1
|
Ayala DI, Evans NP, Wilson D, Mouw M, Karnezos TP. In vitro Evaluation of Candidate Bacillus Strains Against erysipelothrix rhusiopathiae from Erysipelas Outbreaks in Layer Flocks. Avian Dis 2025; 68:521-524. [PMID: 40249593 DOI: 10.1637/aviandiseases-d-24-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 04/19/2025]
Abstract
Erysipelas is a zoonotic disease, causing acute infections in swine, poultry, and a wide variety of animals, including humans. In layers, erysipelas is considered an emerging disease characterized by hepatomegaly, splenomegaly, septicemia, and acute death. It affects flocks between 43 and 73 wk old and can result in 50% overall mortality. Layer hens possibly affected by an erysipelas outbreak were sampled in this study. Organs at necropsy showed the typical erysipelas lesions; the presence of Erysipelothrix rhusiopathiae was confirmed by selective plating and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The antimicrobial effect of a set of 20 proprietary Bacillus direct-fed microbials (DFM), individual strains and in combinations, was analyzed against confirmed E. rhusiopathiae isolates, by agar-well diffusion assay. Nine of the Bacillus strains screened in this study were found effective at inhibiting the growth of all four E. rhusiopathiae isolates from erysipelas cases. The findings of this study highlight the potential of using the Bacillus DFMs in vivo to evaluate their efficacy as biocontrol alternatives to reduce the growth E. rhusiopathiae in poultry production.
Collapse
Affiliation(s)
- Diana I Ayala
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO 63039,
| | | | - Dan Wilson
- Wilson Veterinary Company, Indianapolis, IN 46162
| | - Mark Mouw
- Wilson Veterinary Company, Indianapolis, IN 46162
| | - T Peter Karnezos
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO 63039
| |
Collapse
|
2
|
Petranyi F, Whitton MM, Lobo E, Ramirez S, Radovanović A, Bajagai YS, Stanley D. Precision glycan supplementation: A strategy to improve performance and intestinal health of laying hens in high-stress commercial environments. J Anim Physiol Anim Nutr (Berl) 2024; 108:1498-1509. [PMID: 38812376 DOI: 10.1111/jpn.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
In the dynamic world of animal production, many challenges arise in disease control, animal welfare and the need to meet antibiotic-free demands. Emerging diseases have a significant impact on the poultry industry. Managing gut microbiota is an important determinant of poultry health and performance. Introducing precision glycans as feed additives adds another dimension to this complex environment. The glycans play pivotal roles in supporting gut health and immunological processes and are likely to limit antibiotic usage while enhancing intestinal well-being and overall poultry performance. This study explores precision glycan product as a feed additive supplemented at a continuous dose of 900 g per tonne of feed, in a free-range production system on a large commercial farm. Forty thousand 17-week-old pullets were randomly allocated to one of two separated sections of the production shed, with individual silos and egg-collecting belts. The flock performance, gut microbiota and its functionality were analysed throughout the laying cycle until 72 weeks of age. The results demonstrated that introducing precision glycans improved a range of performance indicators, including reduced cumulative mortality, especially during a major smothering event, where the birds pile up until they suffocate. There was also significantly increased hen-housed egg production, reduced gut dysbiosis score and undigested feed, increased number of goblet cells and improved feed conversion ratio. Additionally, microbiota analysis revealed significant changes in the composition of the gizzard, ileum content, ileum mucosa, and caecal and cloacal regions. Overall, the findings suggest that precision glycans have the potential to enhance poultry egg production in challenging farming environments.
