1
|
Chesnokova E, Bal N, Alhalabi G, Balaban P. Regulatory Elements for Gene Therapy of Epilepsy. Cells 2025; 14:236. [PMID: 39937026 PMCID: PMC11816724 DOI: 10.3390/cells14030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The problem of drug resistance in epilepsy means that in many cases, a surgical treatment may be advised. But this is only possible if there is an epileptic focus, and resective brain surgery may have adverse side effects. One of the promising alternatives is gene therapy, which allows the targeted expression of therapeutic genes in different brain regions, and even in specific cell types. In this review, we provide detailed explanations of some key terms related to genetic engineering, and describe various regulatory elements that have already been used in the development of different approaches to treating epilepsy using viral vectors. We compare a few universal promoters for their strength and duration of transgene expression, and in our description of cell-specific promoters, we focus on elements driving expression in glutamatergic neurons, GABAergic neurons and astrocytes. We also explore enhancers and some other cis-regulatory elements currently used in viral vectors for gene therapy, and consider future perspectives of state-of-the-art technologies for designing new, stronger and more specific regulatory elements. Gene therapy has multiple advantages and should become more common in the future, but there is still a lot to study and invent in this field.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Natalia Bal
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Ghofran Alhalabi
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia;
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| |
Collapse
|
2
|
Gong X, Gao H, Wang W, Xu T. Intramuscular Injection of rAAV2-retro for Low Motor Neuron Transduction: Evaluating Five Promoters. Int J Med Sci 2025; 22:775-789. [PMID: 39991760 PMCID: PMC11843134 DOI: 10.7150/ijms.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/12/2024] [Indexed: 02/25/2025] Open
Abstract
Recombinant adeno-associated viral vectors (rAAVs) can effectively deliver transgene to the nervous system. The selection of AAV serotype and promoter significantly influences the dynamics of the transgene expression, including its strength and cell-specificity. Previous studies demonstrated that in neonatal mice, the intramuscular (IM) injection of the rAAV2-retro vector could efficiently deliver transgene to lower motor neurons (LMNs) of the brainstem and spinal cord. However, the best promoter for the expression of transgene in the central neural system (CNS) using rAAV2-retro remains undetermined. This study compared five commonly used promoters, including mouse phosphoglycerate kinase (mPGK), CMV early enhancer/chicken β-actin/short β-globulin intron (CAG), human cytomegalovirus (hCMV), chicken β-actin (CBA), and human synapsin (hSyn) promoters. The IM (unilateral gastrocnemius muscle) injection of rAAV2-retro vectors packaged with the reporter constructs containing each promoter was performed in the newborn C57BL/6J mice. The levels of gene expression and the types of cells were examined using the light-sheet illumination imaging technique and confocal microscopy. Our findings revealed that rAAV2-retro primarily targeted the brainstem and spinal cord within the CNS. Among the five promoters tested, CAG and hCMV showed the highest gene expression. Almost all the transduced cells were identified as LMNs. Additionally, gene expression driven by hCMV was found to be dependent of the inclusion of WPRE and β-globin intron elements. Importantly, none of the promoters induced hepatotoxicity, ensuring the safety of rAAV2-retro-mediated expression. This study provided valuable insights for optimizing the rAAV2-retro-mediated gene delivery system to LMNs in the brainstem and spinal cord, which might have potential implications for research on motor neuron-related diseases.
