1
|
Chen TC, Wu WH, Chang KE, Schönthal AH, Gang ES, Indravudh V, Lobl T, Adell F, Shachar Y. Application and Safety of Externally Controlled Metronomic Drug Delivery to the Brain by an Implantable Smart Pump in a Sheep Model. Neurosurgery 2025; 96:471-478. [PMID: 39240099 PMCID: PMC11698269 DOI: 10.1227/neu.0000000000003155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/01/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Intraventricular drug delivery enables the delivery of therapeutics to the central nervous system, while minimizing peripheral drug exposure and toxicity. However, currently used delivery devices cannot be controlled externally to adjust their output during delivery. Here, the authors investigated the performance of a conceptually novel device designed to metronomically deliver a drug to the cerebrospinal fluid in a manner that can be adjusted wirelessly from an external controller. METHODS Six sheep were subcutaneously implanted in the shoulder region with a drug delivery pump and a catheter connecting to the brain ventricles. Three groups of 2 sheep received low, medium, and high dosages of metronomic methotrexate (MTX) over several weeks, while kept mobile outdoors in a pen. MTX dosages were adjusted from a wireless external controller, and intraventricular MTX concentrations were measured in regular intervals with an Ommaya reservoir. RESULTS Over the course of this 12-week study, sheep showed no signs of toxicity. MTX measurements in the cerebrospinal fluid confirmed that the pump remained responsive to external control and able to deliver drug in an adjustable, metronomic fashion. CONCLUSION This implantable pump system enables external control of drug output, so that the resulting intraventricular drug concentrations can continuously be maintained within the therapeutic range.
Collapse
Affiliation(s)
- Thomas C. Chen
- Cognos Therapeutics, Inc., Inglewood, California, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
- USC/Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Winston H. Wu
- Cognos Therapeutics, Inc., Inglewood, California, USA
| | - Ki-Eun Chang
- Cognos Therapeutics, Inc., Inglewood, California, USA
| | - Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Eli S. Gang
- Cognos Therapeutics, Inc., Inglewood, California, USA
- Cardiovascular Research Foundation, University of California Los Angeles (UCLA), Los Angeles, California, USA
- Schmidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vic Indravudh
- Cognos Therapeutics, Inc., Inglewood, California, USA
| | - Thomas Lobl
- Cognos Therapeutics, Inc., Inglewood, California, USA
| | - Frank Adell
- Cognos Therapeutics, Inc., Inglewood, California, USA
| | | |
Collapse
|
2
|
Banstola A, Vautrelle N, Bergin D, Mohammad Y, Gandhi K, Rizwan S, Reynolds JNJ. Characterising a New Sheep Model of Parkinson's Disease Using Unilateral Intracerebral Injection of 6-Hydroxydopamine Into the Substantia Nigra. Eur J Neurosci 2025; 61:e16668. [PMID: 39844472 DOI: 10.1111/ejn.16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
New therapeutic agents developed for treating neurological disorders are often tested successfully on rodents. Testing in an appropriate large animal model where there is longer lifespan and comparable brain size to humans should improve translational success and is frequently expected by regulatory bodies. In this project, we aimed to establish a novel sheep model of Parkinson's disease as a large-brained experimental model for translational research. Our objective was to create a sheep model of Parkinson's disease by unilaterally infusing the neurotoxin 6-hydroxydopamine into the substantia nigra pars compacta. This approach, previously used to induce parkinsonism in rat and non-human primate models, causes dopaminergic imbalance and induces rotational behaviour in quadrupeds challenged with dopaminergic receptor agonists. In the present sheep study, the mixed dopamine receptor agonist apomorphine, 0.25 mg/kg, and dopamine D2 agonist ropinirole, 0.16 mg/kg, were used to induce rotational behaviour and confirm dopamine depletion. Behavioural signs were then measured and characterised in the field using automated movement tracking with simultaneous video recordings. Post-mortem, the extent of the 6-hydroxydopamine lesions was evaluated through tyrosine hydroxylase immunohistochemistry and quantifying levels of catecholamines (dopamine, 3,4-dihydroxyphenylacetic acid and homovanilic acid) quantified using high-performance liquid chromatography. Our new sheep model of Parkinson's disease using 6-hydroxydopamine is safe and offers a number of regulatory, ethical and financial advantages over non-human primate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine models. It provides a platform to evaluate novel antiparkinsonian agents and medical devices in a large brain with the promise of greater success for translation into clinical application.
