1
|
Bastiaens SP, Momi D, Griffiths JD. A comprehensive investigation of intracortical and corticothalamic models of the alpha rhythm. PLoS Comput Biol 2025; 21:e1012926. [PMID: 40209165 PMCID: PMC12064047 DOI: 10.1371/journal.pcbi.1012926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 05/09/2025] [Accepted: 03/03/2025] [Indexed: 04/12/2025] Open
Abstract
The electroencephalographic alpha rhythm is one of the most robustly observed and widely studied empirical phenomena in all of neuroscience. However, despite its extensive implication in a wide range of cognitive processes and clinical pathologies, the mechanisms underlying alpha generation in neural circuits remain poorly understood. In this paper we offer a renewed foundation for research on this question, by undertaking a systematic comparison and synthesis of the most prominent theoretical models of alpha rhythmogenesis in the published literature. We focus on four models, each studied intensively by multiple authors over the past three decades: (i) Jansen-Rit, (ii) Moran-David-Friston, (iii) Robinson-Rennie-Wright, and (iv) Liley-Wright. Several common elements are identified, such as the use of second-order differential equations and sigmoidal potential-to-rate operators to represent population-level neural activity. Major differences are seen in other features such as wiring topologies and conduction delays. Through a series of mathematical analyses and numerical simulations, we nevertheless demonstrate that the selected models can be meaningfully compared, by associating parameters and circuit motifs of analogous biological significance. With this established, we conduct explorations of rate constant and synaptic connectivity parameter spaces, with the aim of identifying common patterns in key behaviours, such as the role of excitatory-inhibitory interactions in the generation of oscillations. Finally, using linear stability analysis we identify two qualitatively different alpha-generating dynamical regimes across the models: (i) noise-driven fluctuations and (ii) self-sustained limit-cycle oscillations, emerging due to an Andronov-Hopf bifurcation. The comprehensive survey and synthesis developed here can, we suggest, be used to help guide future theoretical and experimental work aimed at disambiguating these and other candidate theories of alpha rhythmogenesis.
Collapse
Affiliation(s)
- Sorenza P. Bastiaens
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Davide Momi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California, United States of America
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, United States of America
| | - John D. Griffiths
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
YOSHIMOTO A, NUNOBIKI S, ITO M, YONOICHI S, HARA Y, ISHIDA Y, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Effects of low-dose subchronic exposure to the phenylpyrazole insecticide fipronil in juvenile mice. J Vet Med Sci 2025; 87:419-425. [PMID: 39938891 PMCID: PMC11964855 DOI: 10.1292/jvms.24-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
Fipronil (FPN) inhibits gamma-aminobutyric acid type A receptors and exhibits strong insecticidal effects. Although FPN's adverse effects on mammals have been reported recently, few studies have examined subchronic exposure to low doses. We orally administered FPN (0.43 mg/kg) to 4-week-old male mice for 6 wk and assessed their behavior and blood characteristics. Compared with the control group, the FPN-treated group presented reduced weight gain but upward trends in locomotor activity and blood histamine levels. Fipronil sulfone (FPNS) was detected in all individuals, whereas FPN was not detected in any individual. The present study shows for the first time that subchronic exposure to low-dose FPN in mice led to FPNS conversion in the body, affecting weight gain and behavior.
Collapse
Affiliation(s)
- Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama,
Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine Hokkaido University, Hokkaido,
Japan
- Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
3
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
4
|
Kang SU, Park J, Ha S, Kim D, Pletnikova O, Redding-Ochoa J, Troncoso JC, Peng Q, Van Emburgh BO, Trivedi J, Brahmachari S, Nezami B, Dawson VL, Dawson TM. Dissecting the molecular landscape of Parkinson's disease and Parkinson's disease dementia using highly efficient snRNA-seq (HIF-snRNA-seq). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640894. [PMID: 40093124 PMCID: PMC11908213 DOI: 10.1101/2025.03.01.640894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This study presents a transcriptomic analysis of the cingulate cortex (CING) in Parkinson's disease (PD) and Parkinson's disease dementia (PDD) using a High-efficiency single-nucleus RNA sequencing (HiF-snRNA-seq) protocol optimized for post-mortem brain samples. RNA quality prediction, poly-A tailing, and dCas9-targeted depletion enabled analysis of 77 high-quality samples from 240 cases, yielding over 2 million nuclei classified into seven major cell types. Disease conditions revealed altered astrocyte and microglia proportions, implicating their roles in neuroinflammation. Differential expression analysis identified unique and shared genes across PD and PDD, linked to synaptic remodeling, stress responses, and inflammation. Stage-specific analysis uncovered tau-dependent early-stage genes and inflammation-associated late-stage genes. This study highlights the CING's central role in PD and PDD pathophysiology, offering insights into disease mechanisms and identifying candidate genes and pathways for therapeutic and biomarker development.
Collapse
Affiliation(s)
- Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Jinhee Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Present Address: Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, USA
| | - Javier Redding-Ochoa
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Quan Peng
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Beth O Van Emburgh
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Jaldhir Trivedi
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Saurav Brahmachari
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Bardia Nezami
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Present Address: Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, USA
| |
Collapse
|
5
|
Zhong J, Li H, Cao K, Zhou L, An L, Zhao J, Bai S, Shi Y, Liu Z, Liang Q, Zhang R, Deng D. Glutamate-mediated antidepressant effects of Jieyu I formula via modulation of PFC CaMKII-LHb CaMKII/GABA circuitry in lipopolysaccharide-induced depression model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119414. [PMID: 39870335 DOI: 10.1016/j.jep.2025.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieyu I Formula (JY-I) is an improved version of the classic formula "Sini San" documented in the books Shanghan Lun, which is known for regulating the liver and treating depression. However, the disturbance of neuronal signal transmission in the neural circuit of the brain is closely related to the occurrence of depression, yet its neural mechanism is still unclear. AIM OF THE STUDY This study aimed to observe the antidepressant effect of JY-I on depressed mice induced by lipopolysaccharide and its underlying central nervous system mechanisms, focusing on the prefrontal cortex (PFC) to lateral habenular nucleus (LHb) neural circuit in the depressed mice model. MATERIALS AND METHODS JY-I comprised herbs include Bupleurum chinense, Fructus Aurantii, Paeonia lactiflora, Lotus Seed Heart, Schisandra chinensis, and Hypericum perforatum, which are prepared in a ratio of 2:2:2:2:1:1. The mouse model of depression was induced by lipopolysaccharide. The antidepressant efficacy of JY-I was observed by behavioral tests. Observation of the PFC/LHb neuron activity in mice using in-vivo electrophysiological combined with optogenetic technology. Subsequently, the activity of the LHb neuron was observed using immunofluorescence staining analysis and Western blot. Inject Rabies virus into the LHb brain region and observe the projection of the PFC from upstream brain regions received by the LHb. Using chemogenetic techniques to activate/inhibit the PFC-LHb neural circuit and investigate the effect of JY-I on depression-like behaviors. RESULTS Depression-like behaviors in mice can be induced by intraperitoneal administration of lipopolysaccharide, the behavior changes were reversed with the administration of the JY-I. The combination of optogenetics and electrophysiological recording result indicates that JY-I activates glutamate (Glu) neurons in the PFC, thus maintaining an optimal excitatory/inhibitory (E/I) balance and ameliorating depression-like behaviors. Notably, the PFC, a crucial brain area for emotion regulation, exerts its antidepressant effect on downstream LHb region through the activation of Glu neurons. CONCLUSIONS JY-I can significantly improve lipopolysaccharide-induced depression-like behaviors. JY-I exerts antidepressant effects by activating the PFC Glu neurons projecting to the LHb, revealing a promising therapeutic target for depression.
Collapse
Affiliation(s)
- Jialong Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Kerun Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liuchang Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lin An
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Jinlan Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Shasha Bai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China.
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China.
| | - Di Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China.
| |
Collapse
|
6
|
Lützenkirchen FP, Zhu Y, Maric HM, Boeck DS, Gromova KV, Kneussel M. Neurobeachin regulates receptor downscaling at GABAergic inhibitory synapses in a protein kinase A-dependent manner. Commun Biol 2024; 7:1635. [PMID: 39668217 PMCID: PMC11638247 DOI: 10.1038/s42003-024-07294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
GABAergic synapses critically modulate neuronal excitability, and plastic changes in inhibitory synaptic strength require reversible interactions between GABAA receptors (GABAARs) and their postsynaptic anchor gephyrin. Inhibitory long-term potentiation (LTP) depends on the postsynaptic recruitment of gephyrin and GABAARs, whereas the neurotransmitter GABA can induce synaptic removal of GABAARs. However, the mechanisms and players underlying plastic adaptation of synaptic strength are incompletely understood. Here we show that neurobeachin (Nbea), a receptor trafficking protein, is a component of inhibitory synapses, interacts with gephyrin and regulates the downscaling of inhibitory synaptic transmission. We found that the recruitment of Nbea to GABAergic synapses is activity-dependent and that Nbea regulates GABAAR internalization in a protein kinase A (PKA)-dependent manner. In heterozygous neurons lacking one Nbea allele, re-expression of Nbea but not expression of a PKA binding-deficient Nbea mutant rescued the internalization of GABAARs. Our data suggest a mechanism by which Nbea mediates PKA anchoring at inhibitory postsynaptic sites to downregulate GABAergic transmission. They emphasize the importance of kinase positioning in the regulation of synaptic strength.
