1
|
Bai X, Huang Z, Tan H, Gu Y, Wang X, Jin L, Shang P, Long K, Li D, Li M. Insights into high-altitude adaptation and meat quality regulation by gastrointestinal metabolites in Tibetan and black pigs. Front Vet Sci 2025; 12:1569196. [PMID: 40206253 PMCID: PMC11979216 DOI: 10.3389/fvets.2025.1569196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Tibetan pigs, native to the Qinghai-Tibet Plateau, have adapted over millennia to extreme conditions such as low oxygen, harsh cold, and high UV radiation, impacting their muscle characteristics and digestive tract microbiota. The quality of pork from Tibetan pigs (TP) and black pigs (BP) is influenced by various factors, including genetics, diet, and environmental adaptation. However, the specific influence of digestive tract microbiota metabolites on muscle traits remains poorly understood. Our goal was to correlate omic variations with meat quality traits and identify potential biomarkers predictive of superior meat quality, elucidate the regulatory effects of digestive tract microbial metabolites on Tibetan pig muscle characteristics, and reveal the genetic and nutritional mechanisms that promote adaptation to extreme environmental conditions. Methods This analysis encompassed metabolomic profiling of the entire digestive tract-including the stomach, jejunum, cecum, colon, and rectum-as well as histological, amino acid, fatty acid composition, and transcriptomic assessments of the longissimus dorsi muscle tissues to investigate how digestive tract microbial metabolites influence muscle adaptation to high altitudes. Results Analyses revealed that Tibetan pig muscles contain smaller, more oxidative fibers enriched with flavor-enhancing amino acids. This was accompanied by a more favorable n-6/n-3 fatty acid ratio. Distinct patterns of microbial metabolites were observed in the digestive tract, influencing protein digestion and purine metabolism, and correlating with muscle glycine levels. Transcriptomic data showed varied gene expression in metabolic pathways related to salivary and pancreatic secretion, as well as carbohydrate and fatty acid metabolism. Integrated multi-omics approaches linked stomach metabolism, particularly through bile secretion pathways influenced by acetylcholine, to muscle functionality, highlighting the important role played by the ATP1B4 gene in enabling muscle physiology in Tibetan pigs. Discussion This study highlights the importance of targeted dietary interventions in improving meat quality for specific pig breeds. It also provides a theoretical foundation for precision agriculture strategies aimed at enhancing the meat quality of both TP and BP pigs.
Collapse
Affiliation(s)
- Xue Bai
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiying Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Helin Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiren Gu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peng Shang
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Linzhi, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Yang B, Zhang H, Feng X, Yu Z, Cao J, Niu Y, Wan P, Liu G, Zhao X. Genetic Diversity Estimation and Genome-Wide Selective Sweep Analysis of the Bazhou Yak. Animals (Basel) 2025; 15:849. [PMID: 40150378 PMCID: PMC11939585 DOI: 10.3390/ani15060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
The Bazhou yak, a major native meat yak breed in Xinjiang, China, is renowned for its fast growth rate, strong adaptability, and particularly high intramuscular fat (IMF) content. However, limited knowledge regarding its phylogenetic history and genomic composition has hindered its long-term conservation and utilization. This study evaluated the genetic diversity, population phylogenetics, and genome-wide selective sweep analysis (GWSA) of 100 newly obtained Bazhou yaks through genome resequencing, as well as 340 public yak genomes from nine other populations on the Qinghai-Tibet Plateau. The results revealed moderate diversity, lower genomic inbreeding levels, and rapid linkage disequilibrium (LD) decay in Bazhou yaks. Principal component analysis (PCA) and phylogenetic analysis showed a clear separation of Bazhou yaks from other yak populations, indicating the Bazhou yak as an independent genetic population. Furthermore, less genetic differentiation was found between the Bazhou yak and the Huanhu yak, while ADMIXTURE analysis revealed a common ancestral lineage between Bazhou yaks and Huanhu yaks, indicating an important genetic contribution of the Qinghai yak population to Bazhou yaks. The GWSA identified a total of 833 selected genes in Bazhou yaks using the top 5% interaction windows of both parameters (FST, Pi ratio, and XP-EHH). A significant number of these genes are related to fat synthesis and deposition, such as MTOR, APOA1, and GPAT4. In summary, this study sheds light on the phylogenetic status and distinctive genomic features of Bazhou yaks, which facilitates our understanding of the genetic basis of the IMF phenotype in Bazhou yaks.
