1
|
Yabata H, Nakamura R, Sugiyama S, Tamaki Y, Yamakawa I, Onoda S, Ishigaki H, Ikeda T, Akagi A, Itoh Y, Kushima R, Yoshida M, Iwasaki Y, Urushitani M. Histopathological Investigation of Progressive Encephalomyelitis with Rigidity and Myoclonus: An Autopsy Case Characterized by Oculomotor Dysfunction and Autonomic Failure. Intern Med 2025; 64:597-602. [PMID: 39019606 PMCID: PMC11904467 DOI: 10.2169/internalmedicine.3741-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 07/19/2024] Open
Abstract
Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a rare disease associated with the presence of anti-glycine receptor (GlyR) antibodies. We herein report an autopsy case of an 80-year-old man diagnosed with anti-GlyR antibody-positive PERM who presented with symptoms of oculomotor dysfunction and autonomic failure. Despite intensive immunotherapy, the neurological symptoms showed almost no improvement, and the patient succumbed to aspiration pneumonia and bacterial translocation. Postmortem pathology revealed mild inflammatory changes and neuronal loss that were disproportionate to a severe clinical presentation. These results suggest that the clinical symptoms of PERM may result from antibody-mediated GlyR internalization, leading to neuronal disinhibition, rather than a neuroinflammatory signature.
Collapse
Affiliation(s)
- Hiroyuki Yabata
- Department of Neurology, Shiga University of Medical Science, Japan
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Japan
| | - Ryutaro Nakamura
- Department of Neurology, Shiga University of Medical Science, Japan
| | - Seiji Sugiyama
- Department of Neurology, Shiga University of Medical Science, Japan
| | - Yoshitaka Tamaki
- Department of Neurology, Shiga University of Medical Science, Japan
| | - Isamu Yamakawa
- Department of Neurology, Shiga University of Medical Science, Japan
| | - Shiori Onoda
- Division of Diagnostic Pathology, Shiga University of Medical Science Hospital, Japan
| | | | - Toshimasa Ikeda
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Japan
| | - Ryoji Kushima
- Division of Diagnostic Pathology, Shiga University of Medical Science Hospital, Japan
- Department of Pathology, Shiga University of Medical Science, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Japan
| | | |
Collapse
|
2
|
Winklehner M, Wickel J, Gelpi E, Brämer D, Rauschenberger V, Günther A, Bauer J, Serra AS, Jauk P, Villmann C, Höftberger R, Geis C. Progressive Encephalomyelitis With Rigidity and Myoclonus With Glycine Receptor and GAD65 Antibodies: Case Report and Potential Mechanisms. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200298. [PMID: 39213470 PMCID: PMC11368231 DOI: 10.1212/nxi.0000000000200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a severe form of stiff-person spectrum disorder that can be associated with antibodies against surface antigens (glycine receptor (GlyR), dipeptidyl-peptidase-like-protein-6) and intracellular antigens (glutamate decarboxylase (GAD65), amphiphysin). METHODS We report clinico-pathologic findings of a PERM patient with coexisting GlyR and GAD65 antibodies. RESULTS A 75-year-old man presented with myoclonus and pain of the legs, subsequently developed severe motor symptoms, hyperekplexia, a pronounced startle reflex, hallucinations, dysautonomia, and died 10 months after onset despite extensive immunotherapy, symptomatic treatment, and continuous intensive care support. Immunotherapy comprised corticosteroids, IVIG, plasmapheresis, immunoadsorption, cyclophosphamide, and bortezomib. Intensive care treatment and permanent isoflurane sedation was required for more than 20 weeks. CNS tissue revealed neuronal loss, astrogliosis and microgliosis, representing a pallido-nigro-dentato-bulbar-spinal degeneration pattern, specifically along GlyR and GAD expression sites. Neurons showed pSTAT1, MHC class I, and GRP78 upregulation. Inflammation was moderate and characterized by CD8+ T cells and single CD20+/CD79a+ B/plasma cells. Focal tau-positive thread-like deposits were detected in gliotic brainstem areas. In the spinal cord, GlyR, glycine transporter-2, and GAD67 expression were strongly reduced. DISCUSSION A possible potentiating effect of pathogenic GlyR antibodies together with T cells directed against neurons may have led to the severe and progressive clinical course.
Collapse
Affiliation(s)
- Michael Winklehner
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Jonathan Wickel
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Ellen Gelpi
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Dirk Brämer
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Vera Rauschenberger
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Albrecht Günther
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Jan Bauer
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Anika Simonovska Serra
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Philipp Jauk
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Carmen Villmann
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Romana Höftberger
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Christian Geis
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| |
Collapse
|
3
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Raiteri L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine-Glutamate Crosstalk. Biomedicines 2024; 12:1518. [PMID: 39062091 PMCID: PMC11275102 DOI: 10.3390/biomedicines12071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms. Many transporter-mediated interactions involve the amino acid transmitters Glycine, Glutamate, and GABA. Different studies published during the last two decades investigated a number of transporter-mediated interactions in depth involving amino acid transmitters at the nerve terminal level in different CNS areas, providing details of mechanisms involved and suggesting pathophysiological significances. Here, this evidence is reviewed also considering additional recent information available in the literature, with a special (but not exclusive) focus on glycinergic neurotransmission and Glycine-Glutamate interactions. Some possible pharmacological implications, although partly speculative, are also discussed. Dysregulations in glycinergic and glutamatergic transmission are involved in relevant CNS pathologies. Pharmacological interventions on glycinergic targets (including receptors and transporters) are under study to develop novel therapies against serious CNS pathological states including pain, schizophrenia, epilepsy, and neurodegenerative diseases. Although with limitations, it is hoped to possibly contribute to a better understanding of the complex interactions between glycine-mediated neurotransmission and other major amino acid transmitters, also in view of the current interest in potential drugs acting on "glycinergic" targets.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
5
|
Jarosz ŁS, Socała K, Michalak K, Wiater A, Ciszewski A, Majewska M, Marek A, Grądzki Z, Wlaź P. The effect of psychoactive bacteria, Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1, on brain proteome profiles in mice. Psychopharmacology (Berl) 2024; 241:925-945. [PMID: 38156998 PMCID: PMC11031467 DOI: 10.1007/s00213-023-06519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE The gut microbiota may play an important role in the development and functioning of the mammalian central nervous system. The assumption of the experiment was to prove that the use of probiotic bacterial strains in the diet of mice modifies the expression of brain proteins involved in metabolic and immunological processes. OBJECTIVES AND RESULTS Albino Swiss mice were administered with Bifidobacterium longum Rosell®-175 or Lactobacillus rhamnosus JB-1 every 24 h for 28 days. Protein maps were prepared from hippocampal homogenates of euthanized mice. Selected proteins that were statistically significant were purified and concentrated and identified using MALDI-TOF mass spectrometry. Among the analysed samples, 13 proteins were identified. The mean volumes of calcyon, secreted frizzled-associated protein 3, and catalase in the hippocampus of mice from both experimental groups were statistically significantly higher than in the control group. In mice supplemented with Lactobacillus rhamnosus JB-1, a lower mean volume of fragrance binding protein 2, shadow of prion protein, and glycine receptor α4 subunit was observed compared to the control. CONCLUSION The psychobiotics Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1enhances expression of proteins involved in the activation and maturation of nerve cells, as well as myelination and homeostatic regulation of neurogenesis in mice. The tested psychobiotics cause a decrease in the expression of proteins associated with CNS development and in synaptic transmission, thereby reducing the capacity for communication between nerve cells. The results of the study indicate that psychobiotic bacteria can be used in auxiliary treatment of neurological disorders.