Collapse
Affiliation(s)
- Xueqi Gong
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
- Laboratory Animal Resource Center, Fudan University, Shanghai 200032, China
| | - Haitong Gao
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
- Laboratory Animal Resource Center, Fudan University, Shanghai 200032, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai 200032, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tonghui Xu
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
- Laboratory Animal Resource Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Tkatch T, Pauza DH. Local stimulation of pyramidal neurons in deep cortical layers of anesthetized rats enhances cortical visual information processing. Sci Rep 2024; 14:22862. [PMID: 39354096 PMCID: PMC11445437 DOI: 10.1038/s41598-024-73995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In the primary visual cortex area V1 activation of inhibitory interneurons, which provide negative feedback for excitatory pyramidal neurons, can improve visual response reliability and orientation selectivity. Moreover, optogenetic activation of one class of interneurons, parvalbumin (PV) positive cells, reduces the receptive field (RF) width. These data suggest that in V1 the negative feedback improves visual information processing. However, according to information theory, noise can limit information content in a signal, and to the best of our knowledge, in V1 signal-to-noise ratio (SNR) has never been estimated following either pyramidal or inhibitory neuron activation. Therefore, we optogenetically activated pyramidal or PV neurons in the deep layers of cortical area V1 and measured the SNR and RF area in nearby pyramidal neurons. Activation of pyramidal or PV neurons increased the SNR by 267% and 318%, respectively, and reduced the RF area to 60.1% and 77.5%, respectively, of that of the control. A simple integrate-and-fire neuron model demonstrated that an improved SNR and a reduced RF area can increase the amount of information encoded by neurons. We conclude that in V1 activation of pyramidal neurons improves visual information processing since the location of the visual stimulus can be pinpointed more accurately (via a reduced RF area), and more information is encoded by neurons (due to increased SNR).
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tatiana Tkatch
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
4
|
Yazdan-Shahmorad P, Gibson S, Lee JC, Horwitz GD. Preferential transduction of parvalbumin-expressing cortical neurons by AAV-mDLX5/6 vectors. Front Neurosci 2024; 17:1269025. [PMID: 38410819 PMCID: PMC10894992 DOI: 10.3389/fnins.2023.1269025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024] Open
Abstract
A major goal of modern neuroscience is to understand the functions of the varied neuronal types that comprise the mammalian brain. Toward this end, some types of neurons can be targeted and manipulated with enhancer-bearing AAV vectors. These vectors hold great promise to advance basic and translational neuroscience, but to realize this potential, their selectivity must be characterized. In this study, we investigated the selectivity of AAV vectors carrying an enhancer of the murine Dlx5 and Dlx6 genes. Vectors were injected into the visual cortex of two macaque monkeys, the frontal cortex of two others, and the somatosensory/motor cortex of three rats. Post-mortem immunostaining revealed that parvalbumin-expressing neurons were transduced efficiently in all cases but calretinin-expressing neurons were not. We speculate that this specificity is a consequence of differential activity of this DLX5/6 enhancer in adult neurons of different developmental lineages.
Collapse
Affiliation(s)
- Padideh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Shane Gibson
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Joanne C Lee
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Gregory D Horwitz
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Chamberlin LA, Yang SS, McEachern EP, Lucas JTM, McLeod Ii OW, Rolland CA, Mack NR, Ferguson BR, Gao WJ. Pharmacogenetic activation of parvalbumin interneurons in the prefrontal cortex rescues cognitive deficits induced by adolescent MK801 administration. Neuropsychopharmacology 2023; 48:1267-1276. [PMID: 37041206 PMCID: PMC10353985 DOI: 10.1038/s41386-023-01576-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/13/2023]
Abstract
The cognitive symptoms of schizophrenia (SZ) present a significant clinical burden. They are treatment resistant and are the primary predictor of functional outcomes. Although the neural mechanisms underlying these deficits remain unclear, pathological GABAergic signaling likely plays an essential role. Perturbations with parvalbumin (PV)-expressing fast-spiking (FS) interneurons in the prefrontal cortex (PFC) are consistently found in post-mortem studies of patients with SZ, as well as in animal models. Our studies have shown decreased prefrontal synaptic inhibition and PV immunostaining, along with working memory and cognitive flexibility deficits in the MK801 model. To test the hypothesized association between PV cell perturbations and impaired cognition in SZ, we activated prefrontal PV cells by using an excitatory DREADD viral vector with a PV promoter to rescue the cognitive deficits induced by adolescent MK801 administration in female rats. We found that targeted pharmacogenetic upregulation of prefrontal PV interneuron activity can restore E/I balance and improve cognition in the MK801 model. Our findings support the hypothesis that the reduced PV cell activity levels disrupt GABA transmission, resulting in the disinhibition of excitatory pyramidal cells. This disinhibition leads to an elevated prefrontal excitation/inhibition (E/I) balance that could be causal for cognitive impairments. Our study provides novel insights into the causal role of PV cells in cognitive function and has clinical implications for understanding the pathophysiology and management of SZ.