Collapse
Affiliation(s)
- Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Zhou Yu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Jianhua Cao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Yifan Niu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| |
Collapse
|
3
|
Sun Z, Liu D, An S, Zhang J, Lei L, Miao Z. Effects of Acorns on Subcutaneous Fat Deposition in Yuxi Black Pigs by Transcriptomic Analysis. Metabolites 2025; 15:71. [PMID: 39997696 PMCID: PMC11857660 DOI: 10.3390/metabo15020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: The backfat thickness of pigs is closely related to dorsal subcutaneous fat deposition and meat quality, and appropriate reduction in backfat thickness is important for improving pork quality. The present study investigated the effect of acorn diet on the backfat thickness and lipase activity of Yuxi black pigs and to gain further insight into the molecular mechanism of the acorn diet on the dorsal subcutaneous fat deposition of Yuxi black pigs by transcriptome sequencing (RNA-seq). Methods: Thirty-six Yuxi black pigs with an initial body weight of 99.60 ± 2.32 kg (three replicates per group and six pigs per replicate) were randomly divided into two groups (CON group was fed a basic diet and AEG group was fed 30% acorn diets). Pigs were individually fed twice daily and had access to water ad libitum throughout the experiment. The test period was 4 months. Results: Results showed that backfat thickness and ACC, MDH, and LPL lipase activities were significantly reduced in the AEG group than in the CON group (p < 0.05). In addition, RNA-seq identified 826 differentially expressed genes (DEGs), with 505 up-regulated and 321 down-regulated. The DEGs were significantly enriched in the lipid metabolism process and lipid catabolic process, fatty acid (FA) catabolic process, and FA β-oxidation according to GO enrichment analysis. LEP, CHPT1, UCP3, ACOX1, SCD5, and ACAA1 were screened as key differential genes regulating dorsal subcutaneous fat deposition. Conclusions: The above results indicated that feeding the 30% acorn diet could regulate the expression of genes involved in fat deposition and reduce lipase activity, thereby decreasing the backfat thickness, inhibiting the deposition of dorsal subcutaneous fat, and improving the pork quality. The findings of this experiment established a basis for subsequent research into the molecular mechanisms underlying the impact of acorn diets on fat deposition in Yuxi black pigs and provided the scientific evidence to promote the exploitation and industrialization of acorns.
Collapse
Affiliation(s)
- Zhe Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Siyuan An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| | - Lei Lei
- Zhengzhou Agricultural Comprehensive Administrative Law Enforcement Detachment, Zhengzhou 450044, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (J.Z.)
| |
Collapse
|
4
|
Kumar ST, Zheng Y, Xu J, Zhao Z, Zhang Q, Zhang Y, Li M, Zou H, Azeem RM, Sun WS, Zhao Y, Zhang SM. Transcriptome and Metabolome Insights into Key Genes Regulating Fat Deposition and Meat Quality in Pig Breeds. Animals (Basel) 2024; 14:3560. [PMID: 39765464 PMCID: PMC11672692 DOI: 10.3390/ani14243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Meat quality is a complex trait that exhibits significant variation across pig breeds, and the regulatory mechanisms governing pork meat quality are not fully elucidated. We compared the transcriptomics and metabolomics of the longissimus dorsi (LD) muscle between the Songliao Black Pig (SBP) and Large White × Landrace Pig (LWLDP) to investigate breed-specific differences in meat quality and underlying regulatory pathways. The results showed that SBP meat had a higher marbling score and backfat thickness, a richer color, a lower shear force, and reduced drip loss. Fatty acid (FA) analysis identified 15 significant FAs in the LWLDP, with docosahexaenoic acid (DHA) in the SBP, while amino acid (AA) analysis revealed no breed-based differences. Transcriptome analysis identified 134 upregulated and 362 downregulated genes in the SBP. Protein-protein interaction (PPI) network analysis found 25 key genes, which are associated with muscle development, fat deposition, and overall meat quality, while genes in the insulin signaling pathway, such as PPP1R3B, PPARGC1A, SOCS1, EIF4E, PRKAR2A, PRKAG2, and FASN, play a crucial role in balancing fat metabolism and catabolism. Metabolomic analysis identified 89 upregulated and 10 downregulated metabolites in the SBP, primarily involved in fructose and mannose metabolism, amino acid biosynthesis, nucleotide sugar metabolism, and glucagon signaling pathways. Gene-metabolite association analysis found that the PPP1R3B gene had a strong association with Thr-Leu, Maltol, D-myo-Inositol-4-phosphate, and Fructose-6-phosphate, while MYOG correlated with Mannose-6-phosphate, Fructose-1-phosphate, Mannose-1-phosphate, and Glucose-6-phosphate. In contrast, NR4A3 and PPARGC1A showed a strong negative correlation with most upregulated metabolites. In conclusion, this study identified functional genes, elucidated the mechanisms associated with meat quality traits, and identified gene-metabolite associations involved in energy metabolism, muscle development, and fat deposition, providing valuable insights into the molecular mechanisms that regulate meat quality between pig breeds.
Collapse
Affiliation(s)
- Suthar Teerath Kumar
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| | - Yunlong Zheng
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| | - Jing Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| | - Ziyi Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| | - Qi Zhang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yunpeng Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| | - Min Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| | - Hong Zou
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (H.Z.); (W.-S.S.)
| | - Riaz Muhammad Azeem
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microbiological Vaccine (Durg) for Major Animal Diseases, Ministry of Education, Collage of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China;
| | - Wu-Sheng Sun
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (H.Z.); (W.-S.S.)