Collapse
Affiliation(s)
- Łukasz S Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
6
|
Baizer JS, Sherwood CC, Hof PR, Baker JF, Witelson SF. Glycine is a transmitter in the human and chimpanzee cochlear nuclei. Front Neuroanat 2024; 18:1331230. [PMID: 38425805 PMCID: PMC10902441 DOI: 10.3389/fnana.2024.1331230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Auditory information is relayed from the cochlea via the eighth cranial nerve to the dorsal and ventral cochlear nuclei (DCN, VCN). The organization, neurochemistry and circuitry of the cochlear nuclei (CN) have been studied in many species. It is well-established that glycine is an inhibitory transmitter in the CN of rodents and cats, with glycinergic cells in the DCN and VCN. There are, however, major differences in the laminar and cellular organization of the DCN between humans (and other primates) and rodents and cats. We therefore asked whether there might also be differences in glycinergic neurotransmission in the CN. Methods We studied brainstem sections from humans, chimpanzees, and cats. We used antibodies to glycine receptors (GLYR) to identify neurons receiving glycinergic input, and antibodies to the neuronal glycine transporter (GLYT2) to immunolabel glycinergic axons and terminals. We also examined archival sections immunostained for calretinin (CR) and nonphosphorylated neurofilament protein (NPNFP) to try to locate the octopus cell area (OCA), a region in the VCN that rodents has minimal glycinergic input. Results In humans and chimpanzees we found widespread immunolabel for glycine receptors in DCN and in the posterior (PVCN) and anterior (AVCN) divisions of the VCN. We found a parallel distribution of GLYT2-immunolabeled fibers and puncta. The data also suggest that, as in rodents, a region containing octopus cells in cats, humans and chimpanzees has little glycinergic input. Discussion Our results show that glycine is a major transmitter in the human and chimpanzee CN, despite the species differences in DCN organization. The sources of the glycinergic input to the CN in humans and chimpanzees are not known.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, United States
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James F. Baker
- Department of Neuroscience, Northwestern University Medical School, Chicago, IL, United States
| | - Sandra F. Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
8
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
9
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
10
|
Oliva CA, Stehberg J, Barra R, Mariqueo T. Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala. Int J Mol Sci 2022; 23:ijms23137356. [PMID: 35806360 PMCID: PMC9266833 DOI: 10.3390/ijms23137356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1β (IL-1β) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary β-subunit of GlyR (βGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1β in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1β (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Facultad de Educación, Universidad de Las Américas, República 71, Santiago 8370040, Chile
- Correspondence: (C.A.O.); (T.M.)
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3677, Santiago 8320000, Chile;
| | - Trinidad Mariqueo
- Laboratorio de Neurofarmacología, Centro de Investigaciones Médicas, Facultad de Medicina, Universidad de Talca, Av. Lircay S/N, Talca 3460000, Chile
- Correspondence: (C.A.O.); (T.M.)
| |
Collapse
|
11
|
Shimazaki R, Mukai M, Nagaoka U, Sugaya K, Takahashi K. Iliopsoas Hematomas in a Patient with Progressive Encephalomyelitis with Rigidity and Myoclonus. Intern Med 2021; 60:2475-2477. [PMID: 33583898 PMCID: PMC8381190 DOI: 10.2169/internalmedicine.6604-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a rare and severe syndrome characterized by rigidity of the limb and truncal muscles, brainstem signs, myoclonus, and hyperekplexia. Iliopsoas hematoma is a serious complication of bleeding disorders that occurs most commonly in patients with hemophilia and also in association with anti-coagulant drug treatment. We herein present a case of PERM complicated with bilateral iliopsoas hematomas. His neurological symptoms improved after immunotherapy, and thereafter the iliopsoas hematomas disappeared. Neurologists should consider iliopsoas hematomas as a serious potential complication of PERM.
Collapse
Affiliation(s)
- Rui Shimazaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Masako Mukai
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Utako Nagaoka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| |
Collapse
|
12
|
Bregestovski PD, Ponomareva DN. Photochromic Modulation of Cys-loop
Ligand-gated Ion Channels. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Sanli E, Akbayir E, Kuçukali CI, Baykan B, Sirin NG, Bebek N, Yilmaz V, Tuzun E. Adaptive immunity cells are differentially distributed in the peripheral blood of glycine receptor antibody-positive patients with focal epilepsy of unknown cause. Epilepsy Res 2020; 170:106542. [PMID: 33387801 DOI: 10.1016/j.eplepsyres.2020.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
AIM Glycine receptor (GlyR) autoantibodies (Ab) have been recently detected in epilepsy patients. Our study aimed to investigate the peripheral blood distribution of B and T cell subgroups responsible for antibody production to find clues supporting the distinct organization of adaptive immunity in focal epilepsy of unknown cause (FEUC). METHOD Seven GlyR-Ab positive and 15 GlyR-Ab negative FEUC patients and 25 age-sex matched healthy individuals were included. Peripheral blood mononuclear cells were isolated and immunophenotyped by flow cytometry. RESULTS There were no significant differences between CD19+ B, CD3+ T, CD4+ helper T, CD8+ cytotoxic T, and CD19+CD24++CD38++ regulatory B cell ratios among the groups. GlyR-Ab negative epilepsy patients had significantly higher CD19+IgD+CD27- naive B cells and GlyR-Ab positive patients showed reduced percentages of CD19+CD38+CD138+ plasma cells than healthy controls. By contrast, GlyR-Ab positive patients exhibited significantly increased CD3+CD4+CD25highregulatory T (Treg) cells and CD3+CD4+CD25highCD127low/- Treg cells and relatively increased CD19+IgD-CD27+ memory B cells without attaining statistical significance. CONCLUSION The increase of Tregs, which are capable of suppressing B cells, maybe a compensating countermeasure to prevent the conversion of effector B cell subgroups. Thus, our findings lend support to the involvement of adaptive immunity in focal epilepsy of unknown cause.
Collapse
Affiliation(s)
- Elif Sanli
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ece Akbayir
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Ismail Kuçukali
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Betul Baykan
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Erdem Tuzun
- Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Carvajal-González A, Jacobson L, Clover L, Wickremaratchi M, Shields S, Lang B, Vincent A. Systemic delivery of human GlyR IgG antibody induces GlyR internalization into motor neurons of brainstem and spinal cord with motor dysfunction in mice. Neuropathol Appl Neurobiol 2020; 47:316-327. [PMID: 32910464 PMCID: PMC7873718 DOI: 10.1111/nan.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/22/2020] [Indexed: 01/24/2023]
Abstract
Aims Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a life‐threatening condition often associated with highly raised serum antibodies to glycine receptors (GlyRs); these bind to the surface of large neurons and interneurons in rodent brain and spinal cord sections and, in vitro, inhibit function and reduce surface expression of the GlyRs. The effects in vivo have not been reported. Methods Purified plasma IgG from a GlyR antibody‐positive patient with PERM, and a healthy control (HC), was injected daily into the peritoneal cavity of mice for 12 days; lipopolysaccharide (LPS) to open the blood–brain barrier, was injected on days 3 and 8. Based on preliminary data, behavioural tests were only performed 48 h post‐LPS on days 5–7 and 10–12. Results The GlyR IgG injected mice showed impaired ability on the rotarod from days 5 to 10 but this normalized by day 12. There were no other behavioural differences but, at termination (d13), the GlyR IgG‐injected mice had IgG deposits on the neurons that express GlyRs in the brainstem and spinal cord. The IgG was not only on the surface but also inside these large GlyR expressing neurons, which continued to express surface GlyR. Conclusions Despite the partial clinical phenotype, not uncommon in passive transfer studies, the results suggest that the antibodies had accessed the GlyRs in relevant brain regions, led to antibody‐mediated internalization and increased GlyR synthesis, compatible with the temporary loss of function.