Collapse
Affiliation(s)
- Linda A Chamberlin
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- MD/PhD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sha-Sha Yang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- Institute for Translational Brain Research, Department of Neurology, Fudan University, Shanghai, 200032, China
| | - Erin P McEachern
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joshua T M Lucas
- MD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Owen W McLeod Ii
- Interdisciplinary Health Sciences Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Claire A Rolland
- Interdisciplinary Health Sciences Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nancy R Mack
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brielle R Ferguson
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
- 2 Blackfan circle, Cetern for Life Science, Boston, MA, 02115, USA.
| | - Wen-Jun Gao
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Sullivan KA, Vitko I, Blair K, Gaykema RP, Failor MJ, San Pietro JM, Dey D, Williamson JM, Stornetta RL, Kapur J, Perez-Reyes E. Drug-Inducible Gene Therapy Effectively Reduces Spontaneous Seizures in Kindled Rats but Creates Off-Target Side Effects in Inhibitory Neurons. Int J Mol Sci 2023; 24:11347. [PMID: 37511107 PMCID: PMC10379297 DOI: 10.3390/ijms241411347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Over a third of patients with temporal lobe epilepsy (TLE) are not effectively treated with current anti-seizure drugs, spurring the development of gene therapies. The injection of adeno-associated viral vectors (AAV) into the brain has been shown to be a safe and viable approach. However, to date, AAV expression of therapeutic genes has not been regulated. Moreover, a common property of antiepileptic drugs is a narrow therapeutic window between seizure control and side effects. Therefore, a long-term goal is to develop drug-inducible gene therapies that can be regulated by clinically relevant drugs. In this study, a first-generation doxycycline-regulated gene therapy that delivered an engineered version of the leak potassium channel Kcnk2 (TREK-M) was injected into the hippocampus of male rats. Rats were electrically stimulated until kindled. EEG was monitored 24/7. Electrical kindling revealed an important side effect, as even low expression of TREK M in the absence of doxycycline was sufficient to cause rats to develop spontaneous recurring seizures. Treating the epileptic rats with doxycycline successfully reduced spontaneous seizures. Localization studies of infected neurons suggest seizures were caused by expression in GABAergic inhibitory neurons. In contrast, doxycycline increased the expression of TREK-M in excitatory neurons, thereby reducing seizures through net inhibition of firing. These studies demonstrate that drug-inducible gene therapies are effective in reducing spontaneous seizures and highlight the importance of testing for side effects with pro-epileptic stressors such as electrical kindling. These studies also show the importance of evaluating the location and spread of AAV-based gene therapies in preclinical studies.
Collapse
Affiliation(s)
- Kyle A Sullivan
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Madison J Failor
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | | | - Deblina Dey
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - John M Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22980, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22980, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22980, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22980, USA
| |
Collapse
|
7
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
8
|
Lawler AJ, Ramamurthy E, Brown AR, Shin N, Kim Y, Toong N, Kaplow IM, Wirthlin M, Zhang X, Phan BN, Fox GA, Wade K, He J, Ozturk BE, Byrne LC, Stauffer WR, Fish KN, Pfenning AR. Machine learning sequence prioritization for cell type-specific enhancer design. eLife 2022; 11:e69571. [PMID: 35576146 PMCID: PMC9110026 DOI: 10.7554/elife.69571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent discoveries of extreme cellular diversity in the brain warrant rapid development of technologies to access specific cell populations within heterogeneous tissue. Available approaches for engineering-targeted technologies for new neuron subtypes are low yield, involving intensive transgenic strain or virus screening. Here, we present Specific Nuclear-Anchored Independent Labeling (SNAIL), an improved virus-based strategy for cell labeling and nuclear isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other computational approaches to identify DNA sequence features that confer cell type-specific gene activation and then make a probe that drives an affinity purification-compatible reporter gene. As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-expressing (PV+) neurons. Nuclear isolation using SNAIL in wild-type mice is sufficient to capture characteristic open chromatin features of PV+ neurons in the cortex, striatum, and external globus pallidus. The SNAIL framework also has high utility for multispecies cell probe engineering; expression from a mouse PV+ SNAIL enhancer sequence was enriched in PV+ neurons of the macaque cortex. Expansion of this technology has broad applications in cell type-specific observation, manipulation, and therapeutics across species and disease models.