Collapse
Affiliation(s)
- Ashik Banstola
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Nicolas Vautrelle
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - David Bergin
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Younus Mohammad
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Shakila Rizwan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Masoumi S, Lee J, Jones GL, Quémener M, Parent M, Bouma BE, Hariri LP, Côté DC, Villiger M. Absolute depth-resolved optic axis measurement with catheter-based polarization sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:6957-6976. [PMID: 39679397 PMCID: PMC11640563 DOI: 10.1364/boe.538560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024]
Abstract
Imaging depth-resolved birefringence and optic axis orientation with polarization sensitive optical coherence tomography (PS-OCT) unveils details of tissue structure and organization that can be of high pathophysiologic, mechanistic, and diagnostic value. For catheter-based PS-OCT, the dynamic rotation of the fiber optic probe, in addition to the polarization effects of the system components, complicates the reliable and robust reconstruction of the sample's optic axis orientation. Addressing this issue, we present a new method for the reconstruction of absolute depth-resolved optic axis orientation in catheter-based PS-OCT by using the intrinsic retardance of the protecting catheter sheath as a stable guide star signal. Throughout the paper, we rigorously inspect the retardance and optic axis orientation of the sheath and validate our method by imaging a birefringent phantom with known optic axis orientation. Reconstructing the optic axis orientation of the phantom, placed at different locations around the catheter, we measured an average absolute deviation (AAD) for the mean optic axis orientation over cross-sectional images of 3.28°, even with significant bending stress on the catheter. This corresponds to an almost three-fold improvement compared to our earlier method (optic axis AAD of 9.41°). We finally highlight the capability of our reconstruction with stereotactic catheter-based PS-OCT of a fresh sheep brain.
Collapse
Affiliation(s)
- Shadi Masoumi
- CERVO Brain Research Center, Université Laval, Québec, Québec, Canada
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, Québec, Canada
| | - Jaeyul Lee
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Georgia L. Jones
- Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mireille Quémener
- CERVO Brain Research Center, Université Laval, Québec, Québec, Canada
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, Québec, Canada
| | - Martin Parent
- CERVO Brain Research Center, Université Laval, Québec, Québec, Canada
| | - Brett E. Bouma
- Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lida P. Hariri
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel C. Côté
- CERVO Brain Research Center, Université Laval, Québec, Québec, Canada
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, Québec, Canada
| | - Martin Villiger
- Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Nelapudi N, Boskind M, Hu XQ, Mallari D, Chan M, Wilson D, Romero M, Albert-Minckler E, Zhang L, Blood AB, Wilson CG, Puglisi JL, Wilson SM. Long-term hypoxia modulates depolarization activation of BK Ca currents in fetal sheep middle cerebral arterial myocytes. Front Physiol 2024; 15:1479882. [PMID: 39563935 PMCID: PMC11573761 DOI: 10.3389/fphys.2024.1479882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Previous evidence indicates that gestational hypoxia disrupts cerebrovascular development, increasing the risk of intracranial hemorrhage and stroke in the newborn. Due to the role of cytosolic Ca2+ in regulating vascular smooth muscle (VSM) tone and fetal cerebrovascular blood flow, understanding Ca2+ signals can offer insight into the pathophysiological disruptions taking place in hypoxia-related perinatal cerebrovascular disease. This study aimed to determine the extent to which gestational hypoxia disrupts local Ca2+ sparks and whole-cell Ca2+ signals and coupling with BKCa channel activity. Methods Confocal imaging of cytosolic Ca2+ and recording BKCa currents of fetal sheep middle cerebral arterial (MCA) myocytes was performed. MCAs were isolated from term fetal sheep (∼140 days of gestation) from ewes held at low- (700 m) and high-altitude (3,801 m) hypoxia (LTH) for 100+ days of gestation. Arteries were depolarized with 30 mM KCl (30K), in the presence or absence of 10 μM ryanodine (Ry), to block RyR mediated Ca2+ release. Results Membrane depolarization increased Ry-sensitive Ca2+ spark frequency in normoxic and LTH groups along with BKCa activity. LTH reduced Ca2+ spark and whole-cell Ca2+ activity and induced a large leftward shift in the voltage-dependence of BKCa current activation. The influence of LTH on the spatial and temporal aspects of Ca2+ sparks and whole-cell Ca2+ responses varied. Discussion Overall, LTH attenuates Ca2+ signaling while increasing the coupling of Ca2+ sparks to BKCa activity; a process that potentially helps maintain oxygen delivery to the developing brain.