Collapse
Affiliation(s)
- A Carvajal-González
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - L Jacobson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - L Clover
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - M Wickremaratchi
- Hurstwood Park Neurological Centre, Brighton and Sussex University Hospitals NHS Trust, West Sussex, UK
| | - S Shields
- Neurosciences Department, Taunton and Somerset NS Foundation Trust, Musgrove Park Hospital, Taunton, UK
| | - B Lang
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
15
|
Kirson D, Oleata CS, Roberto M. Taurine Suppression of Central Amygdala GABAergic Inhibitory Signaling via Glycine Receptors Is Disrupted in Alcohol Dependence. Alcohol Clin Exp Res 2019; 44:445-454. [PMID: 31782155 DOI: 10.1111/acer.14252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) increases brain stress systems while suppressing reward system functioning. One expression of stress system recruitment is elevated GABAergic activity in the central amygdala (CeA), which is involved in the excessive drinking seen with AUD. The sulfonic amino acid taurine, a glycine receptor partial agonist, modulates GABAergic activity in the rewarding effects of alcohol. Despite taurine abundance in the amygdala, its role in the dysregulation of GABAergic activity associated with AUD has not been studied. Thus, here, we evaluated the effects of taurine on locally stimulated GABAergic neurotransmission in the CeA of naïve- and alcohol-dependent rats. METHODS We recorded intracellularly from CeA neurons of naïve- and alcohol-dependent rats, quantifying locally evoked GABAA receptor-mediated inhibitory postsynaptic potentials (eIPSP). We examined the effects of taurine and alcohol on CeA eIPSP to characterize potential alcohol dependence-induced changes in the effects of taurine. RESULTS We found that taurine decreased amplitudes of eIPSP in CeA neurons of naïve rats, without affecting the acute alcohol-induced facilitation of GABAergic responses. In CeA neurons from dependent rats, taurine no longer had an effect on eIPSP, but now blocked the ethanol (EtOH)-induced increase in eIPSP amplitude normally seen. Additionally, preapplication of the glycine receptor-specific antagonist strychnine blocked the EtOH-induced increase in eIPSP amplitude in neurons from naïve rats. CONCLUSIONS These data suggest taurine may act to oppose the effects of acute alcohol via the glycine receptor in the CeA of naïve rats, and this modulatory system is altered in the CeA of dependent rats.
Collapse
Affiliation(s)
- Dean Kirson
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| | - Christopher S Oleata
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
16
|
Hufnagel LA, Pierobon P, Kass-Simon G. Immunocytochemical localization of a putative strychnine-sensitive glycine receptor in Hydra vulgaris. Cell Tissue Res 2019; 377:177-191. [PMID: 30976918 DOI: 10.1007/s00441-019-03011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
Previous biochemical studies have identified strychnine-sensitive glycine receptors in membrane preparations of Hydra vulgaris (Cnidaria: Hydrozoa). Electrophysiological and behavioral evidence has shown that these receptors play a role in modulating pacemaker activity and feeding behavior. Here, we present our genomic analysis that revealed hydra proteins having strong homology with the strychnine-binding region of the human receptor protein, GlyRα1. We further present immunocytochemical evidence for the specific labeling of cell and tissue preparations of hydra by a commercially available polyclonal anti-GlyRα1 antibody, selected through our genomic analysis. Tissue pieces and cell macerates from the upper and lower thirds of the body and ablated tentacles were double-labeled with this antibody and with an antibody specific for α-tubulin, to identify the glycine receptors and microtubules, respectively. Extensive receptor labeling was evident on the membranes, cell bodies and myonemes of endodermal and ectodermal epithelial cells, cell bodies and neurites of nerve cells, cnidocytes and interstitial cells. Labeling of the membranes of epithelial cells frequently corresponded to conspicuous varicosities (presumptive presynaptic sites) in the associated nerve net. Our findings support the idea that glycine receptors form an integral part of the nerve and effector systems that control hydra behavior.
Collapse
Affiliation(s)
- Linda A Hufnagel
- Department of Cell and Molecular Biology & Interdisciplinary Neurosciences Program, University of Rhode Island, Flagg Road, Kingston, RI, 02881, USA.
| | - Paola Pierobon
- Institute of Applied Sciences and Intelligent Systems E. Caianiello, CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Gabriele Kass-Simon
- Department of Biological Sciences & Interdisciplinary Neurosciences Program, University of Rhode Island, Flagg Road, Kingston, RI, 02881, USA.
| |
Collapse
|
17
|
Waldvogel H, Biggins F, Singh A, Arasaratnam C, Faull R. Variable colocalisation of GABAA receptor subunits and glycine receptors on neurons in the human hypoglossal nucleus. J Chem Neuroanat 2019; 97:99-111. [DOI: 10.1016/j.jchemneu.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/28/2022]
|
18
|
Wang HC, Cheng KI, Chen PR, Tseng KY, Kwan AL, Chang LL. Glycine receptors expression in rat spinal cord and dorsal root ganglion in prostaglandin E2 intrathecal injection models. BMC Neurosci 2018; 19:72. [PMID: 30413143 PMCID: PMC6230273 DOI: 10.1186/s12868-018-0470-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/29/2018] [Indexed: 11/28/2022] Open
Abstract
Background Glycine receptors (GlyRs) are involved in the development of spinal pain sensitization. The GlyRα3 subunit has recently emerged as a key factor in inflammatory pain pathways in the spinal cord dorsal horn (DH). Our study is to identify the extent of location and cell types expressing different GlyR subunits in spinal cord and dorsal root ganglion (DRGs). To tease out the possible actions of GlyRs on pain transmission, we investigate the effects produced by GlyRs on acute inflammatory pain by behavioral testing using prostaglandin E2 (PGE2) intrathecal injection models. Furthermore, we investigate the changes of GlyR expression in DRGs and spinal cord in rats after the induction of acute inflammatory pain. Results Compared to the vehicle administration, the PGE2 intrathecal injection model produced significantly higher hyperalgesia, which started 3 h after PGE2 injection and lasted more than 5 h. PGE2 intrathecal injection significantly decreased GlyRα1 and GlyRα3 protein expressions in the L5 DH at 1 h and lasted to 5 h, and similar results were observed in the L5 DRG at 5 h. Confocal microscopic images showed the co-existence of punctate gephyrin and GlyRα3 immunoreactivity (IR) throughout the gray matter of the spinal cord, mainly in DH laminae I–III neurons and in ventral horn neurons. It also showed the co-existence of punctate gephyrin and GlyRα3 IR in DRG neurons. Conclusions In this study, PGE2 intrathecal injection significantly decreased protein expression of gephyrin, GlyRα1 and GlyRα3 in spinal cord DH and DRG. The gephyrin and GlyRα3 were localized on neuron cells both in the DH and DRG. Electronic supplementary material The online version of this article (10.1186/s12868-018-0470-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hung-Chen Wang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Ru Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Yi Tseng
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Neurosurgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci 2018; 19:ijms19082164. [PMID: 30042373 PMCID: PMC6121522 DOI: 10.3390/ijms19082164] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Pain has been considered as a concept of sensation that we feel as a reaction to the stimulus of our surrounding, putting us in harm's way and acting as a form of defense mechanism that our body has permanently installed into its system. However, pain leads to a huge chunk of finances within the healthcare system with continuous rehabilitation of patients with adverse pain sensations, which might reduce not only their quality of life but also their productivity at work setting back the pace of our economy. It may not look like a huge deal but factor in pain as an issue for majority of us, it becomes an economical burden. Although pain has been researched into and understood by numerous researches, from its definition, mechanism of action to its inhibition in hopes of finding an absolute solution for victims of pain, the pathways of pain sensation, neurotransmitters involved in producing such a sensation are not comprehensively reviewed. Therefore, this review article aims to put in place a thorough understanding of major pain conditions that we experience-nociceptive, inflammatory and physiologically dysfunction, such as neuropathic pain and its modulation and feedback systems. Moreover, the complete mechanism of conduction is compiled within this article, elucidating understandings from various researches and breakthroughs.