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| | - Shu-Min Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.T.K.); (Y.Z.); (J.X.); (Z.Z.); (Y.Z.); (M.L.)
| |
Collapse
|
5
|
Li Y, Xu K, Zhou A, Xu Z, Wu J, Peng X, Mei S, Chen H. Integrative Transcriptomics and Proteomics Analysis Reveals THRSP's Role in Lipid Metabolism. Genes (Basel) 2024; 15:1562. [PMID: 39766829 PMCID: PMC11675175 DOI: 10.3390/genes15121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Abnormalities in lipid metabolism and endoplasmic reticulum (ER) stress are strongly associated with the development of a multitude of pathological conditions, including nonalcoholic fatty liver disease (NAFLD), diabetes mellitus, and obesity. Previous studies have indicated a potential connection between thyroid hormone responsive (THRSP) and lipid metabolism and that ER stress may participate in the synthesis of key regulators of adipogenesis. However, the specific mechanisms remain to be investigated. Methods: In this study, we explored the roles of THRSP in lipid metabolism by interfering with THRSP gene expression in mouse mesenchymal stem cells, comparing the effects on adipogenesis between control and interfered groups, and by combining transcriptomic and proteomic analysis. Results: Our results showed that the number of lipid droplets was significantly reduced after interfering with THRSP, and the expression levels of key regulators of adipogenesis, such as LPL, FABP4, PLIN1, and CIDEC, were significantly downregulated. Both transcriptomic and proteomic results showed that the differential genes (proteins) were enriched in the processes of lipolytic regulation, ER stress, cholesterol metabolism, sphingolipid metabolism, PPAR signaling pathway, and glycerophospholipid metabolism. The ER stress marker gene, ATF6, was the most significantly downregulated transcription factor. In addition, RT-qPCR validation indicated that the expression levels of PPAR signaling pathway gene SCD1; key genes of lipid droplet generation including LIPE, DGAT1, and AGPAT2; and ER stress marker gene ATF6 were significantly downregulated. Conclusions: These suggest that THRSP is involved in regulating ER stress and the PPAR signaling pathway, which is closely related to lipid synthesis and metabolism. Interfering with the expression of THRSP may be helpful in ameliorating the occurrence of diseases related to abnormalities in lipid metabolism.
Collapse
Affiliation(s)
- Yujie Li
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Ke Xu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhong Xu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Junjing Wu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Xianwen Peng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Shuqi Mei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
6
|
Sun Z, Liu D, An S, Wu X, Zhang J, Miao Z. Effects of Acorns on Fatty Acid Composition and Lipid Metabolism in Adipose Tissue of Yuxi Black Pigs. Animals (Basel) 2024; 14:3271. [PMID: 39595322 PMCID: PMC11590921 DOI: 10.3390/ani14223271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The objective of the present research was the examination of how varying proportions of an acorn diet affects the deposition of subcutaneous fat and the composition of fatty acids (FAs) in Yuxi black pigs. Ninety pigs (with a balanced sex ratio and a similar weight 99.60 ± 2.32 kg) were stochastically assigned to the control group (CON) and the dietary acorn experimental groups (AEG). The CON was fed basal diets and the AEG1, AEG2, AEG3, and AEG4 groups were provided with dietary regimens comprising twenty, thirty, forty, and fifty per cent acorns, respectively. Each group consisted of six pigs, with three replicates. The breeding cycle was four months. The results demonstrated that, in comparison with the CON group, the lean meat rate was significantly increased in all test groups (p < 0.05), while in backfat thickness, loin eye area, carcass weight and slaughter rate was no significant difference (p > 0.05). The serum TC/HDL (total cholesterol divided by high-density lipoprotein-cholesterol) and TG/HDL (Triglyceride divided by high-density lipoprotein-cholesterol) levels in the AEG1 and AEG2 groups were significantly lower than the CON group (p < 0.05). There was no significant effect on the composition of FAs (p > 0.05). The number of fat cells in subcutaneous back fat and subcutaneous abdominal fat was significantly increased, and the area of fat cells was decreased (p < 0.05). Furthermore, the levels of ATGL and HSL expression in the subcutaneous back fat, as well as ACC, FAS, ATGL, PPARγ, and HSL expression in the subcutaneous abdominal fat, were significantly increased in the AEG2 group compared to the CON group (p < 0.05). Additionally, the expression of ACC, FAS, FABP4, PPARγ, C/EBPα, and FAS/HSL in the subcutaneous back fat, as well as FABP4, C/EBPα, and FAS/HSL in the subcutaneous abdominal fat, were significantly lower in the AEG2 group compared to the CON group (p < 0.05). In conclusion, it has been found that a 30% acorn diet can inhibit subcutaneous fat deposition and enhance the nutritional value of pork and the health of Yuxi black pigs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.S.); (D.L.); (S.A.); (X.W.); (J.Z.)