Collapse
Affiliation(s)
- Alyssa J Lawler
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Biological Sciences Department, Mellon College of Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Easwaran Ramamurthy
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Ashley R Brown
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Naomi Shin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Yeonju Kim
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Noelle Toong
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Irene M Kaplow
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Morgan Wirthlin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Xiaoyu Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - BaDoi N Phan
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
- Medical Scientist Training Program, University of PittsburghPittsburghUnited States
| | - Grant A Fox
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Kirsten Wade
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Jing He
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of CognitionPittsburghUnited States
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
| | - Leah C Byrne
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - William R Stauffer
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Kenneth N Fish
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Andreas R Pfenning
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
9
|
Hui Y, Zheng X, Zhang H, Li F, Yu G, Li J, Zhang J, Gong X, Guo G. Strategies for Targeting Neural Circuits: How to Manipulate Neurons Using Virus Vehicles. Front Neural Circuits 2022; 16:882366. [PMID: 35571271 PMCID: PMC9099413 DOI: 10.3389/fncir.2022.882366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Viral strategies are the leading methods for mapping neural circuits. Viral vehicles combined with genetic tools provide the possibility to visualize entire functional neural networks and monitor and manipulate neural circuit functions by high-resolution cell type- and projection-specific targeting. Optogenetics and chemogenetics drive brain research forward by exploring causal relationships among different brain regions. Viral strategies offer a fresh perspective for the analysis of the structure-function relationship of the neural circuitry. In this review, we summarize current and emerging viral strategies for targeting neural circuits and focus on adeno-associated virus (AAV) vectors.
Collapse
Affiliation(s)
- Yuqing Hui
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Huijie Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fang Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Jifeng Zhang,
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Xiaobing Gong,
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- *Correspondence: Guoqing Guo,
| |
Collapse
|
10
|
Chohan MO, Kopelman JM, Yueh H, Fazlali Z, Greene N, Harris AZ, Balsam PD, Leonardo ED, Kramer ER, Veenstra-VanderWeele J, Ahmari SE. Developmental impact of glutamate transporter overexpression on dopaminergic neuron activity and stereotypic behavior. Mol Psychiatry 2022; 27:1515-1526. [PMID: 35058566 PMCID: PMC9106836 DOI: 10.1038/s41380-021-01424-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling condition that often begins in childhood. Genetic studies in OCD have pointed to SLC1A1, which encodes the neuronal glutamate transporter EAAT3, with evidence suggesting that increased expression contributes to risk. In mice, midbrain Slc1a1 expression supports repetitive behavior in response to dopaminergic agonists, aligning with neuroimaging and pharmacologic challenge studies that have implicated the dopaminergic system in OCD. These findings suggest that Slc1a1 may contribute to compulsive behavior through altered dopaminergic transmission; however, this theory has not been mechanistically tested. To examine the developmental impact of Slc1a1 overexpression on compulsive-like behaviors, we, therefore, generated a novel mouse model to perform targeted, reversible overexpression of Slc1a1 in dopaminergic neurons. Mice with life-long overexpression of Slc1a1 showed a significant increase in amphetamine (AMPH)-induced stereotypy and hyperlocomotion. Single-unit recordings demonstrated that Slc1a1 overexpression was associated with increased firing of dopaminergic neurons. Furthermore, dLight1.1 fiber photometry showed that these behavioral abnormalities were associated with increased dorsal striatum dopamine release. In