Collapse
Affiliation(s)
- Nikitha Nelapudi
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Madison Boskind
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Xiang-Qun Hu
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - David Mallari
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Michelle Chan
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Devin Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Eris Albert-Minckler
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Christopher G Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose Luis Puglisi
- Department of Biostatistics, California Northstate University School of Medicine, Elk Grove, CA, United States
| | - Sean M Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
5
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner J, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024; 327:83-99. [PMID: 39473130 PMCID: PMC11672868 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J. Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; NHMRC Ideas Grant to MJH APP2001543
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nicole G. Coufal
- Department of Pediatrics, University of California, San Diego CA 92093, Rady Children’s Hospital, San Diego CA 92123. Sanford Consortium for Regenerative Medicine, San Diego CA 92037
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Jonathan Miner
- Departments of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| |
Collapse
|
6
|
Pluchot C, Adriaensen H, Parias C, Dubreuil D, Arnould C, Chaillou E, Love SA. Sheep (Ovis aries) training protocol for voluntary awake and unrestrained structural brain MRI acquisitions. Behav Res Methods 2024; 56:7761-7773. [PMID: 38907122 PMCID: PMC11362526 DOI: 10.3758/s13428-024-02449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive technique that requires the participant to be completely motionless. To date, MRI in awake and unrestrained animals has only been achieved with humans and dogs. For other species, alternative techniques such as anesthesia, restraint and/or sedation have been necessary. Anatomical and functional MRI studies with sheep have only been conducted under general anesthesia. This ensures the absence of movement and allows relatively long MRI experiments but it removes the non-invasive nature of the MRI technique (i.e., IV injections, intubation). Anesthesia can also be detrimental to health, disrupt neurovascular coupling, and does not permit the study of higher-level cognition. Here, we present a proof-of-concept that sheep can be trained to perform a series of tasks, enabling them to voluntarily participate in MRI sessions without anesthesia or restraint. We describe a step-by-step training protocol based on positive reinforcement (food and praise) that could be used as a basis for future neuroimaging research in sheep. This protocol details the two successive phases required for sheep to successfully achieve MRI acquisitions of their brain. By providing structural brain MRI images from six out of ten sheep, we demonstrate the feasibility of our training protocol. This innovative training protocol paves the way for the possibility of conducting animal welfare-friendly functional MRI studies with sheep to investigate ovine cognition.
Collapse
Affiliation(s)
- Camille Pluchot
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Hans Adriaensen
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Céline Parias
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Didier Dubreuil
- Unité Expérimentale de Physiologie Animale de l'Orfrasière, INRAE Centre Val de Loire, 37380, Nouzilly, France
| | - Cécile Arnould
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Elodie Chaillou
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Scott A Love
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
7
|
Behroozi M, Graïc JM, Gerussi T. Beyond the surface: how ex-vivo diffusion-weighted imaging reveals large animal brain microstructure and connectivity. Front Neurosci 2024; 18:1411982. [PMID: 38988768 PMCID: PMC11233460 DOI: 10.3389/fnins.2024.1411982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Diffusion-weighted Imaging (DWI) is an effective and state-of-the-art neuroimaging method that non-invasively reveals the microstructure and connectivity of tissues. Recently, novel applications of the DWI technique in studying large brains through ex-vivo imaging enabled researchers to gain insights into the complex neural architecture in different species such as those of Perissodactyla (e.g., horses and rhinos), Artiodactyla (e.g., bovids, swines, and cetaceans), and Carnivora (e.g., felids, canids, and pinnipeds). Classical in-vivo tract-tracing methods are usually considered unsuitable for ethical and practical reasons, in large animals or protected species. Ex-vivo DWI-based tractography offers the chance to examine the microstructure and connectivity of formalin-fixed tissues with scan times and precision that is not feasible in-vivo. This paper explores DWI's application to ex-vivo brains of large animals, highlighting the unique insights it offers into the structure of sometimes phylogenetically different neural networks, the connectivity of white matter tracts, and comparative evolutionary adaptations. Here, we also summarize the challenges, concerns, and perspectives of ex-vivo DWI that will shape the future of the field in large brains.