Collapse
|
20
|
Involvement of glycine receptor α1 subunits in cannabinoid-induced analgesia. Neuropharmacology 2018; 133:224-232. [PMID: 29407767 DOI: 10.1016/j.neuropharm.2018.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
Some cannabinoids have been shown to suppress chronic pain by targeting glycine receptors (GlyRs). Although cannabinoid potentiation of α3 GlyRs is thought to contribute to cannabinoid-induced analgesia, the role of cannabinoid potentiation of α1 GlyRs in cannabinoid suppression of chronic pain remains unclear. Here we report that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, significantly suppresses chronic inflammatory pain caused by noxious heat stimulation. This effect may involve spinal α1 GlyRs since the expression level of α1 subunits in the spinal cord is positively correlated with CFA-induced inflammatory pain and the GlyRs antagonist strychnine blocks the DH-CBD-induced analgesia. A point-mutation of S296A in TM3 of α1 GlyRs significantly inhibits DH-CBD potentiation of glycine currents (IGly) in HEK-293 cells and neurons in lamina I-II of spinal cord slices. To explore the in vivo consequence of DH-CBD potentiation of α1 GlyRs, we generated a GlyRα1S296A knock-in mouse line. We observed that DH-CBD-induced potentiation of IGly and analgesia for inflammatory pain was absent in GlyRα1S296A knock-in mice. These findings suggest that spinal α1 GlyR is a potential target for cannabinoid analgesia in chronic inflammatory pain.
Collapse
|
21
|
Carvalho DZ, Townley RA, Burkle CM, Rabinstein AA, Wijdicks EFM. Propofol Frenzy: Clinical Spectrum in 3 Patients. Mayo Clin Proc 2017; 92:1682-1687. [PMID: 29101936 DOI: 10.1016/j.mayocp.2017.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
Postsedation neuroexcitation is sometimes attributed to intravenous injection of the sedative-hypnotic drug propofol. The movements associated with these events have strongly suggested convulsive activity, but they rarely have been comprehensively evaluated. We present video recordings of 3 healthy young patients who underwent elective surgery under conscious sedation and emerged from sedation with transient but repetitive violent motor activity and impaired consciousness. These manifestations required considerable mobilization of multiple health care workers to protect the patient from inflicting harm. All patients received propofol, and all fully recovered without adverse sequelae. We postulate that these movements are propofol related. Importantly, we found no evidence of seizures clinically or electrographically.
Collapse
|
22
|
Nemecz Á, Prevost MS, Menny A, Corringer PJ. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Neuron 2017; 90:452-70. [PMID: 27151638 DOI: 10.1016/j.neuron.2016.03.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
Collapse
Affiliation(s)
- Ákos Nemecz
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France
| | - Marie S Prevost
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Anaïs Menny
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France; Université Pierre et Marie Curie (UPMC), Cellule Pasteur, 75005 Paris, France
| | - Pierre-Jean Corringer
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France.
| |
Collapse
|
23
|
Cornelison GL, Daszkowski AW, Pflanz NC, Mihic SJ. Interactions between Zinc and Allosteric Modulators of the Glycine Receptor. J Pharmacol Exp Ther 2017; 361:1-8. [PMID: 28087784 PMCID: PMC5363777 DOI: 10.1124/jpet.116.239152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
The glycine receptor is a pentameric ligand-gated ion channel that is involved in fast inhibitory neurotransmission in the central nervous system. Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nanomolar to low-micromolar concentrations and inhibiting its effects at higher concentrations. Low-nanomolar concentrations of contaminating zinc in electrophysiological buffers are capable of synergistically enhancing receptor modulation by other compounds, such as ethanol. This suggests that, unless accounted for, previous studies of glycine receptor modulation were measuring the effects of modulator plus comodulation by zinc on receptor function. Since zinc is present in vivo at a variety of concentrations, it will influence glycine receptor modulation by other pharmacologic agents. We investigated the utility of previously described "zinc-enhancement-insensitive" α1 glycine receptor mutants D80A, D80G, and W170S to probe for interactions between zinc and other allosteric modulators at the glycine receptor. We found that only the W170S mutation conferred complete abolishment of zinc enhancement across a variety of agonist and zinc concentrations. Using α1 W170S receptors, we established that, in addition to ethanol, zinc interacts with inhalants, but not volatile anesthetics, to synergistically enhance channel function. Additionally, we determined that this interaction is abolished at higher zinc concentrations when receptor-enhancing binding sites are saturated, suggesting a mechanism by which modulators such as ethanol and inhalants are capable of increasing receptor affinity for zinc, in addition to enhancing channel function on their own.