contrast, no impact of overexpression was observed on anxiety-like behaviors or SKF-38393-induced grooming. Importantly, overexpression solely in adulthood failed to recapitulate these behavioral phenotypes, suggesting that overexpression during development is necessary to generate AMPH-induced phenotypes. However, doxycycline-induced reversal of Slc1a1/EAAT3 overexpression in adulthood normalized both the increased dopaminergic firing and AMPH-induced responses. These data indicate that the pathologic effects of Slc1a1/EAAT3 overexpression on dopaminergic neurotransmission and AMPH-induced stereotyped behavior are developmentally mediated, and support normalization of EAAT3 activity as a potential treatment target for basal ganglia-mediated repetitive behaviors.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jared M Kopelman
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Yueh
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Zeinab Fazlali
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Natasha Greene
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychology, Barnard College of Columbia University, New York, NY, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychology, Barnard College of Columbia University, New York, NY, USA
| | - E David Leonardo
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Edgar R Kramer
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Chen X, Chen S, Song S, Gao Z, Hou L, Zhang X, Lv H, Jiang R. Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian embedding. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-021-00432-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Duba-Kiss R, Niibori Y, Hampson DR. GABAergic Gene Regulatory Elements Used in Adeno-Associated Viral Vectors. Front Neurol 2021; 12:745159. [PMID: 34671313 PMCID: PMC8521139 DOI: 10.3389/fneur.2021.745159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Several neurological and psychiatric disorders have been associated with impairments in GABAergic inhibitory neurons in the brain. Thus, in the current era of accelerated development of molecular medicine and biologically-based drugs, there is a need to identify gene regulatory sequences that can be utilized for selectively manipulating the expression of nucleic acids and proteins in GABAergic neurons. This is particularly important for the use of viral vectors in gene therapy. In this Mini Review, we discuss the use of various gene regulatory elements for targeting GABAergic neurons, with an emphasis on adeno-associated viral vectors, the most widely used class of viral vectors for treating brain diseases.
Collapse
Affiliation(s)
- Robert Duba-Kiss
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David R Hampson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Hamad MIK, Petrova P, Daoud S, Rabaya O, Jbara A, Melliti N, Leifeld J, Jakovčevski I, Reiss G, Herz J, Förster E. Reelin restricts dendritic growth of interneurons in the neocortex. Development 2021; 148:272055. [PMID: 34414407 DOI: 10.1242/dev.199718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022]
Abstract
Reelin is a large secreted glycoprotein that regulates neuronal migration, lamination and establishment of dendritic architecture in the embryonic brain. Reelin expression switches postnatally from Cajal-Retzius cells to interneurons. However, reelin function in interneuron development is still poorly understood. Here, we have investigated the role of reelin in interneuron development in the postnatal neocortex. To preclude early cortical migration defects caused by reelin deficiency, we employed a conditional reelin knockout (RelncKO) mouse to induce postnatal reelin deficiency. Induced reelin deficiency caused dendritic hypertrophy in distal dendritic segments of neuropeptide Y-positive (NPY+) and calretinin-positive (Calr+) interneurons, and in proximal dendritic segments of parvalbumin-positive (Parv+) interneurons. Chronic recombinant Reelin treatment rescued dendritic hypertrophy in Relncko interneurons. Moreover, we provide evidence that RelncKO interneuron hypertrophy is due to presynaptic GABABR dysfunction. Thus, GABABRs in RelncKO interneurons were unable to block N-type (Cav2.2) Ca2+ channels that control neurotransmitter release. Consequently, the excessive Ca2+ influx through AMPA receptors, but not NMDA receptors, caused interneuron dendritic hypertrophy. These findings suggest that reelin acts as a 'stop-growth-signal' for postnatal interneuron maturation.