| |
Collapse
|
7
|
Jin Z, Gao H, Fu Y, Ren R, Deng X, Chen Y, Hou X, Wang Q, Song G, Fan N, Ma H, Yin Y, Xu K. Whole-Transcriptome Analysis Sheds Light on the Biological Contexts of Intramuscular Fat Deposition in Ningxiang Pigs. Genes (Basel) 2024; 15:642. [PMID: 38790271 PMCID: PMC11121357 DOI: 10.3390/genes15050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of pork is significantly impacted by intramuscular fat (IMF). However, the regulatory mechanism of IMF depositions remains unclear. We performed whole-transcriptome sequencing of the longissimus dorsi muscle (IMF) from the high (5.1 ± 0.08) and low (2.9 ± 0.51) IMF groups (%) to elucidate potential mechanisms. In summary, 285 differentially expressed genes (DEGs), 14 differentially expressed miRNAs (DEMIs), 83 differentially expressed lncRNAs (DELs), and 79 differentially expressed circRNAs (DECs) were identified. DEGs were widely associated with IMF deposition and liposome differentiation. Furthermore, competing endogenous RNA (ceRNA) regulatory networks were constructed through co-differential expression analyses, which included circRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 47 DECs) and lncRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 36 DELs) regulatory networks. The circRNAs sus-TRPM7_0005, sus-MTUS1_0004, the lncRNAs SMSTRG.4269.1, and MSTRG.7983.2 regulate the expression of six lipid metabolism-related target genes, including PLCB1, BAD, and GADD45G, through the binding sites of 2-4068, miR-7134-3p, and miR-190a. For instance, MSTRG.4269.1 regulates its targets PLCB1 and BAD via miRNA 2_4068. Meanwhile, sus-TRPM7_0005 controls its target LRP5 through ssc-miR-7134-3P. These findings indicate molecular regulatory networks that could potentially be applied for the marker-assisted selection of IMF to enhance pork quality.
Collapse
Affiliation(s)
- Zhao Jin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Ruimin Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoxiao Deng
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Yue Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaohong Hou
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Qian Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Ningyu Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
8
|
Guo Z, Lv L, Liu D, Ma H, Wang L, Fu B, Wang F. Network Meta-Analysis: Effect of Cold Stress on the Gene Expression of Swine Adipocytes ATGL, CIDEA, UCP2, and UCP3. Curr Issues Mol Biol 2024; 46:3866-3876. [PMID: 38785508 PMCID: PMC11120183 DOI: 10.3390/cimb46050240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cold stress significantly affects gene expression in adipocytes; studying this phenomenon can help reveal the pathogeneses of conditions such as obesity and insulin resistance. Adipocyte triglyceride lipase (ATGL); cell death-inducing deoxyribonucleic acid (DNA) fragmentation factor subunit alpha (DFFA)-like effector (CIDEA); and uncoupling protein genes UCP1, UCP2, and UCP3 are the most studied genes in pig adipose tissues under cold stress. However, contradictory results have been observed in gene expression changes to UCP3 and UCP2 when adipose tissues under cold stress were examined. Therefore, we conducted a meta-analysis of 32 publications in total on the effect of cold stress on the expression of ATGL, CIDEA, UCP2, and UCP3. Our results showed that cold stress affected the expression of swine adipocyte genes; specifically, it was positively correlated with the expression of UCP3 in swine adipocytes. Conversely, expression of ATGL was negatively affected under cold stress conditions. In addition, the loss of functional UCP1 in pigs likely triggered a compensatory increase in UCP3 activity. We also simulated the docking results of UCP2 and UCP3. Our results showed that UCP2 could strongly bind to adenosine triphosphate (ATP), meaning that UCP3 played a more significant role in pig adipocytes.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No. 368 Xuefu Road, Harbin 150086, China
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin 150080, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No. 368 Xuefu Road, Harbin 150086, China
| | - Hong Ma
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No. 368 Xuefu Road, Harbin 150086, China
| | - Liang Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No. 368 Xuefu Road, Harbin 150086, China
| | - Bo Fu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No. 368 Xuefu Road, Harbin 150086, China
| | - Fang Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No. 368 Xuefu Road, Harbin 150086, China
| |
Collapse
|
9
|
Lv J, Yang F, Li Y, Gao N, Zeng Q, Ma H, He J, Zhang Y. Characterization and Function Analysis of miRNA Editing during Fat Deposition in Chinese Indigenous Ningxiang Pigs. Vet Sci 2024; 11:183. [PMID: 38668450 PMCID: PMC11054885 DOI: 10.3390/vetsci11040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to identify active miRNA editing sites during adipose development in Ningxiang pigs and analyze their characteristics and functions. Based on small RNA-seq data from the subcutaneous adipose tissues of Ningxiang pigs at four stages-30 days (piglet), 90 days (nursery), 150 days (early fattening), and 210 days (late fattening)-we constructed a developmental map of miRNA editing in the adipose tissues of Ningxiang pigs. A total of 505 miRNA editing sites were identified using the revised pipeline, with C-to-U editing types being the most prevalent, followed by U-to-C, A-to-G, and G-to-U. Importantly, these four types of miRNA editing exhibited base preferences. The number of editing sites showed obvious differences among age groups, with the highest occurrence of miRNA editing events observed at 90 days of age and the lowest at 150 days of age. A total of nine miRNA editing sites were identified in the miRNA seed region, with significant differences in editing levels (p < 0.05) located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. Target gene prediction and KEGG enrichment analyses indicated that the editing of miR-497 might potentially regulate fat deposition by inhibiting adipose synthesis via influencing target binding. These results provide new insights into the regulatory mechanism of pig fat deposition.