Collapse
Affiliation(s)
- Garrett L Cornelison
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| | - Anna W Daszkowski
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| | - Natasha C Pflanz
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| | - S John Mihic
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
24
|
Labonne JDJ, Graves TD, Shen Y, Jones JR, Kong IK, Layman LC, Kim HG. A microdeletion at Xq22.2 implicates a glycine receptor GLRA4 involved in intellectual disability, behavioral problems and craniofacial anomalies. BMC Neurol 2016; 16:132. [PMID: 27506666 PMCID: PMC4979147 DOI: 10.1186/s12883-016-0642-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background Among the 21 annotated genes at Xq22.2, PLP1 is the only known gene involved in Xq22.2 microdeletion and microduplication syndromes with intellectual disability. Using an atypical microdeletion, which does not encompass PLP1, we implicate a novel gene GLRA4 involved in intellectual disability, behavioral problems and craniofacial anomalies. Case presentation We report a female patient (DGDP084) with a de novo Xq22.2 microdeletion of at least 110 kb presenting with intellectual disability, motor delay, behavioral problems and craniofacial anomalies. While her phenotypic features such as cognitive impairment and motor delay show overlap with Pelizaeus-Merzbacher disease (PMD) caused by PLP1 mutations at Xq22.2, this gene is not included in our patient’s microdeletion and is not dysregulated by a position effect. Because the microdeletion encompasses only three genes, GLRA4, MORF4L2 and TCEAL1, we investigated their expression levels in various tissues by RT-qPCR and found that all three genes were highly expressed in whole human brain, fetal brain, cerebellum and hippocampus. When we examined the transcript levels of GLRA4, MORF4L2 as well as TCEAL1 in DGDP084′s family, however, only GLRA4 transcripts were reduced in the female patient compared to her healthy mother. This suggests that GLRA4 is the plausible candidate gene for cognitive impairment, behavioral problems and craniofacial anomalies observed in DGDP084. Importantly, glycine receptors mediate inhibitory synaptic transmission in the brain stem as well as the spinal cord, and are known to be involved in syndromic intellectual disability. Conclusion We hypothesize that GLRA4 is involved in intellectual disability, behavioral problems and craniofacial anomalies as the second gene identified for X-linked syndromic intellectual disability at Xq22.2. Additional point mutations or intragenic deletions of GLRA4 as well as functional studies are needed to further validate our hypothesis. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0642-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan D J Labonne
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Tyler D Graves
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yiping Shen
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, South Korea
| | - Lawrence C Layman
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
25
|
McCracken ML, Gorini G, McCracken LM, Mayfield RD, Harris RA, Trudell JR. Inter- and Intra-Subunit Butanol/Isoflurane Sites of Action in the Human Glycine Receptor. Front Mol Neurosci 2016; 9:45. [PMID: 27378846 PMCID: PMC4906044 DOI: 10.3389/fnmol.2016.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022] Open
Abstract
Glycine receptors (GlyRs) mediate inhibitory neurotransmission and are targets for alcohols and anesthetics in brain. GlyR transmembrane (TM) domains contain critical residues for alcohol/anesthetic action: amino acid A288 in TM3 forms crosslinks with TM1 (I229) in the adjacent subunit as well as TM2 (S267) and TM4 (Y406, W407, I409, Y410) in the same subunit. We hypothesized that these residues may participate in intra-subunit and inter-subunit sites of alcohol/anesthetic action. The following double and triple mutants of GLRA1 cDNA (encoding human glycine receptor alpha 1 subunit) were injected into Xenopus laevis oocytes: I229C/A288C, I229C/A288C/C290S, A288C/Y406C, A288C/W407C, A288C/I409C, and A288C/Y410C along with the corresponding single mutants and wild-type GLRA1. Butanol (22 mM) or isoflurane (0.6 mM) potentiation of GlyR-mediated currents before and after application of the cysteine crosslinking agent HgCl2 (10 μM) was measured using two-electrode voltage clamp electrophysiology. Crosslinking nearly abolished butanol and isoflurane potentiation in the I229C/A288C and I229C/A288C/C290S mutants but had no effect in single mutants or wild-type. Crosslinking also inhibited butanol and isoflurane potentiation in the TM3-4 mutants (A288C/Y406C, A288C/W407C, A288C/I409C, A288C/Y410C) with no effect in single mutants or wild-type. We extracted proteins from oocytes expressing I229C/288C, A288C/Y410C, or wild-type GlyRs, used mass spectrometry to verify their expression and possible inter-subunit dimerization, plus immunoblotting to investigate the biochemical features of proposed crosslinks. Wild-type GlyR subunits measured about 50 kDa; after crosslinking, the dimeric/monomeric 100:50 kDa band ratio was significantly increased in I229C/288C but not A288C/Y410C mutants or wild-type, providing support for TM1-3 inter-subunit and TM3-4 intra-subunit crosslinking. A GlyR homology model based on the GluCl template provides further evidence for a multi-site model for alcohol/anesthetic interaction with human GLRA1.
Collapse
Affiliation(s)
- Mandy L McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA; Integrative Neuroscience Research Branch, Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of HealthBaltimore, MD, USA
| | - Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - Lindsay M McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin Austin, TX, USA
| | - James R Trudell
- Department of Anesthesia and Beckman Program for Molecular and Genetic Medicine, Stanford School of Medicine Stanford, CA, USA
| |
Collapse
|
26
|
Bar-Shira O, Maor R, Chechik G. Gene Expression Switching of Receptor Subunits in Human Brain Development. PLoS Comput Biol 2015; 11:e1004559. [PMID: 26636753 PMCID: PMC4670163 DOI: 10.1371/journal.pcbi.1004559] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. Synapses change their properties during development affecting information processing and learning. Most synaptic receptors consist of several proteins, each having several variants coded by closely related genes. These protein variants are similar in structure, yet often differ slightly in their biophysical attributes. Switching a synapse from using one variant to another provides the brain with a way to fine-tune electrophysiological properties of synapses and has been described in NMDA and GABA receptors. Here we describe a systematic approach to detect pairs of context-dependent variants at a genome-wide scale based on a set of post-mortem expression measurements taken from brains at multiple ages. We take into account both the profile of expression as it changes along life and also the detrended age-corrected correlation among genes. This method characterizes the landscape of developmental switches in brain transcriptome, putting forward new candidates pairs for deeper analysis. The abundance of switching between context-dependent variants through life suggests that it is a major mechanism by which the brain tunes its plasticity and information processing.
Collapse
Affiliation(s)
- Ossnat Bar-Shira
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Ronnie Maor
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Chechik
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
27
|
Allosteric modulation of the glycine receptor activated by agonists differing in efficacy. Brain Res 2015; 1606:95-101. [PMID: 25721789 DOI: 10.1016/j.brainres.2015.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/29/2023]
Abstract
The glycine receptor (GlyR) is the predominant inhibitory neurotransmitter receptor in the brainstem and spinal cord but is also found in higher brain regions. GlyR function is affected by a variety of allosteric modulators including drugs of abuse, such as ethanol and inhalants and the ubiquitous divalent cation zinc. Two-electrode voltage-clamp experiments were conducted on Xenopus laevis oocytes expressing wild-type α1 homomeric glycine receptors to compare the degree of enhancement produced by zinc on GlyR activated by two agonists (glycine vs. taurine) that vary markedly in their efficacies. Zinc potentiation of both glycine- and taurine-evoked currents was the same at the concentrations of agonists that produced the same currents, corresponding to 6% of the maximal effect of glycine compared to 23% of the maximal effect of taurine. Similar results were seen with 50 and 200 mM ethanol. A direct comparison of agonist concentration-response curves showed that zinc enhancement was greater, overall, for taurine-activated than glycine-activated receptors. In addition, zinc only enhanced taurine- but not glycine-activated GlyR when agonists were applied at saturating concentrations. These data suggest that zinc affects taurine affinity, as well as the probability of channel opening at sub-maximal taurine concentrations, and that the magnitude of allosteric modulation at the GlyR depends on the efficacy of the agonist tested. This has implications for mutagenesis studies in which changes in the degree of allosteric modulation observed may result from mutation-induced changes in agonist efficacy.
Collapse
|
28
|
Zhang Y, Dixon CL, Keramidas A, Lynch JW. Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations. Neuropharmacology 2015; 89:391-7. [DOI: 10.1016/j.neuropharm.2014.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
29
|
Liu Y, Huang D, Wen R, Chen X, Yi H. Glycine receptor-mediated inhibition of medial prefrontal cortical pyramidal cells. Biochem Biophys Res Commun 2014; 456:666-9. [PMID: 25511697 DOI: 10.1016/j.bbrc.2014.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 01/06/2023]
Abstract
Using whole-cell patch clamp recording on medial prefrontal cortical slices of rats aged 17-33 postnatal days, we demonstrated the glycine-induced strychnine-sensitive outward currents. The amplitude of the peak current increased with the concentrations of glycine with an EC50 of 74.7 μM. Application of 1μM strychnine alone to cells caused a slight inward current without blocking the sIPSCs, indicating that GlyRs in the mPFC are activated by an endogenous ligand that can be released tonically. Glycine reversibly depressed firing rate in cells from both layer 6 and layer 3, with significantly greater inhibition on the former than the latter (EC50 12.9 vs 85.6 μM). Glycine hyperpolarized membrane potential in cells of both layer 6 and layer 3 depending on its concentrations, with an IC50 of 99.1 and 207.2 μM, respectively. We propose that GlyRs participate in a novel inhibitory mechanism in mPFC, modulating neuronal activity. This finding further supports an important role of GlyR in cortical function and dysfunction.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Anatomy, School of Medicine, Jianghan University, Wuhan 430056, Hubei Province, China.