Collapse
Affiliation(s)
- Felix P Lützenkirchen
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yipeng Zhu
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Dominik S Boeck
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira V Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center of Neuroscience, HCNS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
Sano M, Nishiura Y, Morikawa I, Hoshino A, Uemura JI, Iwatsuki K, Hirata H, Hoshiyama M. Analysis of the alpha activity envelope in electroencephalography in relation to the ratio of excitatory to inhibitory neural activity. PLoS One 2024; 19:e0305082. [PMID: 38870189 PMCID: PMC11175473 DOI: 10.1371/journal.pone.0305082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Alpha waves, one of the major components of resting and awake cortical activity in human electroencephalography (EEG), are known to show waxing and waning, but this phenomenon has rarely been analyzed. In the present study, we analyzed this phenomenon from the viewpoint of excitation and inhibition. The alpha wave envelope was subjected to secondary differentiation. This gave the positive (acceleration positive, Ap) and negative (acceleration negative, An) values of acceleration and their ratio (Ap-An ratio) at each sampling point of the envelope signals for 60 seconds. This analysis was performed on 36 participants with Alzheimer's disease (AD), 23 with frontotemporal dementia (FTD) and 29 age-matched healthy participants (NC) whose data were provided as open datasets. The mean values of the Ap-An ratio for 60 seconds at each EEG electrode were compared between the NC and AD/FTD groups. The AD (1.41 ±0.01 (SD)) and FTD (1.40 ±0.02) groups showed a larger Ap-An ratio than the NC group (1.38 ±0.02, p<0.05). A significant correlation between the envelope amplitude of alpha activity and the Ap-An ratio was observed at most electrodes in the NC group (Pearson's correlation coefficient, r = -0.92 ±0.15, mean for all electrodes), whereas the correlation was disrupted in AD (-0.09 ±0.21, p<0.05) and disrupted in the frontal region in the FTD group. The present method analyzed the envelope of alpha waves from a new perspective, that of excitation and inhibition, and it could detect properties of the EEG, Ap-An ratio, that have not been revealed by existing methods. The present study proposed a new method to analyze the alpha activity envelope in electroencephalography, which could be related to excitatory and inhibitory neural activity.
Collapse
Affiliation(s)
- Misako Sano
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Yuko Nishiura
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Izumi Morikawa
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
- Music Division, Nagoya University of the Arts, Kitanagoya, Japan
| | - Aiko Hoshino
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Jun-ichi Uemura
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Minoru Hoshiyama
- Department of Preventive Rehabilitation Sciences, School of Health Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Wan C, Xia Y, Yan J, Lin W, Yao L, Zhang M, Gaisler-Salomon I, Mei L, Yin DM, Chen Y. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus. Cell Death Dis 2024; 15:167. [PMID: 38396027 PMCID: PMC10891175 DOI: 10.1038/s41419-024-06557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Neuronal nitric oxide synthase (nNOS, gene name Nos1) orchestrates the synthesis of nitric oxide (NO) within neurons, pivotal for diverse neural processes encompassing synaptic transmission, plasticity, neuronal excitability, learning, memory, and neurogenesis. Despite its significance, the precise regulation of nNOS activity across distinct neuronal types remains incompletely understood. Erb-b2 receptor tyrosine kinase 4 (ErbB4), selectively expressed in GABAergic interneurons and activated by its ligand neuregulin 1 (NRG1), modulates GABA release in the brain. Our investigation reveals the presence of nNOS in a subset of GABAergic interneurons expressing ErbB4. Notably, NRG1 activates nNOS via ErbB4 and its downstream phosphatidylinositol 3-kinase (PI3K), critical for NRG1-induced GABA release. Genetic removal of nNos from Erbb4-positive neurons impairs GABAergic transmission, partially rescued by the NO donor sodium nitroprusside (SNP). Intriguingly, the genetic deletion of nNos from Erbb4-positive neurons induces schizophrenia-relevant behavioral deficits, including hyperactivity, impaired sensorimotor gating, and deficient working memory and social interaction. These deficits are ameliorated by the atypical antipsychotic clozapine. This study underscores the role and regulation of nNOS within a specific subset of GABAergic interneurons, offering insights into the pathophysiological mechanisms of schizophrenia, given the association of Nrg1, Erbb4, Pi3k, and Nos1 genes with this mental disorder.
Collapse
Affiliation(s)
- Chaofan Wan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Rehabilitation, School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Weipeng Lin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Lin Mei
- Chinese Institute for Medical Research, Beijing, 100069, China
- Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Dong-Min Yin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China.
| | - Yongjun Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Villalobos N. Disinhibition Is an Essential Network Motif Coordinated by GABA Levels and GABA B Receptors. Int J Mol Sci 2024; 25:1340. [PMID: 38279339 PMCID: PMC10816949 DOI: 10.3390/ijms25021340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México 11340, Mexico;
- Sección de Estudios Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
10
|
Kim HR, Martina M. Bidirectional Regulation of GABA A Reversal Potential in the Adult Brain: Physiological and Pathological Implications. Life (Basel) 2024; 14:143. [PMID: 38276272 PMCID: PMC10817304 DOI: 10.3390/life14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In physiological conditions, the intracellular chloride concentration is much lower than the extracellular. As GABAA channels are permeable to anions, the reversal potential of GABAA is very close to that of Cl-, which is the most abundant free anion in the intra- and extracellular spaces. Intracellular chloride is regulated by the activity ratio of NKCC1 and KCC2, two chloride-cation cotransporters that import and export Cl-, respectively. Due to the closeness between GABAA reversal potential and the value of the resting membrane potential in most neurons, small changes in intracellular chloride have a major functional impact, which makes GABAA a uniquely flexible signaling system. In most neurons of the adult brain, the GABAA reversal potential is slightly more negative than the resting membrane potential, which makes GABAA hyperpolarizing. Alterations in GABAA reversal potential are a common feature in numerous conditions as they are the consequence of an imbalance in the NKCC1-KCC2 activity ratio. In most conditions (including Alzheimer's disease, schizophrenia, and Down's syndrome), GABAA becomes depolarizing, which causes network desynchronization and behavioral impairment. In other conditions (neonatal inflammation and neuropathic pain), however, GABAA reversal potential becomes hypernegative, which affects behavior through a potent circuit deactivation.
Collapse
Affiliation(s)
- Haram R. Kim
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
| | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Kang WK, Florman JT, Araya A, Fox BW, Thackeray A, Schroeder FC, Walhout AJM, Alkema MJ. Vitamin B 12 produced by gut bacteria modulates cholinergic signalling. Nat Cell Biol 2024; 26:72-85. [PMID: 38168768 PMCID: PMC11650697 DOI: 10.1038/s41556-023-01299-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy T Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Antonia Araya
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Andrea Thackeray
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Idei H, Yamashita Y. Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models. Neural Netw 2024; 169:57-74. [PMID: 37857173 DOI: 10.1016/j.neunet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Vigorous research has been conducted to accumulate biological and theoretical knowledge about neurodevelopmental disorders, including molecular, neural, computational, and behavioral characteristics; however, these findings remain fragmentary and do not elucidate integrated mechanisms. An obstacle is the heterogeneity of developmental pathways causing clinical phenotypes. Additionally, in symptom formations, the primary causes and consequences of developmental learning processes are often indistinguishable. Herein, we review developmental neurorobotic experiments tackling problems related to the dynamic and complex properties of neurodevelopmental disorders. Specifically, we focus on neurorobotic models under predictive processing lens for the study of developmental disorders. By constructing neurorobotic models with predictive processing mechanisms of learning, perception, and action, we can simulate formations of integrated causal relationships among neurodynamical, computational, and behavioral characteristics in the robot agents while considering developmental learning processes. This framework has the potential to bind neurobiological hypotheses (excitation-inhibition imbalance and functional disconnection), computational accounts (unusual encoding of uncertainty), and clinical symptoms. Developmental neurorobotic approaches may serve as a complementary research framework for integrating fragmented knowledge and overcoming the heterogeneity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
13
|
Maguire JL, Mennerick S. Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology 2024; 49:73-82. [PMID: 37369775 PMCID: PMC10700537 DOI: 10.1038/s41386-023-01626-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Like other classes of treatments described in this issue's section, neuroactive steroids have been studied for decades but have risen as a new class of rapid-acting, durable antidepressants with a distinct mechanism of action from previous antidepressant treatments and from other compounds covered in this issue. Neuroactive steroids are natural derivatives of progesterone but are proving effective as exogenous treatments. The best understood mechanism is that of positive allosteric modulation of GABAA receptors, where subunit selectivity may promote their profile of action. Mechanistically, there is some reason to think that neuroactive steroids may separate themselves from liabilities of other GABA modulators, although research is ongoing. It is also possible that intracellular targets, including inflammatory pathways, may be relevant to beneficial actions. Strengths and opportunities for further development include exploiting non-GABAergic targets, structural analogs, enzymatic production of natural steroids, precursor loading, and novel formulations. The molecular mechanisms of behavioral effects are not fully understood, but study of brain network states involved in emotional processing demonstrate a robust influence on affective states not evident with at least some other GABAergic drugs including benzodiazepines. Ongoing studies with neuroactive steroids will further elucidate the brain and behavioral effects of these compounds as well as likely underpinnings of disease.
Collapse
Affiliation(s)
- Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Steven Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Radulovic T, Rajaram E, Ebbers L, Pagella S, Winklhofer M, Kopp-Scheinpflug C, Nothwang HG, Milenkovic I, Hartmann AM. Serine 937 phosphorylation enhances KCC2 activity and strengthens synaptic inhibition. Sci Rep 2023; 13:21660. [PMID: 38066086 PMCID: PMC10709408 DOI: 10.1038/s41598-023-48884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The potassium chloride cotransporter KCC2 is crucial for Cl- extrusion from mature neurons and thus key to hyperpolarizing inhibition. Auditory brainstem circuits contain well-understood inhibitory projections and provide a potent model to study the regulation of synaptic inhibition. Two peculiarities of the auditory brainstem are (i) posttranslational activation of KCC2 during development and (ii) extremely negative reversal potentials in specific circuits. To investigate the role of the potent phospho-site serine 937 therein, we generated a KCC2 Thr934Ala/Ser937Asp double mutation, in which Ser937 is replaced by aspartate mimicking the phosphorylated state, and the neighbouring Thr934 arrested in the dephosphorylated state. This double mutant showed a twofold increased transport activity in HEK293 cells, raising the hypothesis that auditory brainstem neurons show lower [Cl-]i. and increased glycinergic inhibition. This was tested in a mouse model carrying the same KCC2 Thr934Ala/Ser937Asp mutation by the use of the CRISPR/Cas9 technology. Homozygous KCC2 Thr934Ala/Ser937Asp mice showed an earlier developmental onset of hyperpolarisation in the auditory brainstem. Mature neurons displayed stronger glycinergic inhibition due to hyperpolarized ECl-. These data demonstrate that phospho-regulation of KCC2 Ser937 is a potent way to interfere with the excitation-inhibition balance in neural circuits.