Collapse
Affiliation(s)
- Mohammad I K Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten 58455, Germany.,Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Nesrine Melliti
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Jennifer Leifeld
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Igor Jakovčevski
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten 58455, Germany
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten 58455, Germany
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
14
|
Prince LY, Tran MM, Grey D, Saad L, Chasiotis H, Kwag J, Kohl MM, Richards BA. Neocortical inhibitory interneuron subtypes are differentially attuned to synchrony- and rate-coded information. Commun Biol 2021; 4:935. [PMID: 34354206 PMCID: PMC8342442 DOI: 10.1038/s42003-021-02437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Neurons can carry information with both the synchrony and rate of their spikes. However, it is unknown whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, or vice versa. Here, we address this question using patterned optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. We used optical stimulation in layer 2/3 to encode a 1-bit signal using either the synchrony or rate of activity. We then examined the mutual information between this signal and the interneuron responses. We found that for a synchrony encoding, FS interneurons carried more information in the first five milliseconds, while both interneuron subtypes carried more information than excitatory neurons in later responses. For a rate encoding, we found that RS interneurons carried more information after several milliseconds. These data demonstrate that distinct interneuron subtypes in the neocortex have distinct sensitivities to synchrony versus rate codes. In order to address whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, Prince et al. used optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. They demonstrated that FS and RS interneurons had differential sensitivity to changes in synchrony and rate, which advances our understanding of neural processing in the neocortex.
Collapse
Affiliation(s)
- Luke Y Prince
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.,School of Computer Science, McGill University, Montreal, QC, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Matthew M Tran
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dorian Grey
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Lydia Saad
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Helen Chasiotis
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Michael M Kohl
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Blake A Richards
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada. .,School of Computer Science, McGill University, Montreal, QC, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Regulatory Elements Inserted into AAVs Confer Preferential Activity in Cortical Interneurons. eNeuro 2020; 7:ENEURO.0211-20.2020. [PMID: 33199411 PMCID: PMC7768279 DOI: 10.1523/eneuro.0211-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Cortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species. An alternative approach is to use viral vectors such as AAV, which can be used in multiple species including primates and also have potential for therapeutic use in humans. Thus, we sought to discover gene regulatory enhancer elements (REs) that can be used in viral vectors to drive expression in specific cell types. The present study describes the systematic genome-wide identification of putative REs (pREs) that are preferentially active in immature CINs by histone modification chromatin immunoprecipitation and sequencing (ChIP-seq). We evaluated two novel pREs in AAV vectors, alongside the well-established Dlx I12b enhancer, and found that they drove CIN-specific reporter expression in adult mice. We also showed that the identified Arl4d pRE could drive sufficient expression of channelrhodopsin for optogenetic rescue of behavioral deficits in the Dlx5/6+/- mouse model of fast-spiking CIN dysfunction.
Collapse
|
16
|
Luchicchi A, Pattij T, Viaña JNM, de Kloet S, Marchant N. Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. J Neurosci Methods 2020; 348:109004. [PMID: 33242528 DOI: 10.1016/j.jneumeth.2020.109004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Over the last century, there has been great progress in understanding how the brain works. In particular, the last two decades have been crucial in gaining more awareness over the complex functioning of neurotransmitter systems. The use of viral vectors in neuroscience has been pivotal for such development. Exploiting the properties of viral particles, modifying them according to the research needs, and making them target chemically-specific neurons, techniques such as optogenetics and chemogenetics have been developed, which could lead to a giant step toward gene therapy for brain disorders. In this review, we aim to provide an overview of some of the most widely used viral techniques in neuroscience. We will discuss advantages and disadvantages of these methods. In particular, attention is dedicated to the pivotal role played by the introduction of adeno-associated virus and the retrograde tracer canine-associated-2 Cre virus in order to achieve optimal visualization, and interrogation, of chemically-specific neuronal populations and their projections.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands.