| | - Dan Huang
- Department of Physiology, School of Medicine, Jianghan University, Wuhan 430056, Hubei Province, China
| | - Ruojian Wen
- Department of Physiology, School of Medicine, Jianghan University, Wuhan 430056, Hubei Province, China
| | - Xiaoqing Chen
- Department of Pharmacology, School of Medicine, Jianghan University, Wuhan 430056, Hubei Province, China
| | - Huilin Yi
- Department of Anatomy, School of Medicine, Jianghan University, Wuhan 430056, Hubei Province, China
| |
Collapse
|
30
|
van Coevorden-Hameete MH, de Graaff E, Titulaer MJ, Hoogenraad CC, Sillevis Smitt PAE. Molecular and cellular mechanisms underlying anti-neuronal antibody mediated disorders of the central nervous system. Autoimmun Rev 2014; 13:299-312. [PMID: 24225076 DOI: 10.1016/j.autrev.2013.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 10/30/2013] [Indexed: 12/31/2022]
Abstract
Over the last decade multiple autoantigens located on the plasma membrane of neurons have been identified. Neuronal surface antigens include molecules directly involved in neurotransmission and excitability. Binding of the antibody to the antigen may directly alter the target protein's function, resulting in neurological disorders. The often striking reversibility of symptoms following early aggressive immunotherapy supports a pathogenic role for autoantibodies to neuronal surface antigens. In order to better understand and treat these neurologic disorders it is important to gain insight in the underlying mechanisms of antibody pathogenicity. In this review we discuss the clinical, circumstantial, in vitro and in vivo evidence for neuronal surface antibody pathogenicity and the possible underlying cellular and molecular mechanisms. This review shows that antibodies to neuronal surface antigens are often directed at conformational epitopes located in the extracellular domain of the antigen. The conformation of the epitope can be affected by specific posttranslational modifications. This may explain the distinct clinical phenotypes that are seen in patients with antibodies to antigens that are expressed throughout the brain. Furthermore, it is likely that there is a heterogeneous antibody population, consisting of different IgG subtypes and directed at multiple epitopes located in an immunogenic region. Binding of these antibodies may result in different pathophysiological mechanisms occurring in the same patient, together contributing to the clinical syndrome. Unraveling the predominant mechanism in each distinct antigen could provide clues for therapeutic interventions.
Collapse
Affiliation(s)
- M H van Coevorden-Hameete
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - E de Graaff
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - M J Titulaer
- Department of Neurology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - C C Hoogenraad
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - P A E Sillevis Smitt
- Department of Neurology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Che Ngwa E, Zeeh C, Messoudi A, Büttner-Ennever JA, Horn AKE. Delineation of motoneuron subgroups supplying individual eye muscles in the human oculomotor nucleus. Front Neuroanat 2014; 8:2. [PMID: 24574976 PMCID: PMC3921678 DOI: 10.3389/fnana.2014.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/14/2014] [Indexed: 11/24/2022] Open
Abstract
The oculomotor nucleus (nIII) contains the motoneurons of medial, inferior, and superior recti (MR, IR, and SR), inferior oblique (IO), and levator palpebrae (LP) muscles. The delineation of motoneuron subgroups for each muscle is well-known in monkey, but not in human. We studied the transmitter inputs to human nIII and the trochlear nucleus (nIV), which innervates the superior oblique muscle (SO), to outline individual motoneuron subgroups. Parallel series of sections from human brainstems were immunostained for different markers: choline acetyltransferase combined with glutamate decarboxylase (GAD), calretinin (CR) or glycine receptor. The cytoarchitecture was visualized with cresyl violet, Gallyas staining and expression of non-phosphorylated neurofilaments. Apart from nIV, seven subgroups were delineated in nIII: the central caudal nucleus (CCN), a dorsolateral (DL), dorsomedial (DM), central (CEN), and ventral (VEN) group, the nucleus of Perlia (NP) and the non-preganglionic centrally projecting Edinger–Westphal nucleus (EWcp). DL, VEN, NP, and EWcp were characterized by a strong supply of GAD-positive terminals, in contrast to DM, CEN, and nIV. CR-positive terminals and fibers were confined to CCN, CEN, and NP. Based on location and histochemistry of the motoneuron subgroups in monkey, CEN is considered as the SR and IO motoneurons, DL and VEN as the B- and A-group of MR motoneurons, respectively, and DM as IR motoneurons. A good correlation between monkey and man is seen for the CR input, which labels only motoneurons of eye muscles participating in upgaze (SR, IO, and LP). The CCN contained LP motoneurons, and nIV those of SO. This study provides a map of the individual subgroups of motoneurons in human nIII for the first time, and suggests that NP may contain upgaze motoneurons. Surprisingly, a strong GABAergic input to human MR motoneurons was discovered, which is not seen in monkey and may indicate a functional oculomotor specialization.
Collapse
Affiliation(s)
- Emmanuel Che Ngwa
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Christina Zeeh
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany ; German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Ahmed Messoudi
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Jean A Büttner-Ennever
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Anja K E Horn
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany ; German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
32
|
Cornelison GL, Mihic SJ. Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents. Brain Res Bull 2013; 100:1-5. [PMID: 24177173 DOI: 10.1016/j.brainresbull.2013.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022]
Abstract
Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nM to low μM concentrations, and inhibiting its effects at higher concentrations. Because of zinc's high potency at the glycine receptor, there exists a possibility that effects attributed solely to exogenously-applied glycine in fact contain an undetected contribution of zinc acting as an allosteric modulator. We found that glycine solutions made up in standard buffers and using deionized distilled water produced effects that could be decreased by the zinc chelator tricine. This phenomenon was observed in three different vials tested and persisted even if vials were extensively washed, suggesting the zinc was probably present in the buffer constituents. In addition, polystyrene, but not glass, pipets bore a contaminant that enhanced glycine receptor function and that could also be antagonized by tricine. Our findings suggest that without checking for this effect using a chelator such as tricine, one cannot assume that responses elicited by glycine applied alone are not necessarily also partially due to some level of allosteric modulation by zinc.
Collapse
Affiliation(s)
- Garrett L Cornelison
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - S John Mihic
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol & Addiction Research, Institutes for Neuroscience and Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
33
|
Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse. Neuropharmacology 2013; 75:286-94. [PMID: 23973295 DOI: 10.1016/j.neuropharm.2013.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1β and α2β glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation.
Collapse
|
34
|
McCracken LM, Trudell JR, McCracken ML, Harris RA. Zinc-dependent modulation of α2- and α3-glycine receptor subunits by ethanol. Alcohol Clin Exp Res 2013; 37:2002-10. [PMID: 23895467 DOI: 10.1111/acer.12192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Strychnine-sensitive glycine receptors (GlyRs) are expressed throughout the brain and spinal cord and are among the strongly supported protein targets of alcohol. This is based largely on studies of the α1-subunit; however, α2- and α3-GlyR subunits are as or more abundantly expressed than α1-GlyRs in multiple forebrain brain areas considered to be important for alcohol-related behaviors, and uniquely some α3-GlyRs undergo RNA editing. Nanomolar and low micromolar concentrations of zinc ions potentiate GlyR function, and in addition to zinc's effects on glycine-activated currents, we have recently shown that physiological concentrations of zinc also enhance the magnitude of ethanol (EtOH)'s effects on α1-GlyRs. METHODS Using 2-electrode voltage-clamp electrophysiology in oocytes expressing either α2- or α3-GlyRs, we first tested the hypothesis that the effects of EtOH on α2- and α3-GlyRs would be zinc dependent, as we have previously reported for α1-GlyRs. Next, we constructed an α3P185L-mutant GlyR to test whether RNA-edited and unedited GlyRs contain differences in EtOH sensitivity. Last, we built a homology model of the α3-GlyR subunit. RESULTS The effects of EtOH (20 to 200 mM) on both subunits were greater in the presence than in the absence of 500 nM added zinc. The α3P185L-mutation that corresponds to RNA editing increased sensitivity to glycine and decreased sensitivity to EtOH. CONCLUSIONS Our findings provide further evidence that zinc is important for determining the magnitude of EtOH's effects at GlyRs and suggest that by better understanding zinc/EtOH interactions at GlyRs, we may better understand the sites and mechanisms of EtOH action.