Collapse
Affiliation(s)
- Jiayu Lv
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Yiyang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| |
Collapse
|
10
|
Wang W, Wang D, Zhang X, Liu X, Niu X, Li S, Huang S, Ran X, Wang J. Comparative transcriptome analysis of longissimus dorsi muscle reveal potential genes affecting meat trait in Chinese indigenous Xiang pig. Sci Rep 2024; 14:8486. [PMID: 38605105 PMCID: PMC11009340 DOI: 10.1038/s41598-024-58971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
In this study, we compared the transcriptome of longissimus dorsi muscle between Guizhou Xiang pigs (XP) and Western commercial Large White pigs (LW), which show diffirent meat quality between them. In terms of meat quality traits, the pH 45 min, color score, backfat thickness, and intramuscular fat (IMF) content were higher in Xiang pigs than in Large White pigs (P < 0.01), while the drip loss, lean meat percentage, shear force, and longissimus dorsi muscle area of Xiang pigs were lower than that of Large White pigs (P < 0.01). Nutrients such as monounsaturated fatty acid (MUFA), total amino acids (TAA), delicious amino acids (DAA) and essential amino acids (EAA) in Xiang pigs were higher than that in Large White pigs, and the proportion of polyunsaturated fatty acid (PUFA) of Xiang pigs was significantly lower than Large White pigs (P < 0.01). Transcriptome analysis identified 163 up-regulated genes and 88 genes down-regulated in Xiang pigs longissimus dorsi muscle. Combined with the correlation analysis and quantitative trait locis (QTLs) affecting meat quality, a total of 227 DEGs were screened to be significantly associated with meat quality values. Enrichment analysis indicated that numerous members of genes were gathered in muscle development, adipogenesis, amino acid metabolism, fatty acid metabolism and synthesis. Of those, 29 genes were identified to be hub genes that might be related with the meat quality of Xiang pig, such as MYOD1, ACTB, ASNS, FOXO1, ARG2, SLC2A4, PLIN2, and SCD. Thus, we screened and identified the potential functional genes for the formation of meat quality in Xiang pigs, which provides a corresponding theoretical basis for the study of the molecular regulatory mechanism of pork quality and the improvement of pork quality.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dan Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xinyi Zhang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiaoli Liu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
11
|
He H, Qi R, Cui J, Liu M, Guan B, Zhou Y, Zhang Y, Hao X, Wang H, Liu H. Lipid characteristics of lung tissue in silicosis rat model were studied based on lipid metabolomics. Toxicol Lett 2024; 391:111-119. [PMID: 38061438 DOI: 10.1016/j.toxlet.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Silicosis is a common occupational disease caused by the long-term inhalation of large amounts of silica dust. Lipid metabolism plays an important role in the progression of silicosis, but its contributing mechanism remains unclear. The aim of this study was to investigate the differential lipid metabolites and active metabolic pathways in silicosis rat lung tissue. We first constructed a silicosis rat model, and randomly divided 24 male SD rats into control group (C), silicosis group for 1 week (S1W), silicosis group for 2 weeks (S2W) and silicosis group for 4 weeks (S4W) with 6 rats in each group. 1 mL SiO2 suspension (50 mg/mL) or normal saline were injected into the trachea, and the rats were killed at 1 week, 2 weeks and 4 weeks, respectively. The lung tissue pathology of the rats was observed by HE staining and VG staining, and the plasma TC and FC levels were detected by the kit. Western blot was used to detect the expression of lipid-related factors CD36, PGC1α and LXR. In addition, lipidomics analysis of lung tissue samples was performed using UPLC-IMS-QTOF mass spectrometer to screen out potential differential metabolites in silicosis models and analyze lipid enrichment, and verified the expression of differential gene CHPT1 in the metabolic pathway. HE and VG staining showed that the number of nodules and fibrosis increased in a time-dependent manner in the silicosis model group, and the levels of TC, FC and CE in silicosis plasma increased. Western blot results showed that PGC1α and LXR decreased in the silicosis model group, while CD36 expression increased. In addition, metabolomics screened out 28 differential metabolites in the S1W group, 32 in the S2W group, and 22 in the S4W group, and found that the differential metabolites were mainly enriched in metabolic pathways such as glycerophospholipid metabolism and ether lipid metabolism, and the expression of differential gene CHPT1 in the metabolic pathway was decreased in the silicosis model group. These results suggest that there are significant changes in lipid metabolites in lung tissue in silicosis rat models, and glycerophospholipid metabolism was significantly enriched, suggesting that glycerophospholipids play an important role in the progression of silicosis. The differential metabolites and pathways reported in this study may provide new ideas for the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Hailan He
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rong Qi
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jie Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mingming Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Bo Guan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yufan Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yingshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hongli Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