Collapse
Affiliation(s)
- Tamara Radulovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ezhilarasan Rajaram
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Lena Ebbers
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Michael Winklhofer
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ivan Milenkovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
15
|
Li Y, Chitturi J, Yu B, Zhang Y, Wu J, Ti P, Hung W, Zhen M, Gao S. UBR-1 ubiquitin ligase regulates the balance between GABAergic and glutamatergic signaling. EMBO Rep 2023; 24:e57014. [PMID: 37811674 PMCID: PMC10626437 DOI: 10.15252/embr.202357014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Excitation/inhibition (E/I) balance is carefully maintained by the nervous system. The neurotransmitter GABA has been reported to be co-released with its sole precursor, the neurotransmitter glutamate. The genetic and circuitry mechanisms to establish the balance between GABAergic and glutamatergic signaling have not been fully elucidated. Caenorhabditis elegans DVB is an excitatory GABAergic motoneuron that drives the expulsion step in the defecation motor program. We show here that in addition to UNC-47, the vesicular GABA transporter, DVB also expresses EAT-4, a vesicular glutamate transporter. UBR-1, a conserved ubiquitin ligase, regulates DVB activity by suppressing a bidirectional inhibitory glutamate signaling. Loss of UBR-1 impairs DVB Ca2+ activity and expulsion frequency. These impairments are fully compensated by the knockdown of EAT-4 in DVB. Further, glutamate-gated chloride channels GLC-3 and GLC-2/4 receive DVB's glutamate signals to inhibit DVB and enteric muscle activity, respectively. These results implicate an intrinsic cellular mechanism that promotes the inherent asymmetric neural activity. We propose that elevated glutamate in ubr-1 mutants, being the cause of the E/I shift, potentially contributes to Johanson Blizzard syndrome.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jyothsna Chitturi
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongning Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Panpan Ti
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Wesley Hung
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Mei Zhen
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
16
|
Fotiadis P, Cieslak M, He X, Caciagli L, Ouellet M, Satterthwaite TD, Shinohara RT, Bassett DS. Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex. Nat Commun 2023; 14:6115. [PMID: 37777569 PMCID: PMC10542365 DOI: 10.1038/s41467-023-41686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Recent work has demonstrated that the relationship between structural and functional connectivity varies regionally across the human brain, with reduced coupling emerging along the sensory-association cortical hierarchy. The biological underpinnings driving this expression, however, remain largely unknown. Here, we postulate that intracortical myelination and excitation-inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC) and its temporal variance across the cortical hierarchy. We employ atlas- and voxel-based connectivity approaches to analyze neuroimaging data acquired from two groups of healthy participants. Our findings are consistent across six complementary processing pipelines: 1) SFC and its temporal variance respectively decrease and increase across the unimodal-transmodal and granular-agranular gradients; 2) increased myelination and lower EI-ratio are associated with more rigid SFC and restricted moment-to-moment SFC fluctuations; 3) a gradual shift from EI-ratio to myelination as the principal predictor of SFC occurs when traversing from granular to agranular cortical regions. Collectively, our work delivers a framework to conceptualize structure-function relationships in the human brain, paving the way for an improved understanding of how demyelination and/or EI-imbalances induce reorganization in brain disorders.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu Ouellet
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
17
|
Coyle HL, Bailey NW, Ponsford J, Hoy KE. Recovery of clinical, cognitive and cortical activity measures following mild traumatic brain injury (mTBI): A longitudinal investigation. Cortex 2023; 165:14-25. [PMID: 37245405 DOI: 10.1016/j.cortex.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/30/2023]
Abstract
The mechanisms that underpin recovery following mild traumatic brain injury (mTBI) remain poorly understood. Identifying neurophysiological markers and their functional significance is necessary to develop diagnostic and prognostic indicators of recovery. The current study assessed 30 participants in the subacute phase of mTBI (10-31 days post-injury) and 28 demographically matched controls. Participants also completed 3 month (mTBI: N = 21, control: N = 25) and 6 month (mTBI: N = 15, control: N = 25) follow up sessions to track recovery. At each time point, a battery of clinical, cognitive, and neurophysiological assessments was completed. Neurophysiological measures included resting-state electroencephalography (EEG) and transcranial magnetic stimulation combined with EEG (TMS-EEG). Outcome measures were analysed using mixed linear models (MLM). Group differences in mood, post-concussion symptoms and resting-state EEG resolved by 3 months, and recovery was maintained at 6 months. On TMS-EEG derived neurophysiological measures of cortical reactivity, group differences ameliorated at 3 months but re-emerged at 6 months, while on measures of fatigue, group differences persisted across all time points. Persistent neurophysiological changes and greater fatigue in the absence of measurable cognitive impairment may suggest the impact of mTBI on neuronal communication may leads to increased neural effort to maintain efficient function. Neurophysiological measures to track recovery may help identify both temporally optimal windows and therapeutic targets for the development of new treatments in mTBI.
Collapse
Affiliation(s)
- Hannah L Coyle
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Neil W Bailey
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Monarch Research Institute Monarch Mental Health Group, Sydney, New South Wales, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Kate E Hoy
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Bionics Institute, East Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Ueberbach T, Simacek CA, Tegeder I, Kirischuk S, Mittmann T. Tonic activation of GABA B receptors via GAT-3 mediated GABA release reduces network activity in the developing somatosensory cortex in GAD67-GFP mice. Front Synaptic Neurosci 2023; 15:1198159. [PMID: 37325697 PMCID: PMC10267986 DOI: 10.3389/fnsyn.2023.1198159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The efficiency of neocortical information processing critically depends on the balance between the glutamatergic (excitatory, E) and GABAergic (inhibitory, I) synaptic transmission. A transient imbalance of the E/I-ratio during early development might lead to neuropsychiatric disorders later in life. The transgenic glutamic acid decarboxylase 67-green fluorescent protein (GAD67-GFP) mouse line (KI) was developed to selectively visualize GABAergic interneurons in the CNS. However, haplodeficiency of the GAD67 enzyme, the main GABA synthetizing enzyme in the brain, temporarily leads to a low GABA level in the developing brain of these animals. However, KI mice did not demonstrate any epileptic activity and only few and mild behavioral deficits. In the present study we investigated how the developing somatosensory cortex of KI-mice compensates the reduced GABA level to prevent brain hyperexcitability. Whole-cell patch clamp recordings from layer 2/3 pyramidal neurons at P14 and at P21 revealed a reduced frequency of miniature inhibitory postsynaptic currents (mIPSCs) in KI mice without any change in amplitude or kinetics. Interestingly, mEPSC frequencies were also decreased, while the E/I-ratio was nevertheless shifted toward excitation. Surprisingly, multi-electrode-recordings (MEA) from acute slices revealed a decreased spontaneous neuronal network activity in KI mice compared to wild-type (WT) littermates, pointing to a compensatory mechanism that prevents hyperexcitability. Blockade of GABAB receptors (GABABRs) with CGP55845 strongly increased the frequency of mEPSCs in KI, but failed to affect mIPSCs in any genotype or age. It also induced a membrane depolarization in P14 KI, but not in P21 KI or WT mice. MEA recordings in presence of CGP55845 revealed comparable levels of network activity in both genotypes, indicating that tonically activated GABABRs balance neuronal activity in P14 KI cortex despite the reduced GABA levels. Blockade of GABA transporter 3 (GAT-3) reproduced the CGP55845 effects suggesting that tonic activation of GABABRs is mediated by ambient GABA released via GAT-3 operating in reverse mode. We conclude that GAT-3-mediated GABA release leads to tonic activation of both pre- and postsynaptic GABABRs and restricts neuronal excitability in the developing cortex to compensate for reduced neuronal GABA synthesis. Since GAT-3 is predominantly located in astrocytes, GAD67 haplodeficiency may potentially stimulate astrocytic GABA synthesis through GAD67-independent pathways.
Collapse
Affiliation(s)
- Timo Ueberbach
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clara A. Simacek
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Sergei Kirischuk
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Mittmann
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
19
|
Tian T, Cai Y, Qin X, Wang J, Wang Y, Yang X. Forebrain E-I balance controlled in cognition through coordinated inhibition and inhibitory transcriptome mechanism. Front Cell Neurosci 2023; 17:1114037. [PMID: 36909282 PMCID: PMC10000298 DOI: 10.3389/fncel.2023.1114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction Forebrain neural networks are vital for cognitive functioning, and their excitatory-inhibitory (E-I) balance is governed by neural homeostasis. However, the homeostatic control strategies and transcriptomic mechanisms that maintain forebrain E-I balance and optimal cognition remain unclear. Methods We used patch-clamp and RNA sequencing to investigate the patterns of neural network homeostasis with suppressing forebrain excitatory neural activity and spatial training. Results We found that inhibitory transmission and receptor transcription were reduced in tamoxifen-inducible Kir2.1 conditional knock-in mice. In contrast, spatial training increased inhibitory synaptic connections and the transcription of inhibitory receptors. Discussion Our study provides significant evidence that inhibitory systems play a critical role in the homeostatic control of the E-I balance in the forebrain during cognitive training and E-I rebalance, and we have provided insights into multiple gene candidates for cognition-related homeostasis in the forebrain.
Collapse
Affiliation(s)
- Tian Tian
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - You Cai
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neurology, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xin Qin
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Jiangang Wang
- Henan International Joint Laboratory of Non-Invasive Neuromodulation, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Yali Wang
- Henan International Joint Laboratory of Non-Invasive Neuromodulation, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Xin Yang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
20
|
Zeng X, Chen Y, Yu X, Che Y, Chen H, Yi Z, Qin J, Zhong J. Novel variants of SYNGAP1 associated epileptic encephalopathy: two cases report and literature review. ACTA EPILEPTOLOGICA 2023; 5:6. [PMID: 40217345 PMCID: PMC11960226 DOI: 10.1186/s42494-022-00114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND SYNGAP1 is a significant genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder, for example, early-onset and drug-refractory seizures. We report two children with global developmental delay and epileptic encephalopathy, which are caused by SYNGAP1 gene novel mutations, and drug treatment is effective. CASE PRESENTATION We report a boy and a girl presented with global developmental delay when they were young babies; as they grew up, cognitive impairment and social-communication disorder became more and more prominent; unfortunately, the patients developed into various seizure types, including eyelid myoclonia, myoclonic and absences when the boy was 1 year 8 mouths old and the girl was 3 years old. The two patients were found two previously unknown mutations by high throughput sequencing [c.3271_ c.3272insT; (p.L1091L fs*62), c.2515A > T (p.K839*)] in exon 15 of the SYNGAP in the proband. Sanger sequencing confirmed the heterozygous nature, and neither of their parents carried the same mutation. The girl treated with valproic acid and prednisone became seizure-free, and valproic acid and levetiracetam combined with clonazepam were influential in the other. CONCLUSIONS The global developmental delay and epileptic encephalopathy of the children were probably due to the pathogenic mutation of the SYNGAP1 gene, and prednisone and clonazepam may be effective in achieving seizure-free.