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| | - John Noel M Viaña
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands; Australian National Centre for the Public Awareness of Science, ANU College of Science, The Australian National University, Linnaeus Way, Acton, ACT 2601, Australia
| | - Sybren de Kloet
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands
| | - Nathan Marchant
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Abstract
Recombinant viruses are the workhorse of modern neuroscience. Whether one would like to understand a neuron's morphology, natural activity patterns, molecular composition, connectivity or behavioural and physiologic function, most studies begin with the injection of an engineered virus, often an adeno-associated virus or herpes simplex virus, among many other types. Recombinant viruses currently enable some combination of cell type-specific, circuit-selective, activity-dependent and spatiotemporally resolved transgene expression. Viruses are now used routinely to study the molecular and cellular functions of a gene within an identified cell type in the brain, and enable the application of optogenetics, chemogenetics, calcium imaging and related approaches. These advantageous properties of engineered viruses thus enable characterization of neuronal function at unprecedented resolution. However, each virus has specific advantages and disadvantages, which makes viral tool selection paramount for properly designing and executing experiments within the central nervous system. In the current Review, we discuss the key principles and uses of engineered viruses and highlight innovations that are needed moving forward.
Collapse
Affiliation(s)
- Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Khoo ATT, Kim PJ, Kim HM, Je HS. Neural circuit analysis using a novel intersectional split intein-mediated split-Cre recombinase system. Mol Brain 2020; 13:101. [PMID: 32616061 PMCID: PMC7331137 DOI: 10.1186/s13041-020-00640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
The defining features of a neuron are its functional and anatomical connections with thousands of other neurons in the brain. Together, these neurons form functional networks that direct animal behavior. Current approaches that allow the interrogation of specific populations of neurons and neural circuits rely heavily on targeting their gene expression profiles or connectivity. However, these approaches are often unable to delineate specific neuronal populations. Here, we developed a novel intersectional split intein-mediated split-Cre recombinase system that can selectively label specific types of neurons based on their gene expression profiles and structural connectivity. We developed this system by splitting Cre recombinase into two fragments with evolved split inteins and subsequently expressed one fragment under the influence of a cell type-specific promoter in a transgenic animal, and delivered the other fragment via retrograde viral gene transfer. This approach results in the reconstitution of Cre recombinase in only specific population of neurons projecting from a specific brain region or in those of a specific neuronal type. Taken together, our split intein-based split-Cre system will be useful for sophisticated characterization of mammalian brain circuits.
Collapse
Affiliation(s)
- Audrey Tze Ting Khoo
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Paul Jong Kim
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - H Shawn Je
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
19
|
Maturana CJ, Verpeut JL, Pisano TJ, Dhanerawala ZM, Esteves A, Enquist LW, Engel EA. Small Alphaherpesvirus Latency-Associated Promoters Drive Efficient and Long-Term Transgene Expression in the CNS. Mol Ther Methods Clin Dev 2020; 17:843-857. [PMID: 32368565 PMCID: PMC7191541 DOI: 10.1016/j.omtm.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are used as gene therapy vectors to treat central nervous system (CNS) diseases. Despite their safety and broad tropism, important issues need to be corrected such as the limited payload capacity and the lack of small gene promoters providing long-term, pan-neuronal transgene expression in the CNS. Commonly used gene promoters are relatively large and can be repressed a few months after CNS transduction, risking the long-term performance of single-dose gene therapy applications. We used a whole-CNS screening approach based on systemic delivery of AAV-PHP.eB, iDisco+ tissue-clearing and light-sheet microscopy to identify three small latency-associated promoters (LAPs) from the herpesvirus pseudorabies virus (PRV). These promoters are LAP1 (404 bp), LAP2 (498 bp), and LAP1_2 (880 bp). They drive chronic transcription of the virus-encoded latency-associated transcript (LAT) during productive and latent phases of PRV infection. We observed stable, pan-neuronal transgene transcription and translation from AAV-LAPs in the CNS for 6 months post AAV transduction. In several CNS areas, the number of cells expressing the transgene was higher for LAP2 than the large conventional EF1α promoter (1,264 bp). Our data suggest that the LAPs are suitable candidates for viral vector-based CNS gene therapies requiring chronic transgene expression after one-time viral-vector administration.
Collapse
Affiliation(s)
- Carola J. Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jessica L. Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas J. Pisano
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Zahra M. Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Andrew Esteves
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
20
|
Functional Access to Neuron Subclasses in Rodent and Primate Forebrain. Cell Rep 2020; 26:2818-2832.e8. [PMID: 30840900 PMCID: PMC6509701 DOI: 10.1016/j.celrep.2019.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.