Collapse
Affiliation(s)
- Lindsay M McCracken
- The Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas
| | | | | | | |
Collapse
|
35
|
Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience 2013; 238:168-84. [PMID: 23428622 DOI: 10.1016/j.neuroscience.2013.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/20/2022]
Abstract
Extracellular matrix (ECM) forms an active interface around neurons of the central nervous system (CNS). Whilst the components, chemical heterogeneity and cellular recruitment of this intercellular assembly in various parts of the brain have been discussed in detail, the spinal cord received limited attention in this context. This is in sharp contrast to its clinical relevance since the overall role of ECM especially that of its chondroitin sulphate-based proteoglycan components (CSPGs) was repeatedly addressed in neuropathology, regeneration, CNS repair and therapy models. Based on two post-mortem human specimen, this study gives the first and detailed description of major ECM components of the human spinal cord. Immunohistochemical investigations were restricted to the systematic mapping of aggrecan, brevican, proteoglycan link-protein as well as tenascin-R and hyaluronan containing matrices in the whole cranio-caudal dimension of the human spinal cord. Other proteoglycans like versican, neurocan and NG2 were exemplarily investigated in restricted areas. We show the overall presence of tenascin-R and hyaluronan in both white and grey matters whereas aggrecan, proteoglycan link-protein and brevican were restricted to the grey matter. In the grey matter, the ECM formed aggrecan-based perineuronal nets in the ventral and lateral horns but established single perisynaptic assemblies, axonal coats (ACs), containing link-protein and brevican in all regions except of the Lissauer's zone. Intersegmental differences were reflected in the appearance of segment-specific nuclei but not in overall matrix distribution pattern or chemical heterogeneity. Perineuronal nets were typically associated with long-range projection neurons including cholinergic ventral horn motorneurons or dorsal spinocerebellar tract neurons of the Clarke-Stilling nuclei. Multiple immunolabelling revealed that nociceptive afferents were devoid of individual matrix assemblies unlike glycinergic or GABAergic synapses. The detailed description of ECM distribution in the human spinal cord shall support clinical approaches in injury and regenerative therapy.
Collapse
|
36
|
McCracken LM, Blednov YA, Trudell JR, Benavidez JM, Betz H, Harris RA. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo. J Pharmacol Exp Ther 2013; 344:489-500. [PMID: 23230213 PMCID: PMC3558822 DOI: 10.1124/jpet.112.197707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.
Collapse
Affiliation(s)
- Lindsay M McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yu T, Chahrour M, Coulter M, Jiralerspong S, Okamura-Ikeda K, Ataman B, Schmitz-Abe K, Harmin D, Adli M, Malik A, D’Gama A, Lim E, Sanders S, Mochida G, Partlow J, Sunu C, Felie J, Rodriguez J, Nasir R, Ware J, Joseph R, Hill R, Kwan B, Al-Saffar M, Mukaddes N, Hashmi A, Balkhy S, Gascon G, Hisama F, LeClair E, Poduri A, Oner O, Al-Saad S, Al-Awadi S, Bastaki L, Ben-Omran T, Teebi A, Al-Gazali L, Eapen V, Stevens C, Rappaport L, Gabriel S, Markianos K, State M, Greenberg M, Taniguchi H, Braverman N, Morrow E, Walsh C. Using whole-exome sequencing to identify inherited causes of autism. Neuron 2013; 77:259-73. [PMID: 23352163 PMCID: PMC3694430 DOI: 10.1016/j.neuron.2012.11.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2012] [Indexed: 01/01/2023]
Abstract
Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.
Collapse
Affiliation(s)
- T.W. Yu
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
| | - M.H. Chahrour
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - M.E. Coulter
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - S. Jiralerspong
- Department of Human Genetics and Pediatrics, McGill University, Montreal Children’s Hospital Research Institute, Montreal, Quebec, Canada, H3H1P3
| | - K. Okamura-Ikeda
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - B. Ataman
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - K. Schmitz-Abe
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - D.A. Harmin
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - M. Adli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA, 22908
| | - A.N. Malik
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - A.M. D’Gama
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - E.T. Lim
- Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
| | - S.J. Sanders
- Department of Genetics, Center for Human Genetics and Genomics and Program on Neurogenetics, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
| | - G.H. Mochida
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
| | - J.N. Partlow
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - C.M. Sunu
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - J.M. Felie
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - J. Rodriguez
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - R.H. Nasir
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - J. Ware
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - R.M. Joseph
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA, 02118
| | - R.S. Hill
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - B.Y. Kwan
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5C1
| | - M. Al-Saffar
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - N.M. Mukaddes
- Istanbul Faculty of Medicine, Department of Child Psychiatry, Istanbul University, Istanbul, Turkey
| | - A. Hashmi
- Armed Forces Hospital, King Abdulaziz Naval Base, Jubail, Kingdom of Saudi Arabia
| | - S. Balkhy
- Department of Neurosciences and Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - G.G. Gascon
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
- Istanbul Faculty of Medicine, Department of Child Psychiatry, Istanbul University, Istanbul, Turkey
- Clinical Neurosciences and Pediatrics, Brown University School of Medicine, Providence, Rhode Island, 02912
| | - F.M. Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA, 98195
| | - E. LeClair
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - A. Poduri
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA,02115
| | - O. Oner
- Department of Child and Adolescent Psychiatry, Dr Sami Ulus Childrens’ Hospital, Telsizler, Ankara, Turkey
| | - S. Al-Saad
- Kuwait Center for Autism, Kuwait City, Kuwait
| | | | - L. Bastaki
- Kuwait Medical Genetics Center, Kuwait City, Kuwait
| | - T. Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
- Departments of Pediatrics and Genetic Medicine, Weil-Cornell Medical College, New York and Doha, Qatar
| | - A. Teebi
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
- Departments of Pediatrics and Genetic Medicine, Weil-Cornell Medical College, New York and Doha, Qatar
| | - L. Al-Gazali
- Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - V. Eapen
- Academic Unit of Child Psychiatry South West Sydney (AUCS), University of New South Wales, Sydney, New South Wales, Australia
| | - C.R. Stevens
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA, 02142
| | - L. Rappaport
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - S.B. Gabriel
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA, 02142
| | - K. Markianos
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - M.W. State
- Department of Genetics, Center for Human Genetics and Genomics and Program on Neurogenetics, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
| | - M.E. Greenberg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - H. Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - N.E. Braverman
- Department of Human Genetics and Pediatrics, McGill University, Montreal Children’s Hospital Research Institute, Montreal, Quebec, Canada, H3H1P3
| | - E.M. Morrow
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02912
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island, 02912
| | - C.A. Walsh
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| |
Collapse
|
38
|
Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN BIOCHEMISTRY 2012; 2012:262941. [PMID: 25969754 PMCID: PMC4392997 DOI: 10.5402/2012/262941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
Abstract
Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
39
|
Schaefer N, Vogel N, Villmann C. Glycine receptor mutants of the mouse: what are possible routes of inhibitory compensation? Front Mol Neurosci 2012; 5:98. [PMID: 23118727 PMCID: PMC3484359 DOI: 10.3389/fnmol.2012.00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/11/2012] [Indexed: 12/02/2022] Open
Abstract
Defects in glycinergic inhibition result in a complex neuromotor disorder in humans known as hyperekplexia (OMIM 149400) with similar phenotypes in rodents characterized by an exaggerated startle reflex and hypertonia. Analogous to genetic defects in humans single point mutations, microdeletions, or insertions in the Glra1 gene but also in the Glrb gene underlie the pathology in mice. The mutations either localized in the α (spasmodic, oscillator, cincinnati, Nmf11) or the β (spastic) subunit of the glycine receptor (GlyR) are much less tolerated in mice than in humans, leaving the question for the existence of different regulatory elements of the pathomechanisms in humans and rodents. In addition to the spontaneous mutations, new insights into understanding of the regulatory pathways in hyperekplexia or glycine encephalopathy arose from the constantly increasing number of knock-out as well as knock-in mutants of GlyRs. Over the last five years, various efforts using in vivo whole cell recordings provided a detailed analysis of the kinetic parameters underlying glycinergic dysfunction. Presynaptic compensation as well as postsynaptic compensatory mechanisms in these mice by other GlyR subunits or GABAA receptors, and the role of extra-synaptic GlyRs is still a matter of debate. A recent study on the mouse mutant oscillator displayed a novel aspect for compensation of functionality by complementation of receptor domains that fold independently. This review focuses on defects in glycinergic neurotransmission in mice discussed with the background of human hyperekplexia en route to strategies of compensation.
