1
|
Gutierrez EG, Ortega J. Uncovering selection pressures on the IRF gene family in bats' immune system. Immunogenetics 2025; 77:10. [PMID: 39776231 DOI: 10.1007/s00251-024-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Unlike other mammals, bats serve as natural reservoirs for several highly pathogenic viruses without exhibiting symptoms of infection. Recent research has explored the complex mechanisms underlying the balance between bats' antiviral defenses and their pathological responses. However, the evolution of the molecular drivers behind bats' antiviral strategies remains largely unknown. Interferon regulatory factors (IRFs) are essential transcription factors that bind to DNA and regulate the expression of numerous genes involved in antiviral defense, inflammation, immune cell differentiation, apoptosis, and oncogenesis. Our research focused on members of the IRF family, using 17 bat species and four terrestrial mammals available in GenBank. We employed CodeML to detect signs of positive selection through three different models. Statistically significant results were obtained for the IRF-1, IRF-4, IRF-5, IRF-6, and IRF-9 genes, which are known to play pivotal roles in various regulation mechanisms. Specifically, IRF-4 and IRF-5 are key in modulating the inflammatory response, while IRF-1 is essential for antiviral defense in bats, and IRF-9 regulates genes activated by type I interferon. Although the role of IRF-6 in these mechanisms requires further investigation in bats, all these genes show signs of positive selection, suggesting an optimization of the processes they regulate. These findings highlight the adaptive role of IRF elements in enhancing, among other things, the bat immune system, potentially improving their resilience and efficacy. Our study not only provides new genetic insights into bats but also underscores the remarkable molecular evolution within this unique group of mammals.
Collapse
Affiliation(s)
- Edgar G Gutierrez
- Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico.
| | - Jorge Ortega
- Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico
| |
Collapse
|
2
|
Pei G, Balkema-Buschmann A, Dorhoi A. Disease tolerance as immune defense strategy in bats: One size fits all? PLoS Pathog 2024; 20:e1012471. [PMID: 39236038 PMCID: PMC11376593 DOI: 10.1371/journal.ppat.1012471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Bats are natural reservoirs for zoonotic pathogens, yet the determinants of microbial persistence as well as the specific functionality of their immune system remain largely enigmatic. Their propensity to harbor viruses lethal to humans and/or livestock, mostly in absence of clinical disease, makes bats stand out among mammals. Defending against pathogens relies on avoidance, resistance, and/or tolerance strategies. In bats, disease tolerance has recently gained increasing attention as a prevailing host defense paradigm. We here summarize the current knowledge on immune responses in bats in the context of infection with zoonotic agents and discuss concepts related to disease tolerance. Acknowledging the wide diversity of bats, the broad spectrum of bat-associated microbial species, and immune-related knowledge gaps, we identify research priorities necessary to provide evidence-based proofs for disease tolerance in bats. Since disease tolerance relies on networks of biological processes, we emphasize that investigations beyond the immune system, using novel technologies and computational biology, could jointly advance our knowledge about mechanisms conferring bats reservoir abilities. Although disease tolerance may not be the "one fit all" defense strategy, deciphering disease tolerance in bats could translate into novel therapies and inform prevention of spillover infections to humans and livestock.
Collapse
Affiliation(s)
- Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Guito JC, Arnold CE, Schuh AJ, Amman BR, Sealy TK, Spengler JR, Harmon JR, Coleman-McCray JD, Sanchez-Lockhart M, Palacios GF, Towner JS, Prescott JB. Peripheral immune responses to filoviruses in a reservoir versus spillover hosts reveal transcriptional correlates of disease. Front Immunol 2024; 14:1306501. [PMID: 38259437 PMCID: PMC10800976 DOI: 10.3389/fimmu.2023.1306501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Several filoviruses, including Marburg virus (MARV), cause severe disease in humans and nonhuman primates (NHPs). However, the Egyptian rousette bat (ERB, Rousettus aegyptiacus), the only known MARV reservoir, shows no overt illness upon natural or experimental infection, which, like other bat hosts of zoonoses, is due to well-adapted, likely species-specific immune features. Despite advances in understanding reservoir immune responses to filoviruses, ERB peripheral blood responses to MARV and how they compare to those of diseased filovirus-infected spillover hosts remain ill-defined. We thus conducted a longitudinal analysis of ERB blood gene responses during acute MARV infection. These data were then contrasted with a compilation of published primate blood response studies to elucidate gene correlates of filovirus protection versus disease. Our work expands on previous findings in MARV-infected ERBs by supporting both host resistance and disease tolerance mechanisms, offers insight into the peripheral immunocellular repertoire during infection, and provides the most direct known cross-examination between reservoir and spillover hosts of the most prevalently-regulated response genes, pathways and activities associated with differences in filovirus pathogenesis and pathogenicity.
Collapse
Affiliation(s)
- Jonathan C. Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Catherine E. Arnold
- Biological Defense Research Directorate, Naval Medical Research Center, Frederick, MD, United States
- RD-CBR, Research and Development Directorate, Chemical and Biological Technologies Directorate, Research Center of Excellence, Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Amy J. Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brian R. Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joann D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, Molecular Biology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Gustavo F. Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan S. Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joseph B. Prescott
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
4
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
5
|
Zhang D, Irving AT. Antiviral effects of interferon-stimulated genes in bats. Front Cell Infect Microbiol 2023; 13:1224532. [PMID: 37661999 PMCID: PMC10472940 DOI: 10.3389/fcimb.2023.1224532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
The interferon pathway is the first line of defense in viral infection in all mammals, and its induction stimulates broad expression of interferon-stimulated genes (ISGs). In mice and also humans, the antiviral function of ISGs has been extensively studied. As an important viral reservoir in nature, bats can coexist with a variety of pathogenic viruses without overt signs of disease, yet only limited data are available for the role of ISGs in bats. There are multiple species of bats and work has begun deciphering the differences and similarities between ISG function of human/mouse and different bat species. This review summarizes the current knowledge of conserved and bat-specific-ISGs and their known antiviral effector functions.
Collapse
Affiliation(s)
- Dan Zhang
- Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Aaron T. Irving
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Haining, China
- BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province, China
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Schneor L, Kaltenbach S, Friedman S, Tussia-Cohen D, Nissan Y, Shuler G, Fraimovitch E, Kolodziejczyk AA, Weinberg M, Donati G, Teeling EC, Yovel Y, Hagai T. Comparison of antiviral responses in two bat species reveals conserved and divergent innate immune pathways. iScience 2023; 26:107435. [PMID: 37575178 PMCID: PMC10415932 DOI: 10.1016/j.isci.2023.107435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Bats host a range of disease-causing viruses without displaying clinical symptoms. The mechanisms behind this are a continuous source of interest. Here, we studied the antiviral response in the Egyptian fruit bat and Kuhl's pipistrelle, representing two subordinal clades. We profiled the antiviral response in fibroblasts using RNA sequencing and compared bat with primate and rodent responses. Both bats upregulate similar genes; however, a subset of these genes is transcriptionally divergent between them. These divergent genes also evolve rapidly in sequence, have specific promoter architectures, and are associated with programs underlying tolerance and resistance. Finally, we characterized antiviral genes that expanded in bats, with duplicates diverging in sequence and expression. Our study reveals a largely conserved antiviral program across bats and points to a set of genes that rapidly evolve through multiple mechanisms. These can contribute to bat adaptation to viral infection and provide directions to understanding the mechanisms behind it.
Collapse
Affiliation(s)
- Lilach Schneor
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stefan Kaltenbach
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Friedman
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shuler
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Maya Weinberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yossi Yovel
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|