Collapse
Affiliation(s)
- Xingying Zeng
- Molecular Diagnostic Laboratory, Children's Hospital of Jiangxi Province, Nanchang, 330006, China
| | - Yong Chen
- Department of Neurology, Children's Hospital of Jiangxi Province, Nanchang, 330006, China
| | - Xiongying Yu
- Department of Neurology, Children's Hospital of Jiangxi Province, Nanchang, 330006, China
| | - Yuanyuan Che
- Department of Neurology, Children's Hospital of Jiangxi Province, Nanchang, 330006, China
| | - Hui Chen
- Department of Neurology, Children's Hospital of Jiangxi Province, Nanchang, 330006, China
| | - Zhaoshi Yi
- Molecular Diagnostic Laboratory, Children's Hospital of Jiangxi Province, Nanchang, 330006, China
| | - Jie Qin
- Department of Neurology, Children's Hospital of Jiangxi Province, Nanchang, 330006, China
| | - Jianmin Zhong
- Department of Neurology, Children's Hospital of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
21
|
Gao J, Luo Y, Lu Y, Wu X, Chen P, Zhang X, Han L, Qiu M, Shen W. Epigenetic regulation of GABAergic differentiation in the developing brain. Front Cell Neurosci 2022; 16:988732. [PMID: 36212693 PMCID: PMC9539098 DOI: 10.3389/fncel.2022.988732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate brain, GABAergic cell development and neurotransmission are important for the establishment of neural circuits. Various intrinsic and extrinsic factors have been identified to affect GABAergic neurogenesis. However, little is known about the epigenetic control of GABAergic differentiation in the developing brain. Here, we report that the number of GABAergic neurons dynamically changes during the early tectal development in the Xenopus brain. The percentage of GABAergic neurons is relatively unchanged during the early stages from stage 40 to 46 but significantly decreased from stage 46 to 48 tadpoles. Interestingly, the histone acetylation of H3K9 is developmentally decreased from stage 42 to 48 (about 3.5 days). Chronic application of valproate acid (VPA), a broad-spectrum histone deacetylase (HDAC) inhibitor, at stage 46 for 48 h increases the acetylation of H3K9 and the number of GABAergic cells in the optic tectum. VPA treatment also reduces apoptotic cells. Electrophysiological recordings show that a VPA induces an increase in the frequency of mIPSCs and no changes in the amplitude. Behavioral studies reveal that VPA decreases swimming activity and visually guided avoidance behavior. These findings extend our understanding of histone modification in the GABAergic differentiation and neurotransmission during early brain development.
Collapse
Affiliation(s)
- Juanmei Gao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yufang Lu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Wu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiyao Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lu Han
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Mengsheng Qiu,
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Wanhua Shen,
| |
Collapse
|
22
|
Developmental depression-to-facilitation shift controls excitation-inhibition balance. Commun Biol 2022; 5:873. [PMID: 36008708 PMCID: PMC9411206 DOI: 10.1038/s42003-022-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Changes in the short-term dynamics of excitatory synapses over development have been observed throughout cortex, but their purpose and consequences remain unclear. Here, we propose that developmental changes in synaptic dynamics buffer the effect of slow inhibitory long-term plasticity, allowing for continuously stable neural activity. Using computational modeling we demonstrate that early in development excitatory short-term depression quickly stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a model of the commonly observed developmental shift from depression to facilitation and show that neural activity remains stable throughout development, while inhibitory synaptic plasticity slowly balances excitation, consistent with experimental observations. Our model predicts changes in the input responses from phasic to phasic-and-tonic and more precise spike timings. We also observe a gradual emergence of short-lasting memory traces governed by short-term plasticity development. We conclude that the developmental depression-to-facilitation shift may control excitation-inhibition balance throughout development with important functional consequences. Using computational modelling this study proposes that the commonly observed depression-to-facilitation shift across development controls excitation-inhibition balance in the brain.
Collapse
|
23
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
24
|
Hartmann AM, Nothwang HG. NKCC1 and KCC2: Structural insights into phospho-regulation. Front Mol Neurosci 2022; 15:964488. [PMID: 35935337 PMCID: PMC9355526 DOI: 10.3389/fnmol.2022.964488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory neurotransmission plays a fundamental role in the central nervous system, with about 30–50% of synaptic connections being inhibitory. The action of both inhibitory neurotransmitter, gamma-aminobutyric-acid (GABA) and glycine, mainly relies on the intracellular Cl– concentration in neurons. This is set by the interplay of the cation chloride cotransporters NKCC1 (Na+, K+, Cl– cotransporter), a main Cl– uptake transporter, and KCC2 (K+, Cl– cotransporter), the principle Cl– extruder in neurons. Accordingly, their dysfunction is associated with severe neurological, psychiatric, and neurodegenerative disorders. This has triggered great interest in understanding their regulation, with a strong focus on phosphorylation. Recent structural data by cryogenic electron microscopy provide the unique possibility to gain insight into the action of these phosphorylations. Interestingly, in KCC2, six out of ten (60%) known regulatory phospho-sites reside within a region of 134 amino acid residues (12% of the total residues) between helices α8 and α9 that lacks fixed or ordered three-dimensional structures. It thus represents a so-called intrinsically disordered region. Two further phospho-sites, Tyr903 and Thr906, are also located in a disordered region between the ß8 strand and the α8 helix. We make the case that especially the disordered region between helices α8 and α9 acts as a platform to integrate different signaling pathways and simultaneously constitute a flexible, highly dynamic linker that can survey a wide variety of distinct conformations. As each conformation can have distinct binding affinities and specificity properties, this enables regulation of [Cl–]i and thus the ionic driving force in a history-dependent way. This region might thus act as a molecular processor underlying the well described phenomenon of ionic plasticity that has been ascribed to inhibitory neurotransmission. Finally, it might explain the stunning long-range effects of mutations on phospho-sites in KCC2.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- *Correspondence: Anna-Maria Hartmann,
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
Microglial Tmem59 Deficiency Impairs Phagocytosis of Synapse and Leads to Autism-Like Behaviors in Mice. J Neurosci 2022; 42:4958-4979. [PMID: 35606143 PMCID: PMC9233448 DOI: 10.1523/jneurosci.1644-21.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Synaptic abnormality is an important pathologic feature of autism spectrum disorders (ASDs) and responsible for various behavioral defects in these neurodevelopmental disorders. Microglia are the major immune cells in the brain and also play an important role in synapse refinement. Although dysregulated synaptic pruning by microglia during the brain development has been associated with ASDs, the underlying mechanism has yet to be fully elucidated. Herein, we observed that expression of Transmembrane protein 59 (TMEM59), a protein recently shown to regulate microglial function, was decreased in autistic patients. Furthermore, we found that both male and female mice with either complete or microglia-specific loss of Tmem59 developed ASD-like behaviors. Microglial TMEM59-deficient mice also exhibited enhanced excitatory synaptic transmission, increased dendritic spine density, and elevated levels of excitatory synaptic proteins in synaptosomes. TMEM59-deficient microglia had impaired capacity for synapse engulfment both in vivo and in vitro. Moreover, we demonstrated that TMEM59 interacted with the C1q receptor CD93 and TMEM59 deficiency promoted CD93 protein degradation in microglia. Downregulation of CD93 in microglia also impaired synapse engulfment. These findings identify a crucial role of TMEM59 in modulating microglial function on synapse refinement during brain development and suggest that TMEM59 deficiency may contribute to ASDs through disrupting phagocytosis of excitatory synapse and thus distorting the excitatory-inhibitory (E/I) neuronal activity balance.SIGNIFICANCE STATEMENT Microglia play an important role in synapse refinement. Dysregulated synaptic pruning by microglia during brain development has been associated with autism spectrum disorders (ASDs). However, the underlying mechanism has yet to be fully elucidated. Herein, we observe that the expression of Transmembrane protein 59 (TMEM59), an autophagy-related protein, is decreased in autistic patients. Moreover, we find ASD-like behaviors in mice with complete loss and with microglia-specific loss of Tmem59 Mechanistic studies reveal that TMEM59 deficiency in microglia impairs their synapse engulfment ability likely through destabilizing the C1q receptor CD93, thereby leading to enhanced excitatory neurotransmission and increased dendritic spine density. Our findings demonstrate a crucial role of microglial TMEM59 in early neuronal development and provide new insight into the etiology of ASDs.
Collapse
|
26
|
Chen-Engerer HJ, Jaeger S, Bondarenko R, Sprengel R, Hengerer B, Rosenbrock H, Mack V, Schuelert N. Increasing the Excitatory Drive Rescues Excitatory/Inhibitory Imbalance and Mismatch Negativity Deficit Caused by Parvalbumin Specific GluA1 Deletion. Neuroscience 2022; 496:190-204. [PMID: 35750109 DOI: 10.1016/j.neuroscience.2022.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Disturbance in synaptic excitatory and inhibitory (E/I) transmission in the prefrontal cortex is considered a critical factor for cognitive dysfunction, a core symptom in schizophrenia. However, the cortical network pathophysiology induced by E/I imbalance is not well characterized, and an effective therapeutic strategy is lacking. In this study, we simulated imbalanced cortical network by using mice with parvalbumin neuron (PV) specific knockout of GluA1 (AMPA receptor subunit 1) (Gria1-PV KO) as an experimental model. Applying high-content confocal imaging and electrophysiological recordings in the medial prefrontal cortex (mPFC), we found structural and functional alterations in the local network of Gria1-PV KO mice. Additionally, we applied electroencephalography (EEG) to assess potential deficits in mismatch negativity (MMN), the standard readout in the clinic for measuring deviance detection and sensory information processing. Gria1-PV KO animals exhibited abnormal theta oscillation and MMN, which is consistent with clinical findings in cognitively impaired patients. Remarkably, we demonstrated that the glycine transporter 1 (GlyT1) inhibitor, Bitopertin, ameliorates E/I imbalance, hyperexcitability, and sensory processing malfunction in Gria1-PV KO mice. Our results suggest that PV-specific deletion of GluA1 might be an experimental approach for back translating the E/I imbalance observed in schizophrenic patients. Our work offers a systematic workflow to understand the effect of GlyT1 inhibition in restoring cortical network activity from single cells to local brain circuitry. This study highlights that selectively boosting NMDA receptor-mediated excitatory drive to enhance the network inhibitory transmission from interneurons to pyramidal neurons (PYs) is a potential therapeutic strategy for restoring E/I imbalance-associated cognitive-related abnormality.
