebei Key Laboratory of Nutritional Regulation and Disease Control for Aquaculture, Qinhuangdao, 066003, Hebei, China
| | - Zun-Li Qi
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
- Hebei Key Laboratory of Nutritional Regulation and Disease Control for Aquaculture, Qinhuangdao, 066003, Hebei, China
| | - Qi Yu
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao, 066200, Hebei, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, 20000, Kuala Terengganu, Terengganu, Malaysia
| | - Wei-Xu Zhao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Yi-Huan Xu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
- Hebei Key Laboratory of Nutritional Regulation and Disease Control for Aquaculture, Qinhuangdao, 066003, Hebei, China.
| | - Chun-Long Zhao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao, 066200, Hebei, China.
| | - Cheng-Bin Wu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
- Hebei Key Laboratory of Nutritional Regulation and Disease Control for Aquaculture, Qinhuangdao, 066003, Hebei, China.
| |
Collapse
|
2
|
Li Y, Yu C, Li S, Li Y, Yuan Z, Pan J, Chen Q, Li Y, Zhou Q, Wang Z. Effect of dietary replacement of fish meal by poultry by-product meal on the growth and hepatic health in loach (Paramisgurnus dabryanus). AQUACULTURE REPORTS 2024; 39:102441. [DOI: 10.1016/j.aqrep.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Qian P, Liu Y, Zhang H, Zhang P, Xie Y, Wu C. Effects of Five Dietary Carbohydrate Sources on Growth, Glucose Metabolism, Antioxidant Capacity and Immunity of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:1492. [PMID: 38791708 PMCID: PMC11117276 DOI: 10.3390/ani14101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of glucose (GLU), tapioca starch (TS), gelatinized tapioca starch (GTS), potato starch (PS) and gelatinized potato starch (GPS) on growth and physiological responses in juvenile largemouth bass Micropterus salmoides. After 8 weeks, fish fed with starch diets had better weight gain and growth rates. Counts of red blood cells and monocytes were increased in the PS and GPS groups, compared to GLU group. Contents of serum triglyceride and total cholesterol were markedly elevated in the TS, PS and GPS groups. There were lower levels of serum glucose, insulin and cholecystokinin, and higher agouti-related peptide contents in the PS group compared to GLU group. PS and GPS could enhance glycolysis and TCA cycle by increasing their enzyme activities and transcriptional levels. Additionally, starch sources markedly heightened mRNA levels of key genes involved in the respiratory electron transport chain. Additionally, elevated mRNA levels of key antioxidant genes were shown in the TS and GTS groups. Moreover, TS and PS could promote immunity by upregulating transcriptional levels of the complement system, lysozyme and hepcidin. Taken together, starch exhibited better growth via increasing glycolysis and TCA cycle compared with GLU, and PS could improve antioxidant and immune capacities in largemouth bass.
Collapse
Affiliation(s)
| | - Yan Liu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (P.Q.); (H.Z.); (P.Z.); (Y.X.)
| | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (P.Q.); (H.Z.); (P.Z.); (Y.X.)
| |
Collapse
|
4
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
5
|
Lei W, Li J, Fang P, Wu S, Deng Y, Luo A, He Z, Peng M. Effects of Dietary Bile Acids on Growth Performance, Lipid Deposition, and Intestinal Health of Rice Field Eel ( Monopterus albus) Fed with High-Lipid Diets. AQUACULTURE NUTRITION 2023; 2023:3321734. [PMID: 38174087 PMCID: PMC10764146 DOI: 10.1155/2023/3321734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
The purpose of this trial was to study the positive effects of bile acids (BAs) on growth performance and intestinal health of rice field eel fed with high-lipid diets (HLDs). Rice field eels (initial weight 17.00 ± 0.10 g) were divided into four groups, each group containing four repetitions and feeding with different isonitrogenous diet: control diet containing 7% lipid content, HLDs containing the lipid content increased to 13%, HLDs supplementing with 0.025% BAs and 0.05% BAs, respectively. After 8 weeks, compared control group, the fish fed HLDs had no significant effect on weight gain rate and specific growth rate (P > 0.05), but increased the lipid deposition in tissues and intestinal lipase activity, and damaged to intestinal oxidative stress, inflammatory response, physical barrier, and structural integrity (P < 0.05). Dietary BAs significantly increased weight gain rate and specific growth rate in fish fed with HL diets (P < 0.05) and reduced feed conversation rate (P < 0.05). Further, the eels fed with BAs reduced the total lipid content in liver, muscle, and whole body (P < 0.05). Dietary BAs decreased the activity of intestinal lipase (P < 0.05). Meanwhile, BAs supplemented in HLDs improved intestinal antioxidant capacity through increasing the activities of T-SOD (total superoxide dismutase), GSH-PX (glutathione peroxidase), CAT (catalase), T-AOC (total antioxidant capacity), whereas reducing MDA (malondialdehyde) content (P < 0.05). Moreover, dietary BAs regulated the mRNA expression related to inflammatory response, oxidative stress, and physical barrier in intestine, such as tnf-α, il-8, tlr-8, il-10, nrf2, keap1, claudin12, and claudin15 (P < 0.05). Dietary BAs supplementation also enhanced the intestinal structural integrity characterized by increased fold height and lamina propria width (P < 0.05). This study showed that dietary BAs supplemented in HLDs (13% lipid) could increase the growth performance of rice field eel, reduce lipid deposition in tissues and whole body, and enhance intestinal health.
Collapse
Affiliation(s)
- Wei Lei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiamin Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Peng Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanshan Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Deng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ao Luo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhengwei He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mo Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang 330045, China
| |
Collapse
|
6
|
Li YD, Si MR, Jiang SG, Yang QB, Jiang S, Yang LS, Huang JH, Zhou FL. First transcriptome profiling in gill and hepatopancrease tissues of Metapenaeus ensis in response to acute ammonia-N stress. FISH & SHELLFISH IMMUNOLOGY 2023:108926. [PMID: 37406893 DOI: 10.1016/j.fsi.2023.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The greasyback shrimp, Metapenaeus ensis, suffers from ammonia-N stress during intensive factory aquaculture. Optimizing ammonia-N stress tolerance has become an important issue in M. ensis breeding. The metabolic and adaptive mechanisms of ammonia-N toxicity in M. ensis have not been comprehensively understood yet. In this study, a large number of potential simple sequence repeats (SSRs) in the transcriptome of M. ensis were identified. Differentially expressed genes (DEGs) in the gill and hepatopancreas at 24 h post-challenges under high concentrations of ammonia-N treatment were detected. We obtained 20,108,851-27,681,918 clean reads from the control and high groups, assembled and clustered a total of 103,174 unigenes with an average of 876 bp and an N50 of 1189 bp. Comparative transcriptome analyses identified 2000 different expressed genes in the gill and 2010 different expressed genes in the hepatopancreas, a large number of which were related to immune function, oxidative stress, metabolic regulation, and apoptosis. The results suggest that M. ensis may counteract ammonia-N toxicity at the transcriptome level by increasing the expression of genes related to immune stress and detoxification metabolism, and that selected genes may serve as molecular indicators of ammonia-N. By exploring the genetic basis of M. ensis' ammonia-N stress adaptation, we constructed the genetic networks for ammonia-N adaptation. These findings will accelerate the understanding of M. ensis' ammonia-N adaptation, contribute to the research of future breeding, and promote the level of factory aquaculture of M. ensis.
Collapse
Affiliation(s)
- Yun-Dong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, 570228, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Meng-Ru Si
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Qi-Bin Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Li-Shi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Jian-Hua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China.
| | - Fa-Lin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China.
| |
Collapse
|