1
|
Zhou M, Luo Y, Qiu J, Wang H, Li X, Zhang K, Li X, Yaqoob MU, Wang M. Effects of dietary supplementation with butyrate glycerides on lipid metabolism, intestinal morphology, and microbiota population in laying hens. Poult Sci 2025; 104:104755. [PMID: 39862486 PMCID: PMC11803851 DOI: 10.1016/j.psj.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet. Meanwhile, the remaining groups were given a basal supplemented with 0.5, 1, 2, and 4 g/kg of the product containing BG and were designated as BG-0.5, BG-1, BG-2, and BG-4 groups, respectively. The findings showed that: (1) BG supplementation significantly decreased (P < 0.001) the blood Glu levels (BG-0.5, BG-1, BG-2, and BG-4) and increased (P < 0.001) the serum HDL-C levels (BG-2, and BG-4). (2) The BG-2 and BG-4 groups showed an increase (P < 0.01) in abdominal lipid HSL activity. (3) The levels of hepatic TC and TG in all BG groups were significantly decreased (P < 0.05). (4) The addition of BG resulted in a significant reduction in the mRNA expression of the liver X receptor alpha (LXRα) (P < 0.05). (5) All BG groups presented a substantial reduction in duodenal crypt depth and a notable increase in the ratio of villus height to crypt depth (V/C) (P < 0.01). Additionally, all BG groups exhibited a significant increase in villus height in the ileum (P < 0.001). (6) Both the BG-1 and BG-4 groups exhibited a significant reduction in the amounts of n-butyric and n-glutaric acids in the cecum contents (P < 0.05). (7) The inclusion of BG did not substantially impact the diversity of cecal microbiota in laying hens. However, it dramatically boosted the proportion of the beneficial bacterium Alistipes (P < 0.05) and reduced the abundance of the harmful bacterium Verrucomicrobiota (P < 0.05). Overall, incorporating BG with glycerol monobutyrate as the diet's primary active component reduces fat accumulation in laying hens' blood and liver. It potentially regulates lipid metabolism via the PPARγ-LXRα-SREBP1c pathway. Additionally, BG has the potential to enhance the structure of the small intestine's mucous membrane and increase the presence of beneficial bacteria. Under the experimental conditions, late-laying hens supplemented with 4 g/kg BG performed best overall.
Collapse
Affiliation(s)
- Minyao Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ji Qiu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Haidong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Kexin Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoteng Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | | | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Yu S, Wang G, Shen X, Chen J, Liao J, Yang Y, Aikebai G. Comprehensive analysis of changes in expression of lncRNA, microRNA and mRNA in liver tissues of chickens with high or low abdominal fat deposition. Br Poult Sci 2024; 65:250-258. [PMID: 38808584 DOI: 10.1080/00071668.2024.2319779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/07/2023] [Indexed: 05/30/2024]
Abstract
1. The liver of chickens is a dominant lipid biosynthetic tissue and plays a vital role in fat deposition, particularly in the abdomen. To determine the molecular mechanisms involved in its lipid metabolism, the livers of chickens with high (H) or low (L) abdominal fat content were sampled and sequencing on long non-coding RNA (lncRNA), messenger RNA (mRNA) and small RNA (microRNA) was performed.2. In total, 351 expressed protein-coding genes for long non-coding RNA (DEL; 201 upregulated and 150 downregulated), 400 differentially expressed genes (DEG; 223 upregulated and 177 downregulated) and 10 differentially expressed miRNA (DEM; four upregulated and six downregulated) were identified between the two groups. Multiple potential signalling pathways related to lipogenesis and lipid metabolism were identified via pathway enrichment analysis. In addition, 173 lncRNA - miRNA - mRNA interaction regulatory networks were identified, including 30 lncRNA, 27 mRNA and seven miRNA.3. These networks may help regulate lipid metabolism and fat deposition. Five promising candidate genes and two lncRNA may play important roles in the regulation of adipogenesis and lipid metabolism in chickens.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - X Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - Y Yang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - G Aikebai
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| |
Collapse
|
3
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
4
|
Ni R, Liu H, Song G, Fu X, Deng B, Xu Z, Dai S, Huang G. MiR-216a-3p inhibits the proliferation and invasion of fibroblast-like synoviocytes by targeting dual-specificity phosphatase 5. Int J Rheum Dis 2023; 26:699-709. [PMID: 36843205 DOI: 10.1111/1756-185x.14622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/28/2023]
Abstract
Dual-specificity phosphatase 5 (DUSP5) is a novel anti-inflammatory modulator in many inflammatory diseases. However, the role of DUSP5 in fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA) remains unknown. In this study, we aimed to explore the biological function and regulation of DUSP5 in FLS. We found that lower DUSP5 expression level was detected in collagen-induced arthritis (CIA) and synoviocyte MH7A. Overexpression of DUSP5 markedly decreased the proliferation, migration, and invasion of MH7A, which correlated with suppressing the phosphorylation of extracellular signal-regulated kinase (ERK). Moreover, DUSP5 was identified as a novel target gene of miR-216a-3p, which was upregulated in FLS. Therefore, DUSP5 expression was negatively regulated by miR-216a-3p, and the effect of DUSP5 overexpression on FLS was reversed by miR-216a-3p mimics. Overall, our study demonstrates that DUSP5 is a miR-216a-3p target gene and its anti-inflammatory function in FLS via inactivation of ERK. These results revealed that the miR-216a-3p/DUSP5 pathway may play a crucial role in the malignant behavior of FLS, which may serve as a new target for the treatment of RA.