Collapse
Affiliation(s)
- Hsing-Jung Chen-Engerer
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany.
| | - Stefan Jaeger
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Rimma Bondarenko
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology at Heidelberg University, Germany
| | - Bastian Hengerer
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Holger Rosenbrock
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Volker Mack
- CardioMetabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Niklas Schuelert
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| |
Collapse
|
27
|
Brittenham C, Gordon J, Zemon VM, Siper PM. Objective frequency analysis of transient visual evoked potentials in autistic children. Autism Res 2021; 15:464-480. [PMID: 34908250 DOI: 10.1002/aur.2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/06/2022]
Abstract
Visual evoked potentials (VEPs) provide a means to examine neural mechanisms in autism with high temporal resolution. Conventional VEP analysis relies on subjective inspection of a few points (peaks and troughs) in the time-domain waveform. The current study applied power spectral analysis and magnitude-squared coherence (MSC) statistics (frequency-domain measures) to VEPs recorded during 1-minute runs and with a recently developed short-duration technique that allow for objective examination of the responses (Zemon & Gordon, European Journal of Neuroscience, 2018, 48, 1765-1788) from nonautistic and autistic children. Results indicate that, for both groups, early time-domain measures (P60 , N75 , P100 ) are highly correlated with middle- and high-frequency (14-28 and 30-48 Hz, respectively) mechanisms, and late measures are highly correlated with a low-frequency (6-12 Hz) mechanism. One frequency-domain measure (power in the middle-frequency band) is capable of predicting the key amplitude measure (N75 -P100 ) with high accuracy. MSC and power measures were combined to yield separate measures of signal and noise strength to evaluate alternate hypotheses in autism. Linear mixed-effects modeling demonstrated selective differences in early time-domain and middle-to-high frequency-domain measures in autistic children as compared to nonautistic children given both recording techniques, implicating weaker excitatory input to the cortex. Receiver-operating-characteristic curve analysis showed predictive diagnostic accuracy for middle- and high-frequency bands based on MSC. These findings support the value of frequency analysis measures (power spectral analysis and MSC) in the objective examination of neural differences in autism. LAY SUMMARY: Visual evoked potentials (VEPs) are used to assess neural mechanisms. Typically, VEPs are analyzed by subjective examination of time-series waveforms; but here objective techniques were applied to quantify VEP frequency components to investigate neural differences between autistic and nonautistic children. The objective measures demonstrate group differences in brain function that point to weaker excitatory input to the cortex in autism.
Collapse
Affiliation(s)
- Chloe Brittenham
- Department of Psychology, The Graduate Center, City University of New York, New York, New York, USA
| | - James Gordon
- Department of Psychology, Hunter College, New York, New York, USA
| | - Vance M Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
28
|
Nomura T. Interneuron Dysfunction and Inhibitory Deficits in Autism and Fragile X Syndrome. Cells 2021; 10:2610. [PMID: 34685590 PMCID: PMC8534049 DOI: 10.3390/cells10102610] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
The alteration of excitatory-inhibitory (E-I) balance has been implicated in various neurological and psychiatric diseases, including autism spectrum disorder (ASD). Fragile X syndrome (FXS) is a single-gene disorder that is the most common known cause of ASD. Understanding the molecular and physiological features of FXS is thought to enhance our knowledge of the pathophysiology of ASD. Accumulated evidence implicates deficits in the inhibitory circuits in FXS that tips E-I balance toward excitation. Deficits in interneurons, the main source of an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), have been reported in FXS, including a reduced number of cells, reduction in intrinsic cellular excitability, or weaker synaptic connectivity. Manipulating the interneuron activity ameliorated the symptoms in the FXS mouse model, which makes it reasonable to conceptualize FXS as an interneuronopathy. While it is still poorly understood how the developmental profiles of the inhibitory circuit go awry in FXS, recent works have uncovered several developmental alterations in the functional properties of interneurons. Correcting disrupted E-I balance by potentiating the inhibitory circuit by targeting interneurons may have a therapeutic potential in FXS. I will review the recent evidence about the inhibitory alterations and interneuron dysfunction in ASD and FXS and will discuss the future directions of this field.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
29
|
Cash RFH, Udupa K, Gunraj CA, Mazzella F, Daskalakis ZJ, Wong AHC, Kennedy JL, Chen R. Influence of BDNF Val66Met polymorphism on excitatory-inhibitory balance and plasticity in human motor cortex. Clin Neurophysiol 2021; 132:2827-2839. [PMID: 34592560 DOI: 10.1016/j.clinph.2021.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE While previous studies showed that the single nucleotide polymorphism (Val66Met) of brain-derived neurotrophic factor (BDNF) can impact neuroplasticity, the influence of BDNF genotype on cortical circuitry and relationship to neuroplasticity remain relatively unexplored in human. METHODS Using individualised transcranial magnetic stimulation (TMS) parameters, we explored the influence of the BDNF Val66Met polymorphism on excitatory and inhibitory neural circuitry, its relation to I-wave TMS (ITMS) plasticity and effect on the excitatory/inhibitory (E/I) balance in 18 healthy individuals. RESULTS Excitatory and inhibitory indexes of neurotransmission were reduced in Met allele carriers. An E/I balance was evident, which was influenced by BDNF with higher E/I ratios in Val/Val homozygotes. Both long-term potentiation (LTP-) and depression (LTD-) like ITMS plasticity were greater in Val/Val homozygotes. LTP- but not LTD-like effects were restored in Met allele carriers by increasing stimulus intensity to compensate for reduced excitatory transmission. CONCLUSIONS The influence of BDNF genotype may extend beyond neuroplasticity to neurotransmission. The E/I balance was evident in human motor cortex, modulated by BDNF and measurable using TMS. Given the limited sample, these preliminary findings warrant further investigation. SIGNIFICANCE These novel findings suggest a broader role of BDNF genotype on neurocircuitry in human motor cortex.
Collapse
Affiliation(s)
- R F H Cash
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada; Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria 3010, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - K Udupa
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada; Dept of Neurophysiology, NIMHANS, Bengaluru, India
| | - C A Gunraj
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| | - F Mazzella
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| | - Z J Daskalakis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, UC San Diego Health, San Diego, CA 92093, USA
| | - A H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - J L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Gerasimov E, Erofeev A, Borodinova A, Bolshakova A, Balaban P, Bezprozvanny I, Vlasova OL. Optogenetic Activation of Astrocytes-Effects on Neuronal Network Function. Int J Mol Sci 2021; 22:9613. [PMID: 34502519 PMCID: PMC8431749 DOI: 10.3390/ijms22179613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Optogenetics approach is used widely in neurobiology as it allows control of cellular activity with high spatial and temporal resolution. In most studies, optogenetics is used to control neuronal activity. In the present study optogenetics was used to stimulate astrocytes with the aim to modulate neuronal activity. To achieve this goal, light stimulation was applied to astrocytes expressing a version of ChR2 (ionotropic opsin) or Opto-α1AR (metabotropic opsin). Optimal optogenetic stimulation parameters were determined using patch-clamp recordings of hippocampal pyramidal neurons' spontaneous activity in brain slices as a readout. It was determined that the greatest increase in the number of spontaneous synaptic currents was observed when astrocytes expressing ChR2(H134R) were activated by 5 s of continuous light. For the astrocytes expressing Opto-α1AR, the greatest response was observed in the pulse stimulation mode (T = 1 s, t = 100 ms). It was also observed that activation of the astrocytic Opto-a1AR but not ChR2 results in an increase of the fEPSP slope in hippocampal neurons. Based on these results, we concluded that Opto-a1AR expressed in hippocampal astrocytes provides an opportunity to modulate the long-term synaptic plasticity optogenetically, and may potentially be used to normalize the synaptic transmission and plasticity defects in a variety of neuropathological conditions, including models of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Anastasia Borodinova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Pavel Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| |
Collapse
|
31
|
Bhattacharya S, Cauchois MBL, Iglesias PA, Chen ZS. The impact of a closed-loop thalamocortical model on the spatiotemporal dynamics of cortical and thalamic traveling waves. Sci Rep 2021; 11:14359. [PMID: 34257333 PMCID: PMC8277909 DOI: 10.1038/s41598-021-93618-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Propagation of activity in spatially structured neuronal networks has been observed in awake, anesthetized, and sleeping brains. How these wave patterns emerge and organize across brain structures, and how network connectivity affects spatiotemporal neural activity remains unclear. Here, we develop a computational model of a two-dimensional thalamocortical network, which gives rise to emergent traveling waves similar to those observed experimentally. We illustrate how spontaneous and evoked oscillatory activity in space and time emerge using a closed-loop thalamocortical architecture, sustaining smooth waves in the cortex and staggered waves in the thalamus. We further show that intracortical and thalamocortical network connectivity, cortical excitation/inhibition balance, and thalamocortical or corticothalamic delay can independently or jointly change the spatiotemporal patterns (radial, planar and rotating waves) and characteristics (speed, direction, and frequency) of cortical and thalamic traveling waves. Computer simulations predict that increased thalamic inhibition induces slower cortical frequencies and that enhanced cortical excitation increases traveling wave speed and frequency. Overall, our results provide insight into the genesis and sustainability of thalamocortical spatiotemporal patterns, showing how simple synaptic alterations cause varied spontaneous and evoked wave patterns. Our model and simulations highlight the need for spatially spread neural recordings to uncover critical circuit mechanisms for brain functions.
Collapse
Affiliation(s)
- Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Matthieu B L Cauchois
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
32
|
Salesse C, Charest J, Doucet-Beaupré H, Castonguay AM, Labrecque S, De Koninck P, Lévesque M. Opposite Control of Excitatory and Inhibitory Synapse Formation by Slitrk2 and Slitrk5 on Dopamine Neurons Modulates Hyperactivity Behavior. Cell Rep 2021; 30:2374-2386.e5. [PMID: 32075770 DOI: 10.1016/j.celrep.2020.01.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 11/26/2022] Open
Abstract
The neurodevelopmental origin of hyperactivity disorder has been suggested to involve the dopaminergic system, but the underlying mechanisms are still unknown. Here, transcription factors Lmx1a and Lmx1b are shown to be essential for midbrain dopaminergic (mDA) neuron excitatory synaptic inputs and dendritic development. Strikingly, conditional knockout (cKO) of Lmx1a/b in postmitotic mDA neurons results in marked hyperactivity. In seeking Lmx1a/b target genes, we identify positively regulated Slitrk2 and negatively regulated Slitrk5. These two synaptic adhesion proteins promote excitatory and inhibitory synapses on mDA neurons, respectively. Knocking down Slitrk2 reproduces some of the Lmx1a/b cKO cellular and behavioral phenotypes, whereas Slitrk5 knockdown has opposite effects. The hyperactivity caused by this imbalance in excitatory/inhibitory synaptic inputs on dopamine neurons is reproduced by chronically inhibiting the ventral tegmental area during development using pharmacogenetics. Our study shows that alterations in developing dopaminergic circuits strongly impact locomotor activity, shedding light on mechanisms causing hyperactivity behaviors.