Collapse
Affiliation(s)
- Friedrich Petranyi
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
- DSM-Firmenich, Singapore, Singapore
| | - Maria M Whitton
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| | - Edina Lobo
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| | | | - Anita Radovanović
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Yadav S Bajagai
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| |
Collapse
|
3
|
Jacobs RD, Grum D, Trible B, Ayala DI, Karnezos TP, Gordon ME. Oral probiotic administration attenuates postexercise inflammation in horses. Transl Anim Sci 2024; 8:txae124. [PMID: 39281311 PMCID: PMC11401344 DOI: 10.1093/tas/txae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Probiotics are commonly incorporated into equine diets to impart health and performance benefits; however, peer-reviewed evidence supporting their efficacy in horses is limited. Interestingly, bacteria from the Bacillus genus are gaining interest for their unique ability to impact metabolic, immune, and inflammatory pathways. The objective of this trial was to evaluate a selection of Bacilli for their role in altering the inflammatory response in horses to exercise. Eighteen horses were utilized in a randomized cross-over trial. Horses were randomly assigned to one of 6 starting treatments including a negative and positive control, and groups that received one of 4 probiotics (Bacillus coagulans GBI-30, 6086, Bacillus subtilis-1, Bacillus subtilis-2, or Bacillus amyloliquefaciens) top dressed to their daily ration at a rate of 8 billion CFU/d mixed into dried whey powder. All horses received a similar base diet of grass hay offered at 2.0% of bodyweight daily along with 4.54 kg of a commercially available textured horse feed. Each 3-wk phase of the trial consisted of a 2-wk dietary acclimation followed by a 1-wk exercise challenge and sample collection. Between phases, horses were offered only their base diet. On the day of exercise, horses were offered their 0700 ration and then subjected to a 2-h standardized exercise test. Blood samples were obtained prior to starting exercise and then again at 0, 2, 4, 6, 8, 24, 48, and 72-h postexercise. Horses in the positive control group were administered 0.23 mg/kg BW flunixin meglumine immediately following the 0-h sampling. Samples were analyzed for serum amyloid A (SAA), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) concentrations. Data were evaluated via ANOVA using the MIXED procedure in SAS 9.4. Exercise-induced inflammation as evidenced by SAA, IL-6, and PGE2 increases postexercise. Horses consuming B. coagulans GBI-30, 6086 had reduced production of SAA, IL-6, and PGE2 compared to all other probiotic-fed groups and the negative control (P < 0.001). The positive control successfully ameliorated the postexercise inflammatory response. These data highlight the potential for B. coagulans GBI-30, 6086 to be incorporated into equine rations as a method to support optimal response to exercise or other inflammation-inducing challenges. Additional research is ongoing to elucidate the methodology by which these results occur.
Collapse
Affiliation(s)
- Robert D Jacobs
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | - Daniel Grum
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | - Benjamin Trible
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | - Diana I Ayala
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| | | | - Mary E Gordon
- Land O Lakes, Purina Animal Nutrition, Gray Summit, MO 63039, USA
| |
Collapse
|
4
|
House LC, Hasan A, Asnayanti A, Alrubaye AAK, Pummill J, Rhoads D. Phylogenomic Analyses of Three Distinct Lineages Uniting Staphylococcus cohnii and Staphylococcus urealyticus from Diverse Hosts. Microorganisms 2024; 12:1549. [PMID: 39203392 PMCID: PMC11356006 DOI: 10.3390/microorganisms12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
We sequenced and assembled genomes for 17 isolates of Staphylococcus cohnii isolated from osteomyelitis lesions in young broilers from two separate experiments where we induced lameness using a hybrid wire-litter flooring system. Whole genome comparisons using three different methods support a close relationship of genomes from both S. cohnii and Staphylococcus urealyticus. The data support three different lineages, which we designated as Lineage 1, Lineage 2, and Lineage 3, uniting these two species within an evolving complex. We present evidence for horizontal transfer between lineages of genomic regions from 50-440 kbp. The transfer of a 186 kbp region from Lineage 1 to Lineage 2 appears to have generated Lineage 3. Human-associated isolates appear to be limited to Lineages 2 and 3 but Lineage 2 appears to contain a higher number of human pathogenic isolates. The chicken isolates from our lameness trials included genomically diverse isolates from both Lineage 1 and 2, and isolates from both lineages were obtained from osteomyelitis lesions of individual birds. Our results expand the diversity of Staphylococci associated with osteomyelitis in poultry and suggest a high diversity in the microbiome of day-old chicks. Our data also support a reevaluation and unification of the taxonomic classifications of S. cohnii and S. urealyticus.