12
|
Zhou Q, Cui X, Zhou H, Guo S, Wu Z, Li L, Zhang J, Feng W, Guo Y, Ma X, Chen Y, Qiu C, Xu M, Deng G. Differentially expressed platelet activation-related genes in dogs with stage B2 myxomatous mitral valve disease. BMC Vet Res 2023; 19:271. [PMID: 38087280 PMCID: PMC10717932 DOI: 10.1186/s12917-023-03789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Peripheral blood carries a reservoir of mRNAs that regulate cardiac structure and function potential. Although it is well recognized that the typical symptoms of Myxomatous Mitral Valve Disease (MMVD) stage B2 are long-standing hemodynamic disorder and cardiac structure remodeling caused by mitral regurgitation, the transcriptomic alterations in blood from such dogs are not understood. RESULTS In the present study, comparative high-throughput transcriptomic profiling of blood was performed from normal control (NC) and naturally-occurring MMVD stage B2 (MMVD) dogs. Using Weighted Gene Co-expression Network Analyses (WGCNA), Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genomes (KEGG), we identified that the turquoise module was the most highly correlated with echocardiographic features and found 64 differentially expressed genes (DEGs) that were significantly enriched in platelet activation related pathways. Therefore, from the turquoise module, we selected five DEGs (MDM2, ROCK1, RIPK1, SNAP23, and ARHGAP35) that, according to real-time qPCR, exhibited significant enrichment in platelet activation related pathways for validation. The results showed that the blood transcriptional abundance of MDM2, ROCK1, RIPK1, and SNAP23 differed significantly (P < 0.01) between NC and MMVD dogs. On the other hand, Correlation Analysis revealed that MDM2, ROCK1, RIPK1, and SNAP23 genes negatively regulated the heart structure parameters, and followed the same trend as observed in WGCNA. CONCLUSION We screened four platelet activation related genes, MDM2, ROCK1, RIPK1, and SNAP23, which may be considered as the candidate biomarkers for the diagnosis of MMVD stage B2. These findings provided new insights into MMVD pathogenesis.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Cui
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Zhou
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Guo
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhimin Wu
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyang Li
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxin Zhang
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Feng
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingfang Guo
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofei Ma
- Department of Clinical Animal Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yu Chen
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changwei Qiu
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Xu
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ganzhen Deng
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Mu J, Zhou X, Xing Y, Zhang M, Zhang J, Li F, Ge J, Zhao M, Liu L, Gong D, Geng T. Thyroid hormone-responsive protein mediates the response of chicken liver to fasting mainly through the cytokine-cytokine receptor interaction pathway. Br Poult Sci 2023; 64:733-744. [PMID: 37565565 DOI: 10.1080/00071668.2023.2246135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
1. The objective of this study was to explore the mediating role of thyroid hormone-responsive protein (THRSP) in the response of chicken liver to fasting.2. A batch of 7-d-old chicks with similar body weights were randomly divided into the control group and the fasting group (n = 10). The control group was fed ad libitum, while the test group fasted for 24 h. The liver and pectoral muscle tissues were collected. Chicken primary hepatocytes or myocytes were treated with different concentrations of thyroxine, glucose, insulin, oleic acid and palmitic acid, separately. Chicken primary hepatocytes were transfected with THRSP overexpression vector vs. empty vector, and the cells were used for transcriptome analysis. The mRNA expression of THRSP and other genes was determined by quantitative PCR.3. The expression of THRSP in chicken liver and pectoral muscle tissues was significantly inhibited by fasting (P < 0.05). In chicken primary hepatocytes, the expression of THRSP was significantly induced by thyroxine (0.25, 0.5, 1 mmol/l), glucose (50, 100 mmol/l), and insulin (20 nmol/l), and was significantly inhibited by palmitic acid (0.125, 0.25 mmol/l). In the myocytes, expression of THRSP was significantly induced by thyroxine (0.25, 0.5, 1 mmol/l), glucose (50 mmol/l) and oleic acid (0.125, 0.25 mmol/l), was significantly inhibited by insulin (5 nmol/l) and was not significantly affected by palmitic acid.4. Transcriptome analysis showed that overexpression of THRSP significantly affected the expression of 1411 DEGs, of which 1007 were up-regulated and 404 were down-regulated. The GO term and KEGG pathway enrichment analyses showed that these DEGs were mainly enriched in the interaction between cytokine and cytokine receptor and its regulation and signal transduction, cell growth and apoptosis and its regulation, immune response and retinol metabolism.5. In conclusion, the THRSP gene mediates biological effects of fasting by influencing the expressional regulation of the genes related to biological processes such as cytokine-cytokine receptor interaction, cell growth and apoptosis, immune response, retinol metabolism, including TGM2, HSD17B2, RUNX3, IRF1, ANKRD6, UPP2, IKBKE, and PYCR1 genes, in chicken liver.