Collapse
Affiliation(s)
- Charleen Salesse
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Julien Charest
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | | | | | - Simon Labrecque
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Paul De Koninck
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
33
|
Maeda M, Yokoyama T, Kitauchi S, Hirano T, Mantani Y, Tabuchi Y, Hoshi N. Influence of acute exposure to a low dose of systemic insecticide fipronil on locomotor activity and emotional behavior in adult male mice. J Vet Med Sci 2020; 83:344-348. [PMID: 33361683 PMCID: PMC7972900 DOI: 10.1292/jvms.20-0551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fipronil (FPN) is a systemic insecticide that antagonizes the gamma-aminobutyric acid
type A (GABAA) receptors in insects. Recently, adverse effects of FPN on
mammals have been reported, but most of those were caused by high doses of FPN and
additives in the products. We investigated the effects of low-dose pure FPN on the
emotional behavior of mice. Nine-week-old male mice conducted behavioral tests 24 hr after
FPN administration by gavage at doses of 0.05 or 5 mg/kg based on the no-observed-effect
level (NOEL), showed a significant increase in locomotor activity and dose-dependent
responses on the time they spent in the central zone in the open field test. Pure FPN
below the NOEL dose may affect the emotional behavior of mice.
Collapse
Affiliation(s)
- Mizuki Maeda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Sayaka Kitauchi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
34
|
Dutta A, Karanth SS, Bhattacharya M, Liput M, Augustyniak J, Cheung M, Stachowiak EK, Stachowiak MK. A proof of concept 'phase zero' study of neurodevelopment using brain organoid models with Vis/near-infrared spectroscopy and electrophysiology. Sci Rep 2020; 10:20987. [PMID: 33268815 PMCID: PMC7710726 DOI: 10.1038/s41598-020-77929-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Homeostatic control of neuronal excitability by modulation of synaptic inhibition (I) and excitation (E) of the principal neurons is important during brain maturation. The fundamental features of in-utero brain development, including local synaptic E-I ratio and bioenergetics, can be modeled by cerebral organoids (CO) that have exhibited highly regular nested oscillatory network events. Therefore, we evaluated a 'Phase Zero' clinical study platform combining broadband Vis/near-infrared(NIR) spectroscopy and electrophysiology with studying E-I ratio based on the spectral exponent of local field potentials and bioenergetics based on the activity of mitochondrial Cytochrome-C Oxidase (CCO). We found a significant effect of the age of the healthy controls iPSC CO from 23 days to 3 months on the CCO activity (chi-square (2, N = 10) = 20, p = 4.5400e-05), and spectral exponent between 30-50 Hz (chi-square (2, N = 16) = 13.88, p = 0.001). Also, a significant effect of drugs, choline (CHO), idebenone (IDB), R-alpha-lipoic acid plus acetyl-L-carnitine (LCLA), was found on the CCO activity (chi-square (3, N = 10) = 25.44, p = 1.2492e-05), spectral exponent between 1 and 20 Hz (chi-square (3, N = 16) = 43.5, p = 1.9273e-09) and 30-50 Hz (chi-square (3, N = 16) = 23.47, p = 3.2148e-05) in 34 days old CO from schizophrenia (SCZ) patients iPSC. We present the feasibility of a multimodal approach, combining electrophysiology and broadband Vis-NIR spectroscopy, to monitor neurodevelopment in brain organoid models that can complement traditional drug design approaches to test clinically meaningful hypotheses.
Collapse
Affiliation(s)
- Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, 14260, USA.
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, 14260, USA.
| | | | | | - Michal Liput
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, 14260, USA
- Department of Stem Cells Bioengineering, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Augustyniak
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, 14260, USA
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Mancheung Cheung
- Department of Biomedical Engineering, University at Buffalo, Buffalo, 14260, USA
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, 14260, USA
| | - Michal K Stachowiak
- Department of Biomedical Engineering, University at Buffalo, Buffalo, 14260, USA.
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, 14260, USA.
| |
Collapse
|
35
|
Shimell JJ, Shah BS, Cain SM, Thouta S, Kuhlmann N, Tatarnikov I, Jovellar DB, Brigidi GS, Kass J, Milnerwood AJ, Snutch TP, Bamji SX. The X-Linked Intellectual Disability Gene Zdhhc9 Is Essential for Dendrite Outgrowth and Inhibitory Synapse Formation. Cell Rep 2020; 29:2422-2437.e8. [PMID: 31747610 DOI: 10.1016/j.celrep.2019.10.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/09/2019] [Accepted: 10/13/2019] [Indexed: 11/29/2022] Open
Abstract
Palmitoylation is a reversible post-translational lipid modification that facilitates vesicular transport and subcellular localization of modified proteins. This process is catalyzed by ZDHHC enzymes that are implicated in several neurological and neurodevelopmental disorders. Loss-of-function mutations in ZDHHC9 have been identified in patients with X-linked intellectual disability (XLID) and associated with increased epilepsy risk. Loss of Zdhhc9 function in hippocampal cultures leads to shorter dendritic arbors and fewer inhibitory synapses, altering the ratio of excitatory-to-inhibitory inputs formed onto Zdhhc9-deficient cells. While Zdhhc9 promotes dendrite outgrowth through the palmitoylation of the GTPase Ras, it promotes inhibitory synapse formation through the palmitoylation of another GTPase, TC10. Zdhhc9 knockout mice exhibit seizure-like activity together with increased frequency and amplitude of both spontaneous and miniature excitatory and inhibitory postsynaptic currents. These findings present a plausible mechanism for how the loss of ZDHHC9 function may contribute to XLID and epilepsy.
Collapse
Affiliation(s)
- Jordan J Shimell
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Bhavin S Shah
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Stuart M Cain
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samrat Thouta
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Naila Kuhlmann
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Igor Tatarnikov
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - D Blair Jovellar
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - G Stefano Brigidi
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer Kass
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Austen J Milnerwood
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
36
|
Ostrovskaya OI, Cao G, Eroglu C, Harris KM. Developmental onset of enduring long-term potentiation in mouse hippocampus. Hippocampus 2020; 30:1298-1312. [PMID: 32894631 DOI: 10.1002/hipo.23257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/18/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022]
Abstract
Analysis of long-term potentiation (LTP) provides a powerful window into cellular mechanisms of learning and memory. Prior work shows late LTP (L-LTP), lasting >3 hr, occurs abruptly at postnatal day 12 (P12) in the stratum radiatum of rat hippocampal area CA1. The goal here was to determine the developmental profile of synaptic plasticity leading to L-LTP in the mouse hippocampus. Two mouse strains and two mutations known to affect synaptic plasticity were chosen: C57BL/6J and Fmr1-/y on the C57BL/6J background, and 129SVE and Hevin-/- (Sparcl1-/- ) on the 129SVE background. Like rats, hippocampal slices from all of the mice showed test pulse-induced depression early during development that was gradually resolved with maturation by 5 weeks. All the mouse strains showed a gradual progression between P10-P35 in the expression of short-term potentiation (STP), lasting ≤1 hr. In the 129SVE mice, L-LTP onset (>25% of slices) occurred by 3 weeks, reliable L-LTP (>50% slices) was achieved by 4 weeks, and Hevin-/- advanced this profile by 1 week. In the C57BL/6J mice, L-LTP onset occurred significantly later, over 3-4 weeks, and reliability was not achieved until 5 weeks. Although some of the Fmr1-/y mice showed L-LTP before 3 weeks, reliable L-LTP also was not achieved until 5 weeks. L-LTP onset was not advanced in any of the mouse genotypes by multiple bouts of theta-burst stimulation at 90 or 180 min intervals. These findings show important species differences in the onset of STP and L-LTP, which occur at the same age in rats but are sequentially acquired in mice.
Collapse
Affiliation(s)
- Olga I Ostrovskaya
- Department of Neuroscience, Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology Regeneration Next Initiative, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
37
|
Autism and Migraine: An Unexplored Association? Brain Sci 2020; 10:brainsci10090615. [PMID: 32899972 PMCID: PMC7565535 DOI: 10.3390/brainsci10090615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder is characterized by neurological, psychiatric and medical comorbidities—some conditions co-occur so frequently that comorbidity in autism is the rule rather than the exception. The most common autism co-occurring conditions are intellectual disability, language disorders, attention-deficit hyperactivity disorder, epilepsy, gastrointestinal problems, sleep disorders, anxiety, depression, obsessive-compulsive disorder, psychotic disorders, oppositional defiant disorder, and eating disorders. They are well known and studied. Migraine is the most common brain disease in the world, but surprisingly only a few studies investigate the comorbidity between autism and migraine. The aim of this narrative review is to explore the literature reports about the comorbidity between autism and migraine and to investigate the common neurotransmitter, immune, anatomical and genetic abnormalities at the base of these two conditions.