Collapse
Affiliation(s)
- Rongrong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Guojing Song
- Urology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaohong Fu
- Office of Academic Research, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Shuangshuang Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Li H, Hou Y, Hu J, Li J, Liang Y, Lu Y, Liu X. Dietary naringin supplementation on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult Sci 2023; 102:102605. [PMID: 36940650 PMCID: PMC10033312 DOI: 10.1016/j.psj.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
In this study, the effects of naringin on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during late laying period were evaluated. A total of 480 (54-wk-old) Three-Yellow breeder hens were randomly assigned to 4 groups (6 replicates of 20 hens): nonsupplemented control diet (C), and control diet supplemented with 0.1%, 0.2%, and 0.4% of naringin (N1, N2, and N3), respectively. Results showed that dietary supplemented with 0.1%, 0.2%, and 0.4% of naringin for 8 wk promoted the cell proliferation and attenuated the excessive fat accumulation in the liver. Compared with C group, increased concentrations of triglyceride (TG), total cholesterol (T-CHO), high-density lipoprotein cholesterol (HDL-C), and very low-density lipoprotein (VLDL), and decreased contents of low-density lipoprotein cholesterol (LDL-C) were detected in liver, serum and ovarian tissues (P < 0.05). After 8 wk of feeding with naringin (0.1%, 0.2%, and 0.4%), serum estrogen (E2) level, expression levels of proteins and genes of estrogen receptors (ERs) increased significantly (P < 0.05). Meanwhile, naringin treatment regulated expression of genes related to yolk precursors formation (P < 0.05). Furthermore, dietary naringin addition increased the antioxidants, decreased the oxidation products, and up-regulated transcription levels of antioxidant genes in liver tissues (P < 0.05). These results indicated that dietary supplemented with naringin could improve hepatic yolk precursors formation and hepatic antioxidant capacity of Three-Yellow breeder hens during the late laying period. Doses of 0.2% and 0.4% are more effective than dose of 0.1%.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Zhu L, Liao R, Huang J, Xiao C, Yang Y, Wang H, He D, Yan H, Yang C. Lactobacillus salivarius SNK-6 Regulates Liver Lipid Metabolism Partly via the miR-130a-5p/MBOAT2 Pathway in a NAFLD Model of Laying Hens. Cells 2022; 11:cells11244133. [PMID: 36552896 PMCID: PMC9776975 DOI: 10.3390/cells11244133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus spp., as probiotics, have shown efficacy in alleviating nonalcoholic fatty liver disease (NAFLD). Here, we screened a new probiotic strain, Lactobacillus salivarius SNK-6 (L. salivarius SNK-6), which was isolated from the ileum of healthy Xinyang black-feather laying hens in China. We investigated the beneficial activity of L. salivarius SNK-6 in a NAFLD model in laying hens and found that L. salivarius SNK-6 inhibited liver fat deposition and decreased serum triglyceride levels and activity of aspartate transaminase and alanine transaminase. MBOAT2 (membrane-bound O-acyltransferase domain containing 2) was directly targeted by miR-130a-5p, which was downregulated in the liver of NAFLD laying hens but reversed after L. salivarius SNK-6 treatment. Downregulation of MBOAT2, L. salivarius SNK-6 supplementation in vivo, and L. salivarius SNK-6 cell culture treatment in vitro suppressed the mRNA expression of genes involved in the PPAR/SREBP pathway. In addition, 250 metabolites were identified in the supernatants of L. salivarius SNK-6 culture media, and most of them participated in metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. Targeted metabolomic analysis revealed that acetate, butyrate, and propionate were the most abundant short-chain fatty acids, while cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, and tauroursodeoxycholic acid were the four most-enriched bile acids among L. salivarius SNK-6 metabolites. This may have contributed to the reparative effect of L. salivarius SNK-6 in the NAFLD chicken model. Our study suggested that L. salivarius SNK-6 alleviated liver damage partly via the miR-130a-5p/MBOAT2 signaling pathway.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jiwen Huang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Changfeng Xiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
| | - Yunzhou Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huaxiang Yan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: (H.Y.); (C.Y.); Tel.: +86-216-220-5472 (H.Y. & C.Y.)
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
- Correspondence: (H.Y.); (C.Y.); Tel.: +86-216-220-5472 (H.Y. & C.Y.)
| |
Collapse
|