Collapse
Affiliation(s)
- L. Caroline House
- John Brown University, Siloam Springs, AR 72761, USA;
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Amer Hasan
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad P.O. Box 1417, Iraq
| | - Andi Asnayanti
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Adnan A. K. Alrubaye
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - Jeff Pummill
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR 72703, USA
| | - Douglas Rhoads
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| |
Collapse
|
5
|
Abdullahi IN, Latorre-Fernández J, Reuben RC, Trabelsi I, González-Azcona C, Arfaoui A, Usman Y, Lozano C, Zarazaga M, Torres C. Beyond the Wild MRSA: Genetic Features and Phylogenomic Review of mecC-Mediated Methicillin Resistance in Non- aureus Staphylococci and Mammaliicocci. Microorganisms 2023; 12:66. [PMID: 38257893 PMCID: PMC10818522 DOI: 10.3390/microorganisms12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Methicillin resistance, mediated by the mecA gene in staphylococci and mammaliicocci, has caused tremendous setbacks in the use of antibiotics in human and veterinary medicine due to its high potential of presenting the multidrug resistance (MDR) phenotype. Three other mec analogs exist, of which the mecC has evolutionary been associated with methicillin-resistant Staphylococcus aureus (MRSA) in wild animals, thus loosely referred to as the wild MRSA. In this study, we present an epidemiological review and genomic analysis of non-aureus staphylococci and mammaliicocci that carry the mecC-mediated methicillin resistance trait and determine whether this trait has any relevant link with the One Health niches. All previous studies (2007 till 2023) that described the mecC gene in non-aureus staphylococci and mammaliicocci were obtained from bibliometric databases, reviewed, and systematically analyzed to obtain the antimicrobial resistance (AMR) and virulence determinants, mobilome, and other genetic contents. Moreover, core genome single-nucleotide polymorphism analysis was used to assess the relatedness of these strains. Of the 533 articles analyzed, only 16 studies (on livestock, environmental samples, milk bulk tanks, and wild animals) were eligible for inclusion, of which 17 genomes from 6 studies were used for various in silico genetic analyses. Findings from this systematic review show that all mecC-carrying non-aureus staphylococci were resistant to only beta-lactam antibiotics and associated with the classical SCCmec XI of S. aureusLGA251. Similarly, two studies on wild animals reported mecC-carrying Mammaliicoccus stepanovicii associated with SCCmec XI. Nevertheless, most of the mecC-carrying Mammaliicoccus species presented an MDR phenotype (including linezolid) and carried the SCCmec-mecC hybrid associated with mecA. The phylogenetic analysis of the 17 genomes revealed close relatedness (<20 SNPs) and potential transmission of M. sciuri and M. lentus strains in livestock farms in Algeria, Tunisia, and Brazil. Furthermore, closely related M. sciuri strains from Austria, Brazil, and Tunisia (<40 SNPs) were identified. This systematic review enhances our comprehension of the epidemiology and genetic organization of mecC within the non-aureus staphylococci and mammaliicocci. It could be hypothesized that the mecC-carrying non-aureus staphylococci are evolutionarily related to the wild MRSA-mecC. The potential implications of clonal development of a lineage of mecA/mecC carrying strains across multiple dairy farms in a vast geographical region with the dissemination of MDR phenotype is envisaged. It was observed that most mecC-carrying non-aureus staphylococci and mammaliicocci were reported in mastitis cases. Therefore, veterinarians and veterinary microbiology laboratories must remain vigilant regarding the potential existence of mecA/mecC strains originating from mastitis as a potential niche for this resistance trait.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Islem Trabelsi
- Bioresources, Environment and Biotechnology Laboratory, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia;
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Yahaya Usman
- Department of Medical Laboratory Science, Ahmadu Bello University, Zaria 810107, Nigeria;
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| |
Collapse
|
6
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|