Collapse
|
38
|
Wang H, Xu X, Xu X, Gao J, Zhang T. Enriched Environment and Social Isolation Affect Cognition Ability via Altering Excitatory and Inhibitory Synaptic Density in Mice Hippocampus. Neurochem Res 2020; 45:2417-2432. [PMID: 32748366 DOI: 10.1007/s11064-020-03102-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
The purpose of the study was to examine whether the underlying mechanism of the alteration of cognitive ability and synaptic plasticity induced by the housing environment is associated with the balance of excitatory/inhibitory synaptic density. Enriched environment (EE) and social isolation (SI) are two different housing environment, and one is to give multiple sensory environments, the other is to give monotonous and lonely environment. Male 4-week-old C57 mice were divided into three groups: CON, EE and SI. They were housed in the different cage until 3 months of age. Morris water maze and novel object recognition were performed. Long term potentiation (LTP), depotentiation (DEP) and local field potentials were recorded in the hippocampal perforant pathway and dentate gyrus (DG) region. The data showed that EE enhanced the ability of spatial learning, reversal learning and memory as well as LTP/DEP in the hippocampal DG region. Meanwhile, SI reduced those abilities and the level of LTP/DEP. Moreover, there were higher couplings of both phase-amplitude and phase-phase in the EE group, and lower couplings of them in the SI group compared to that in the CON group. Western blot and immunofluorescence analysis showed that EE significantly enhanced the level of PSD-95, NR2B and DCX; however, SI reduced them but increased GABAARα1 and decreased DCX levels. The data suggests that the cognitive functions, synaptic plasticity, neurogenesis and neuronal oscillatory patterns were significantly impacted by housing environment via possibly changing the balance of excitatory and inhibitory synaptic density.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
- School of Mathematical Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiaxia Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xinxin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Jing Gao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
39
|
Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry. Nat Commun 2020; 11:3744. [PMID: 32719346 PMCID: PMC7385104 DOI: 10.1038/s41467-020-17560-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Epilepsy and autism spectrum disorders (ASD) are two distinct brain disorders but have a high rate of co-occurrence, suggesting shared pathogenic mechanisms. Neuroligins are cell adhesion molecules important in synaptic function and ASD, but their role in epilepsy remains unknown. In this study, we show that Neuroligin 2 (NLG2) knockout mice exhibit abnormal spike and wave discharges (SWDs) and behavioral arrests characteristic of absence seizures. The anti-absence seizure drug ethosuximide blocks SWDs and rescues behavioral arrests and social memory impairment in the knockout mice. Restoring GABAergic transmission either by optogenetic activation of the thalamic reticular nucleus (nRT) presynaptic terminals or postsynaptic NLG2 expression in the thalamic neurons reduces the SWDs and behavioral arrests in the knockout mice. These results indicate that NLG2-mediated GABAergic transmission at the nRT-thalamic circuit represents a common mechanism underlying both epileptic seizures and ASD. Neuroligins are postsynaptic cell adhesion molecules that are involved in synapse function and autism spectrum disorder. The authors show that NLG2-mediated GABAergic transmission at the thalamic reticular nucleus-thalamic circuit is a common mechanism underlying epileptic seizures and ASD.
Collapse
|
40
|
Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea AE, Simpraga S, Houtman SJ, Poil SS, Dallares E, Palva S, Oranje B, Matias Palva J, Mansvelder HD, Linkenkaer-Hansen K. Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci Rep 2020; 10:9195. [PMID: 32513931 PMCID: PMC7280527 DOI: 10.1038/s41598-020-65500-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Balance between excitation (E) and inhibition (I) is a key principle for neuronal network organization and information processing. Consistent with this notion, excitation-inhibition imbalances are considered a pathophysiological mechanism in many brain disorders including autism spectrum disorder (ASD). However, methods to measure E/I ratios in human brain networks are lacking. Here, we present a method to quantify a functional E/I ratio (fE/I) from neuronal oscillations, and validate it in healthy subjects and children with ASD. We define structural E/I ratio in an in silico neuronal network, investigate how it relates to power and long-range temporal correlations (LRTC) of the network's activity, and use these relationships to design the fE/I algorithm. Application of this algorithm to the EEGs of healthy adults showed that fE/I is balanced at the population level and is decreased through GABAergic enforcement. In children with ASD, we observed larger fE/I variability and stronger LRTC compared to typically developing children (TDC). Interestingly, visual grading for EEG abnormalities that are thought to reflect E/I imbalances revealed elevated fE/I and LRTC in ASD children with normal EEG compared to TDC or ASD with abnormal EEG. We speculate that our approach will help understand physiological heterogeneity also in other brain disorders.
Collapse
Affiliation(s)
- Hilgo Bruining
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Heidelberglaan 100, 3584CG, Utrecht, The Netherlands
| | - Richard Hardstone
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Neuroscience Institute, New York University School of Medicine, 435 East 30th Street, New York, NY, 10016, USA
| | - Erika L Juarez-Martinez
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Heidelberglaan 100, 3584CG, Utrecht, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Jan Sprengers
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Heidelberglaan 100, 3584CG, Utrecht, The Netherlands
| | - Arthur-Ervin Avramiea
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Sonja Simpraga
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
- NBT Analytics BV, Amsterdam, The Netherlands
| | - Simon J Houtman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | | | - Eva Dallares
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Satu Palva
- Neuroscience Center, Helsinki Institute for Life Sciences, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Bob Oranje
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Heidelberglaan 100, 3584CG, Utrecht, The Netherlands
| | - J Matias Palva
- Neuroscience Center, Helsinki Institute for Life Sciences, University of Helsinki, FIN-00014, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Central Hospital, FIN-00029, Hus, Finland
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Vaaga CE, Brown ST, Raman IM. Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray. eLife 2020; 9:e54302. [PMID: 32207681 PMCID: PMC7124251 DOI: 10.7554/elife.54302] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 01/23/2023] Open
Abstract
Innate defensive behaviors, such as freezing, are adaptive for avoiding predation. Freezing-related midbrain regions project to the cerebellum, which is known to regulate rapid sensorimotor integration, raising the question of cerebellar contributions to freezing. Here, we find that neurons of the mouse medial (fastigial) cerebellar nuclei (mCbN), which fire spontaneously with wide dynamic ranges, send glutamatergic projections to the ventrolateral periaqueductal gray (vlPAG), which contains diverse cell types. In freely moving mice, optogenetically stimulating glutamatergic vlPAG neurons that express Chx10 reliably induces freezing. In vlPAG slices, mCbN terminals excite ~20% of neurons positive for Chx10 or GAD2 and ~70% of dopaminergic TH-positive neurons. Stimulating either mCbN afferents or TH neurons augments IPSCs and suppresses EPSCs in Chx10 neurons by activating postsynaptic D2 receptors. The results suggest that mCbN activity regulates dopaminergic modulation of the vlPAG, favoring inhibition of Chx10 neurons. Suppression of cerebellar output may therefore facilitate freezing.
Collapse
Affiliation(s)
| | - Spencer T Brown
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Indira M Raman
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
42
|
Cukier HN, Griswold AJ, Hofmann NK, Gomez L, Whitehead PL, Abramson RK, Gilbert JR, Cuccaro ML, Dykxhoorn DM, Pericak-Vance MA. Three Brothers With Autism Carry a Stop-Gain Mutation in the HPA-Axis Gene NR3C2. Autism Res 2020; 13:523-531. [PMID: 32064789 DOI: 10.1002/aur.2269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing and copy-number variant analysis was performed on a family with three brothers diagnosed with autism. Each of the siblings shares an alteration in the nuclear receptor subfamily 3 group C member 2 (NR3C2) gene that is predicted to result in a stop-gain mutation (p.Q919X) in the mineralocorticoid receptor (MR) protein. This variant was maternally inherited and provides further evidence for a connection between the NR3C2 and autism. Interestingly, the NR3C2 gene encodes the MR protein, a steroid hormone-regulated transcription factor that acts in the hypothalamic-pituitary-adrenal axis and has been connected to stress and anxiety, both of which are features often seen in individuals with autism. Autism Res 2020, 13: 523-531. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Given the complexity of the genetics underlying autism, each gene contributes to risk in a relatively small number of individuals, typically less than 1% of all autism cases. Whole exome sequencing of three brothers with autism identified a rare variant in the nuclear receptor subfamily 3 group C member 2 gene that is predicted to strongly interfere with its normal function. This gene encodes the mineralocorticoid receptor protein, which plays a role in how the body responds to stress and anxiety, features that are often elevated in people diagnosed with autism. This study adds further support to the relevance of this gene as a risk factor for autism.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalia K Hofmann
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruth K Abramson
- University of South Carolina School of Medicine, Columbia, South Carolina
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
43
|
Sun MY, Ziolkowski L, Mennerick S. δ subunit-containing GABA A IPSCs are driven by both synaptic and diffusional GABA in mouse dentate granule neurons. J Physiol 2020; 598:1205-1221. [PMID: 31951019 DOI: 10.1113/jp279317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Current views suggest γ2 subunit-containing GABAA receptors mediate phasic IPSCs while extrasynaptic δ subunits mediate diffusional IPSCs and tonic current. We have re-examined the roles of the two receptor populations using mice with picrotoxin resistance engineered into receptors containing the δ subunit. Using pharmacological separation, we find that in general δ and γ IPSCs are modulated in parallel by manipulations of transmitter output and diffusion, with evidence favouring modestly more diffusional contribution to δ IPSCs. Our findings also reveal that spontaneous δ IPSCs are mainly driven by channel deactivation, rather than by diffusion of GABA. Understanding the functional contributions of the two receptor classes may help us understand the actions of drug therapies with selective effects on one population over the other. ABSTRACT GABAA receptors mediate transmission throughout the central nervous system and typically contain a δ subunit (δ receptors) or a γ2 subunit (γ2 receptors). δ IPSCs decay slower than γ2 IPSCs, but the reasons are unclear. Transmitter diffusion, rebinding, or slow deactivation kinetics of channels are candidates. We used gene editing to confer picrotoxin resistance on δ receptors in mice, then pharmacologically isolated δ receptors in mouse dentate granule cells to explore IPSCs. γ2 and δ components of IPSCs were modulated similarly by presynaptic manipulations and manipulations of transmitter lifetime, suggesting that GABA release recruits δ receptors proportionally to γ2 receptors. δ IPSCs showed more sensitivity to altered transmitter release and to a rapidly dissociating antagonist, suggesting an additional spillover contribution. Reducing GABA diffusion with 5% dextran increased the peak amplitude and decreased the decay of evoked δ IPSCs but had no effect on δ or dual-component (mainly γ2-driven) spontaneous IPSCs, suggesting that GABA actions can be local for both receptor types. Rapid application of varied [GABA] onto nucleated patches from dentate granule cells demonstrated a deactivation rate of δ receptors similar to that of δ spontaneous IPSCs, consistent with the idea that deactivation and local GABA actions drive δ spontaneous IPSCs. Overall, our results indicate that δ IPSCs are activated by both synaptic and diffusional GABA. Our results are consistent with a functional relationship between δ and γ2 GABAA receptors akin to that of slow NMDA and fast AMPA EPSCs at glutamate synapses.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8134, St Louis, MO, 63110, USA
| | - Luke Ziolkowski
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8134, St Louis, MO, 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8134, St Louis, MO, 63110, USA.,Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Box 8134, St Louis, MO, 63110, USA.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 S. Euclid Ave, Box 8134, St Louis, MO, 63110, USA
| |
Collapse
|
44
|
Maternal cigarette smoke exposure disturbs glutamate/GABA balance in pFRG of neonatal rats. Respir Physiol Neurobiol 2020; 274:103383. [PMID: 31923590 DOI: 10.1016/j.resp.2020.103383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023]
Abstract
We previously found that maternal cigarette smoke (CS) exposure resulted in impairment of central chemoreception and oxidative stress and mitochondrial dysfunction of parafacial respiratory group (pFRG, a critical site for mammalian central chemoreception) in neonatal rats. The present work was carried out to identify if maternal CS exposure could disturb the glutamate (GLU)-ergic and γ-aminobutyric acid (GABA)-ergic balance in pFRG of neonatal rats. We found that maternal CS exposure induced a decrease in GLU content and consequently in GLU/GABA ratio in pFRG of neonatal rats. Maternal CS exposure also decreased glutamine content and glutaminase and glutamine synthetase activity in offspring pFRG. In addition, expression of vesicular glutamate transporter 2 was depressed, and those of glutamate transporter 1 and GABA transporter 3 were elevated by maternal CS exposure. These results indicate that maternal CS exposure leads to a disturbance of GLU/GABA balance in pFRG of the neonatal rats, which might contribute to the suppression of central chemoreception in maternal CS-exposed offspring.