Collapse
Affiliation(s)
- J Mu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - X Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - F Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - L Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - D Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - T Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Yao H, Dou Z, Zhao Z, Liang X, Yue H, Ma W, Su Z, Wang Y, Hao Z, Yan H, Wu Z, Wang L, Chen G, Yang J. Transcriptome analysis of the Bactrian camel (Camelus bactrianus) reveals candidate genes affecting milk production traits. BMC Genomics 2023; 24:660. [PMID: 37919661 PMCID: PMC10621195 DOI: 10.1186/s12864-023-09703-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. METHODS We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. RESULTS The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein-protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. CONCLUSIONS This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Haitao Yue
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, 836500, Xinjiang, China
| | - Liang Wang
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China
- Bactrian Camel Academy of Xinjiang, Xinjiang Wangyuan Camel Milk Limited Company, Altay, 836500, Xinjiang, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, Xinjiang, PR China.
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, 830017, China.
| |
Collapse
|
15
|
Mishra DC, Bhati J, Yadav S, Avashthi H, Sikka P, Jerome A, Balhara AK, Singh I, Rai A, Chaturvedi KK. Comparative expression analysis of water buffalo ( Bubalus bubalis) to identify genes associated with economically important traits. Front Vet Sci 2023; 10:1160486. [PMID: 37252384 PMCID: PMC10213454 DOI: 10.3389/fvets.2023.1160486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
The milk, meat, skins, and draft power of domestic water buffalo (Bubalus bubalis) provide substantial contributions to the global agricultural economy. The world's water buffalo population is primarily found in Asia, and the buffalo supports more people per capita than any other livestock species. For evaluating the workflow, output rate, and completeness of transcriptome assemblies within and between reference-free (RF) de novo transcriptome and reference-based (RB) datasets, abundant bioinformatics studies have been carried out to date. However, comprehensive documentation of the degree of consistency and variability of the data produced by comparing gene expression levels using these two separate techniques is lacking. In the present study, we assessed the variations in the number of differentially expressed genes (DEGs) attained with RF and RB approaches. In light of this, we conducted a study to identify, annotate, and analyze the genes associated with four economically important traits of buffalo, viz., milk volume, age at first calving, post-partum cyclicity, and feed conversion efficiency. A total of 14,201 and 279 DEGs were identified in RF and RB assemblies. Gene ontology (GO) terms associated with the identified genes were allocated to traits under study. Identified genes improve the knowledge of the underlying mechanism of trait expression in water buffalo which may support improved breeding plans for higher productivity. The empirical findings of this study using RNA-seq data-based assembly may improve the understanding of genetic diversity in relation to buffalo productivity and provide important contributions to answer biological issues regarding the transcriptome of non-model organisms.
Collapse
Affiliation(s)
- Dwijesh Chandra Mishra
- ICAR-Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research (ICAR), PUSA, New Delhi, India
| | - Jyotika Bhati
- ICAR-Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research (ICAR), PUSA, New Delhi, India
| | - Sunita Yadav
- ICAR-Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research (ICAR), PUSA, New Delhi, India
| | - Himanshu Avashthi
- ICAR-Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research (ICAR), PUSA, New Delhi, India
| | - Poonam Sikka
- ICAR-Central Institute for Research on Buffaloes, Indian Council of Agricultural Research (ICAR), Hisar, India
| | - Andonissamy Jerome
- ICAR-Central Institute for Research on Buffaloes, Indian Council of Agricultural Research (ICAR), Hisar, India
| | - Ashok Kumar Balhara
- ICAR-Central Institute for Research on Buffaloes, Indian Council of Agricultural Research (ICAR), Hisar, India
| | - Inderjeet Singh
- ICAR-Central Institute for Research on Buffaloes, Indian Council of Agricultural Research (ICAR), Hisar, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research (ICAR), PUSA, New Delhi, India
| | - Krishna Kumar Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research (ICAR), PUSA, New Delhi, India
| |
Collapse
|
16
|
Luo W, Xu Y, Gu X, Zhang J, Wang J, Geng F. Divergence of Liver Lipidomes in Tibetan and Yorkshire Pigs Living at Different Altitudes. Molecules 2023; 28:molecules28072991. [PMID: 37049754 PMCID: PMC10095695 DOI: 10.3390/molecules28072991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Tibetan pig is a characteristic breed of the Qinghai-Tibet Plateau with distinct physiological and meat quality attributes. The liver lipid profile can offer an important perspective to explore the uniqueness of Tibetan pigs. A quantitative comparison of liver lipidomes revealed significant differences in the lipid profiles between Tibetan and Yorkshire pigs raised at different altitudes. The abundance of lipids in the livers of pigs raised at a high altitude was higher than that of pigs raised at a lower altitude, whereas the abundance of lipids in the livers of Yorkshire pigs was higher than that of Tibetan pigs raised at the same altitude. Of the 1101 lipids identified, 323 and 193 differentially abundant lipids (DALs) were identified in the pairwise comparisons of Tibetan and Yorkshire pigs raised at different altitudes, respectively. The DALs of Tibetan pigs consisted mainly of 161 triglycerides, along with several acylcarnitines, represented by carnitine C2:0, and significant changes in the abundance of some phospholipids. The DALs of Yorkshire pigs were more complex, with significant increases in the abundance of triglycerides, cholesteryl esters, and free fatty acids, and decreases in the abundance of some phospholipids. This research provides strong theoretical and data support for the high-quality development of the highland livestock industry.