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Amirghasemi F, Soleimani A, Bawarith S, Tabassum A, Morrel A, Mousavi MPS. FAST (Flexible Acetylcholine Sensing Thread): Real-Time Detection of Acetylcholine with a Flexible Solid-Contact Potentiometric Sensor. Bioengineering (Basel) 2023; 10:655. [PMID: 37370586 DOI: 10.3390/bioengineering10060655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Acetylcholine (ACh) is involved in memory and learning and has implications in neurodegenerative diseases; it is therefore important to study the dynamics of ACh in the brain. This work creates a flexible solid-contact potentiometric sensor for in vitro and in vivo recording of ACh in the brain and tissue homogenate. We fabricate this sensor using a 250 μm diameter cotton yarn coated with a flexible conductive ink and an ACh sensing membrane that contains a calix[4]arene ionophore. The exposed ion-to-electron transducer was sealed with a 2.5 μm thick Parylene C coating to maintain the flexibility of the sensor. The resulting diameter of the flexible ACh sensing thread (FAST) was 400 μm. The FAST showed a linear response range from 1.0 μM to 10.0 mM in deionized water, with a near-Nernstian slope of 56.11 mV/decade and a limit of detection of 2.6 μM. In artificial cerebrospinal fluid, the limit of detection increased to 20 μM due to the background signal of ionic content of the cerebrospinal fluid. The FAST showed a signal stability of 226 μV/h over 24 h. We show that FAST can measure ACh dynamics in sheep brain tissue and sheep brain homogenate after ACh spiking. FAST is the first flexible electrochemical sensor for monitoring ACh dynamics in the brain.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Shahd Bawarith
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Asna Tabassum
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alayne Morrel
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Merchán M, Coveñas R, Plaza I, Abecia JA, Palacios C. Anatomy of hypothalamic and diencephalic nuclei involved in seasonal fertility regulation in ewes. Front Vet Sci 2023; 10:1101024. [PMID: 36876003 PMCID: PMC9978410 DOI: 10.3389/fvets.2023.1101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
In this study, we describe in detail the anatomy of nuclei involved in seasonal fertility regulation (SFR) in ewes. For this purpose, the intergeniculate leaflet of the visual thalamus, the caudal hypothalamic arcuate nucleus, and suprachiasmatic, paraventricular and supraoptic nuclei of the rostral hypothalamus were morphometrically and qualitatively analyzed in Nissl-stained serial sections, in the three anatomical planes. In addition, data were collected on calcium-binding proteins and cell phenotypes after immunostaining alternate serial sections for calretinin, parvalbumin and calbindin. For a complete neuroanatomical study, glial architecture was assessed by immunostaining and analyzing alternate sections for glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1). The results showed a strong microglial and astroglia reaction around the hypothalamic nuclei of interest and around the whole 3rd ventricle of the ewe brain. Moreover, we correlated cytoarchitectonic coordinates of panoramic serial sections with their macroscopic localization and extension in midline sagittal-sectioned whole brain to provide guidelines for microdissecting nuclei involved in SFR.
Collapse
Affiliation(s)
- Miguel Merchán
- Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Salamanca, Spain.,Laboratory of Neuroanatomy of the Peptidergic Systems, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Recognized Research Group - Molecular Bases of Development (Grupo de Investigación Reconocido - Bases Moleculares del Desarrollo - GIR-BMD), University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Recognized Research Group - Molecular Bases of Development (Grupo de Investigación Reconocido - Bases Moleculares del Desarrollo - GIR-BMD), University of Salamanca, Salamanca, Spain
| | - Ignacio Plaza
- Auditory Neuroplasticity Laboratory, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - José Alfonso Abecia
- Environmental Science Institute (IUCA), University of Zaragoza, Zaragoza, Spain
| | - Carlos Palacios
- Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Barzegar-Fallah A, Gandhi K, Rizwan SB, Slatter TL, Reynolds JNJ. Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics 2022; 14:pharmaceutics14102231. [PMID: 36297666 PMCID: PMC9607160 DOI: 10.3390/pharmaceutics14102231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood–brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-5781; Fax: +64-3-479-7254
| |
Collapse
|
11
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|