Collapse
|
45
|
Idei H, Murata S, Yamashita Y, Ogata T. Homogeneous Intrinsic Neuronal Excitability Induces Overfitting to Sensory Noise: A Robot Model of Neurodevelopmental Disorder. Front Psychiatry 2020; 11:762. [PMID: 32903328 PMCID: PMC7434834 DOI: 10.3389/fpsyt.2020.00762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Neurodevelopmental disorders, including autism spectrum disorder, have been intensively investigated at the neural, cognitive, and behavioral levels, but the accumulated knowledge remains fragmented. In particular, developmental learning aspects of symptoms and interactions with the physical environment remain largely unexplored in computational modeling studies, although a leading computational theory has posited associations between psychiatric symptoms and an unusual estimation of information uncertainty (precision), which is an essential aspect of the real world and is estimated through learning processes. Here, we propose a mechanistic explanation that unifies the disparate observations via a hierarchical predictive coding and developmental learning framework, which is demonstrated in experiments using a neural network-controlled robot. The results show that, through the developmental learning process, homogeneous intrinsic neuronal excitability at the neural level induced via self-organization changes at the information processing level, such as hyper sensory precision and overfitting to sensory noise. These changes led to multifaceted alterations at the behavioral level, such as inflexibility, reduced generalization, and motor clumsiness. In addition, these behavioral alterations were accompanied by fluctuating neural activity and excessive development of synaptic connections. These findings might bridge various levels of understandings in autism spectrum and other neurodevelopmental disorders and provide insights into the disease processes underlying observed behaviors and brain activities in individual patients. This study shows the potential of neurorobotics frameworks for modeling how psychiatric disorders arise from dynamic interactions among the brain, body, and uncertain environments.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Intermedia Studies, Waseda University, Tokyo, Japan
| | - Shingo Murata
- Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Ogata
- Department of Intermedia Art and Science, Waseda University, Tokyo, Japan
| |
Collapse
|
46
|
Du J, Simmons S, Brunklaus A, Adiconis X, Hession CC, Fu Z, Li Y, Shema R, Møller RS, Barak B, Feng G, Meisler M, Sanders S, Lerche H, Campbell AJ, McCarroll S, Levin JZ, Lal D. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders. Eur J Paediatr Neurol 2020; 24:129-133. [PMID: 31928904 DOI: 10.1016/j.ejpn.2019.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
The four voltage-gated sodium channels SCN1/2/3/8A have been associated with heterogeneous types of developmental disorders, each presenting with disease specific temporal and cell type specific gene expression. Using single-cell RNA sequencing transcriptomic data from humans and mice, we observe that SCN1A is predominantly expressed in inhibitory neurons. In contrast, SCN2/3/8A are profoundly expressed in excitatory neurons with SCN2/3A starting prenatally, followed by SCN1/8A neonatally. In contrast to previous observations from low resolution RNA screens, we observe that all four genes are expressed in both excitatory and inhibitory neurons, however, exhibit differential expression strength. These findings provide molecular evidence, at single-cell resolution, to support the hypothesis that the excitatory/inhibitory (E/I) neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain homeostasis and neurological diseases. Modulating the E/I expression balance within cell types of sodium channels could serve as a potential strategy to develop targeted treatment for NaV-associated neuronal developmental disorders.
Collapse
Affiliation(s)
- Juanjiangmeng Du
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Sean Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Cambridge, MA, USA
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK; School of Medicine, University of Glasgow, Glasgow, UK.
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cynthia C Hession
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yinqing Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reut Shema
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Boaz Barak
- McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Miriam Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Stephan Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Cambridge, MA, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
47
|
McDevitt DS, Jonik B, Graziane NM. Morphine Differentially Alters the Synaptic and Intrinsic Properties of D1R- and D2R-Expressing Medium Spiny Neurons in the Nucleus Accumbens. Front Synaptic Neurosci 2019; 11:35. [PMID: 31920618 PMCID: PMC6932971 DOI: 10.3389/fnsyn.2019.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
Exposure to opioids reshapes future reward and motivated behaviors partially by altering the functional output of medium spiny neurons (MSNs) in the nucleus accumbens shell. Here, we investigated how morphine, a highly addictive opioid, alters synaptic transmission and intrinsic excitability on dopamine D1-receptor (D1R) expressing and dopamine D2-receptor (D2R) expressing MSNs, the two main output neurons in the nucleus accumbens shell. Using whole-cell electrophysiology recordings, we show, that 24 h abstinence following repeated non-contingent administration of morphine (10 mg/kg, i.p.) in mice reduces the miniature excitatory postsynaptic current (mEPSC) frequency and miniature inhibitory postsynaptic current (mIPSC) frequency on D2R-MSNs, with concomitant increases in D2R-MSN intrinsic membrane excitability. We did not observe any changes in synaptic or intrinsic changes on D1R-MSNs. Last, in an attempt to determine the integrated effect of the synaptic and intrinsic alterations on the overall functional output of D2R-MSNs, we measured the input-output efficacy by measuring synaptically-driven action potential firing. We found that both D1R-MSN and D2R-MSN output was unchanged following morphine treatment.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Departments of Anesthesiology and Perioperative Medicine, and Pharmacology, Penn State College of Medicine, Hershey, PA, United States.,Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States
| | - Benjamin Jonik
- Medical Student Research Program, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine, and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
48
|
Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 2019; 30:807-820. [DOI: 10.1515/revneuro-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
AbstractThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.
Collapse
|
49
|
Li J, Han W, Wu K, Li YD, Liu Q, Lu W. A Conserved Tyrosine Residue in Slitrk3 Carboxyl-Terminus Is Critical for GABAergic Synapse Development. Front Mol Neurosci 2019; 12:213. [PMID: 31551708 PMCID: PMC6746929 DOI: 10.3389/fnmol.2019.00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Single-passing transmembrane protein, Slitrk3 (Slit and Trk-like family member 3, ST3), is a synaptic cell adhesion molecule highly expressed at inhibitory synapses. Recent studies have shown that ST3, through its extracellular domain, selectively regulates inhibitory synapse development via the trans-synaptic interaction with presynaptic cell adhesion molecule, receptor protein tyrosine phosphatase δ (PTPδ) and the cis-interaction with postsynaptic cell adhesion molecule, Neuroligin 2 (NL2). However, little is known about the physiological function of ST3 intracellular, carboxyl (C)-terminal region. Here we report that in heterologous cells, ST3 C-terminus is not required for ST3 homo-dimerization and trafficking to the cell surface. In contrast, in hippocampal neurons, ST3 C-terminus, more specifically, the conserved tyrosine Y969 (in mice), is critical for GABAergic synapse development. Indeed, overexpression of ST3 Y969A mutant markedly reduced the gephyrin puncta density and GABAergic transmission in hippocampal neurons. In addition, single-cell genetic deletion of ST3 strongly impaired GABAergic transmission. Importantly, wild-type (WT) ST3, but not the ST3 Y969A mutant, could fully rescue GABAergic transmission deficits in neurons lacking endogenous ST3, confirming a critical role of Y969 in the regulation of inhibitory synapses. Taken together, our data identify a single critical residue in ST3 C-terminus that is important for GABAergic synapse development and function.
Collapse
Affiliation(s)
- Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wenyan Han
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kunwei Wu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yuping Derek Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Qun Liu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
50
|
Huang YC, Pirri JK, Rayes D, Gao S, Mulcahy B, Grant J, Saheki Y, Francis MM, Zhen M, Alkema MJ. Gain-of-function mutations in the UNC-2/CaV2α channel lead to excitation-dominant synaptic transmission in Caenorhabditis elegans. eLife 2019; 8:e45905. [PMID: 31364988 PMCID: PMC6713474 DOI: 10.7554/elife.45905] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/30/2019] [Indexed: 01/17/2023] Open
Abstract
Mutations in pre-synaptic voltage-gated calcium channels can lead to familial hemiplegic migraine type 1 (FHM1). While mammalian studies indicate that the migraine brain is hyperexcitable due to enhanced excitation or reduced inhibition, the molecular and cellular mechanisms underlying this excitatory/inhibitory (E/I) imbalance are poorly understood. We identified a gain-of-function (gf) mutation in the Caenorhabditis elegans CaV2 channel α1 subunit, UNC-2, which leads to increased calcium currents. unc-2(zf35gf) mutants exhibit hyperactivity and seizure-like motor behaviors. Expression of the unc-2 gene with FHM1 substitutions R192Q and S218L leads to hyperactivity similar to that of unc-2(zf35gf) mutants. unc-2(zf35gf) mutants display increased cholinergic and decreased GABAergic transmission. Moreover, increased cholinergic transmission in unc-2(zf35gf) mutants leads to an increase of cholinergic synapses and a TAX-6/calcineurin-dependent reduction of GABA synapses. Our studies reveal mechanisms through which CaV2 gain-of-function mutations disrupt excitation-inhibition balance in the nervous system.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Jennifer K Pirri
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Diego Rayes
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Shangbang Gao
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Jeff Grant
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Yasunori Saheki
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
| | - Michael M Francis
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Mark J Alkema
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|