Collapse
Affiliation(s)
- Wei Luo
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yisha Xu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence:
| |
Collapse
|
17
|
Xu Z, Wu J, Zhou J, Zhang Y, Qiao M, Sun H, Li Z, Li L, Chen N, Oyelami FO, Peng X, Mei S. Integration of ATAC-seq and RNA-seq analysis identifies key genes affecting intramuscular fat content in pigs. Front Nutr 2022; 9:1016956. [PMID: 36276837 PMCID: PMC9581296 DOI: 10.3389/fnut.2022.1016956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production, and intramuscular fat (IMF) content is the major factor in improving meat quality. The IMF deposition in pigs is influenced by transcriptional regulation, which is dependent on chromatin accessibility. However, how chromatin accessibility plays a regulatory role in IMF deposition in pigs has not been reported. Xidu black is a composite pig breed with excellent meat quality, which is an ideal research object of this study. In this study, we used the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) analysis to identify the accessible chromatin regions and key genes affecting IMF content in Xidu black pig breed with extremely high and low IMF content. First, we identified 21,960 differential accessible chromatin peaks and 297 differentially expressed genes. The motif analysis of differential peaks revealed several potential cis-regulatory elements containing binding sites for transcription factors with potential roles in fat deposition, including Mef2c, CEBP, Fra1, and AP-1. Then, by integrating the ATAC-seq and RNA-seq analysis results, we found 47 genes in the extremely high IMF (IMF_H) group compared with the extremely low IMF (IMF_L) group. For these genes, we observed a significant positive correlation between the differential gene expression and differential ATAC-seq signal (r2 = 0.42). This suggests a causative relationship between chromatin remodeling and the resulting gene expression. We identified several candidate genes (PVALB, THRSP, HOXA9, EEPD1, HOXA10, and PDE4B) that might be associated with fat deposition. Through the PPI analysis, we found that PVALB gene was the top hub gene. In addition, some pathways that might regulate fat cell differentiation and lipid metabolism, such as the PI3K-Akt signaling pathway, MAPK signaling pathway, and calcium signaling pathway, were significantly enriched in the ATAC-seq and RNA-seq analysis. To the best of our knowledge, our study is the first to use ATAC-seq and RNA-seq to examine the mechanism of IMF deposition from a new perspective. Our results provide valuable information for understanding the regulation mechanism of IMF deposition and an important foundation for improving the quality of pork.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Nanqi Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | | | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xianwen Peng,
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,Shuqi Mei,
| |
Collapse
|
18
|
Shang P, Wei M, Duan M, Yan F, Chamba Y. Healthy Gut Microbiome Composition Enhances Disease Resistance and Fat Deposition in Tibetan Pigs. Front Microbiol 2022; 13:965292. [PMID: 35928149 PMCID: PMC9343729 DOI: 10.3389/fmicb.2022.965292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023] Open
Abstract
The gut microbiota is involved in a range of physiological processes in animals, and modulating the microbiome composition is considered a novel target for identifying animal traits. Tibetan pigs show better fat deposition and disease resistance compared to Yorkshire pigs. However, studies investigating the correlation between favorable characteristics in Tibetan pigs and the gut microbial community remain scarce. In the current study, 1,249,822 high-quality sequences were obtained by amplicon sequencing of the colon contents of Tibetan and Yorkshire pigs. We found that at the boundary level, the abundance and relative abundance of colon bacterial community in Tibetan pigs were higher than that in Yorkshire pigs (P > 0.05). Phylum level, Firmicutes were the dominant colonic microflora of Tibetan and Yorkshire pigs, and the ratio of Firmicutes to Bacteroides in Tibetan pigs was slightly higher than in Yorkshire pigs. Actinobacteria and Spirobacteria were significantly higher in Tibetan pigs than in Yorkshire pigs (P < 0.05). At the genus level, the relative abundance of Bifidobacterium, Lactobacillus, and Bacteriologist, which are related to disease resistance, was significantly higher than that in Yorkshire pigs in Yorkshire pigs. In conclusion, the composition and abundance of colonic intestinal microflora in Tibetan pigs were closely related to their superior traits. Bifidobacteria, Ruminococcaceae, and Family-XIII-AD3011-Group are conducive to improving disease resistance in Tibetan pigs. Lactobacillus and Solobacterium were observed to be the main bacterial communities involved in fat deposition in Tibetan pigs. This study will provide a new reference for the development and utilization of Tibetan pigs in future.
Collapse
Affiliation(s)
- Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Feifei Yan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
- *Correspondence: Yangzom Chamba,
| |
Collapse
|