Collapse
Affiliation(s)
- Natascha Schaefer
- Emil Fischer Center, Institute of Biochemistry, University Erlangen-Nuernberg Erlangen, Germany ; Institute for Clinical Neurobiology, University of Wuerzburg Wuerzburg, Germany
| | | | | |
Collapse
|
40
|
Kirson D, Todorovic J, Mihic SJ. Positive allosteric modulators differentially affect full versus partial agonist activation of the glycine receptor. J Pharmacol Exp Ther 2012; 342:61-70. [PMID: 22473615 PMCID: PMC3383033 DOI: 10.1124/jpet.112.191486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/02/2012] [Indexed: 11/22/2022] Open
Abstract
Taurine acts as a partial agonist at the glycine receptor (GlyR) in some brain regions such as the hippocampus, striatum, and nucleus accumbens. Ethanol, volatile anesthetics, and inhaled drugs of abuse are all known positive allosteric modulators of GlyRs, but their effects on taurine-activated GlyRs remain poorly understood, especially their effects on the high concentrations of taurine likely to be found after synaptic release. Two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes was used to compare the enhancing effects of ethanol, anesthetics, and inhalants on human homomeric α1-GlyR activated by saturating concentrations of glycine versus taurine. Allosteric modulators had negligible effects on glycine-activated GlyR while potentiating taurine-activated currents. In addition, inhaled anesthetics markedly enhanced desensitization rates of taurine- but not glycine-activated receptors. Our findings suggest that ethanol, volatile anesthetics, and inhalants differentially affect the time courses of synaptic events at GlyR, depending on whether the receptor is activated by a full or partial agonist.
Collapse
Affiliation(s)
- Dean Kirson
- Waggoner Center for Alcohol and Addiction Research, and Institute for Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
41
|
Rakocevic G, Floeter MK. Autoimmune stiff person syndrome and related myelopathies: understanding of electrophysiological and immunological processes. Muscle Nerve 2012; 45:623-34. [PMID: 22499087 DOI: 10.1002/mus.23234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stiff person syndrome (SPS) is a disabling autoimmune central nervous system disorder characterized by progressive muscle rigidity and gait impairment with superimposed painful spasms that involve axial and limb musculature, triggered by heightened sensitivity to external stimuli. Impaired synaptic GABAergic inhibition resulting from intrathecal B-cell-mediated clonal synthesis of autoantibodies against various presynaptic and synaptic proteins in the inhibitory neurons of the brain and spinal cord is believed to be an underlying pathogenic mechanism. SPS is most often idiopathic, but it can occur as a paraneoplastic condition. Despite evidence that anti-GAD and related autoantibodies impair GABA synthesis, the exact pathogenic mechanism of SPS is not fully elucidated. The strong association with several MHC-II alleles and improvement of symptoms with immune-modulating therapies support an autoimmune etiology of SPS. In this review, we discuss the clinical spectrum, neurophysiological mechanisms, and therapeutic options, including a rationale for agents that modulate B-cell function in SPS.
Collapse
Affiliation(s)
- Goran Rakocevic
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
42
|
Wegner F, Kraft R, Busse K, Härtig W, Ahrens J, Leffler A, Dengler R, Schwarz J. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits. PLoS One 2012; 7:e36946. [PMID: 22606311 PMCID: PMC3350492 DOI: 10.1371/journal.pone.0036946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 04/16/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.
Collapse
Affiliation(s)
- Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kallenborn-Gerhardt W, Lu R, Lorenz J, Gao W, Weiland J, Del Turco D, Deller T, Laube B, Betz H, Geisslinger G, Schmidtko A. Prolonged zymosan-induced inflammatory pain hypersensitivity in mice lacking glycine receptor alpha2. Behav Brain Res 2011; 226:106-11. [PMID: 21924294 DOI: 10.1016/j.bbr.2011.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 11/20/2022]
Abstract
Glycinergic synapses play a major role in shaping the activity of spinal cord neurons under normal conditions and during persistent pain. However, the role of different glycine receptor (GlyR) subtypes in pain processing has only begun to be unraveled. Here, we analysed whether the GlyR alpha2 subunit might be involved in the processing of acute or persistent pain. Real-time RT-PCR and in situ hybridization analyses revealed that GlyR alpha2 mRNA is enriched in the dorsal horn of the mouse spinal cord. Mice lacking GlyR alpha2 (Glra2(-/-) mice) demonstrated a normal nociceptive behavior in models of acute pain and after peripheral nerve injury. However, mechanical hyperalgesia induced by peripheral injection of zymosan was significantly prolonged in Glra2(-/-) mice as compared to wild-type littermates. We conclude that spinal GlyRs containing the alpha2 subunit exert a previously unrecognized role in the resolution of inflammatory pain.
Collapse
Affiliation(s)
- Wiebke Kallenborn-Gerhardt
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
GABA is the major inhibitory neurotransmitter in the adult mammalian CNS. The ionotropic GABA type A receptors (GABA(A)Rs) belong to the Cys-loop family of receptors. Each member of the family is a large pentameric protein in which each subunit traverses the cell membrane four times. Within this family, the GABA type A receptors are particularly important for their rich pharmacology as they are targets for a range of therapeutically important drugs, including the benzodiazepines, barbiturates, neuroactive steroids and anesthetics. This review discusses new insights into receptor properties that allow us to begin to relate the structure of an individual receptor to its functional and pharmacological properties.
Collapse
|
45
|
Harvey RJ, Rigo JM. Glycinergic transmission: physiological, developmental and pathological implications. Front Mol Neurosci 2010; 3. [PMID: 20877421 PMCID: PMC2944627 DOI: 10.3389/fnmol.2010.00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/28/2022] Open
Affiliation(s)
- Robert J Harvey
- Department of Pharmacology, The School of Pharmacy London, UK
| | | |
Collapse
|