Collapse
|
21
|
Eun K, Hong N, Jeong YW, Park MG, Hwang SU, Jeong YIK, Choi EJ, Olsson PO, Hwang WS, Hyun SH, Kim H. Transcriptional activities of human elongation factor-1α and cytomegalovirus promoter in transgenic dogs generated by somatic cell nuclear transfer. PLoS One 2020; 15:e0233784. [PMID: 32492024 PMCID: PMC7269240 DOI: 10.1371/journal.pone.0233784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Recent advances in somatic cell nuclear transfer (SCNT) in canines facilitate the production of canine transgenic models. Owing to the importance of stable and strong promoter activity in transgenic animals, we tested human elongation factor 1α (hEF1α) and cytomegalovirus (CMV) promoter sequences in SCNT transgenic dogs. After transfection, transgenic donor fibroblasts with the hEF1α-enhanced green fluorescence protein (EGFP) transgene were successfully isolated using fluorescence-activated cell sorting (FACS). We obtained four puppies, after SCNT, and identified three puppies as being transgenic using PCR analysis. Unexpectedly, EGFP regulated by hEF1α promoter was not observed at the organismal and cellular levels in these transgenic dogs. EGFP expression was rescued by the inhibition of DNA methyltransferases, implying that the hEF1α promoter is silenced by DNA methylation. Next, donor cells with CMV-EGFP transgene were successfully established and SCNT was performed. Three puppies of six born puppies were confirmed to be transgenic. Unlike hEF1α-regulated EGFP, CMV-regulated EGFP was strongly detectable at both the organismal and cellular levels in all transgenic dogs, even after 19 months. In conclusion, our study suggests that the CMV promoter is more suitable, than the hEF1α promoter, for stable transgene expression in SCNT-derived transgenic canine model.
Collapse
Affiliation(s)
- Kiyoung Eun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Nayoung Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Min Gi Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
| | - Yeon I. K. Jeong
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Eun Ji Choi
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - P. Olof Olsson
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- * E-mail: (SHH); (HK)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- * E-mail: (SHH); (HK)
| |
Collapse
|
22
|
Haery L, Deverman BE, Matho KS, Cetin A, Woodard K, Cepko C, Guerin KI, Rego MA, Ersing I, Bachle SM, Kamens J, Fan M. Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation. Front Neuroanat 2019; 13:93. [PMID: 31849618 PMCID: PMC6902037 DOI: 10.3389/fnana.2019.00093] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.
Collapse
Affiliation(s)
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Kenton Woodard
- Penn Vector Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Connie Cepko
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Keaveney MK, Tseng HA, Ta TL, Gritton HJ, Man HY, Han X. A MicroRNA-Based Gene-Targeting Tool for Virally Labeling Interneurons in the Rodent Cortex. Cell Rep 2019; 24:294-303. [PMID: 29996091 DOI: 10.1016/j.celrep.2018.06.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
More specific and broadly applicable viral gene-targeting tools for labeling neuron subtypes are needed to advance neuroscience research, especially in rodent transgenic disease models and genetically intractable species. Here, we develop a viral vector that restricts transgene expression to GABAergic interneurons in the rodent neocortex by exploiting endogenous microRNA regulation. Our interneuron-targeting, microRNA-guided neuron tag, "GABA mAGNET," achieves >95% interneuron selective labeling in the mouse cortex, including in a murine model of autism and also some preferential labeling of interneurons in the rat brain. We demonstrate an application of our GABA mAGNET by performing simultaneous, in vivo optogenetic control of two distinct neuron subtypes. This interneuron labeling tool highlights the potential of microRNA-based viral gene targeting to specific neuron subtypes.
Collapse
Affiliation(s)
- Marianna K Keaveney
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Tina L Ta
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Jarrin S, Finn DP. Optogenetics and its application in pain and anxiety research. Neurosci Biobehav Rev 2019; 105:200-211. [DOI: 10.1016/j.neubiorev.2019.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
25
|
Lamprecht R. Regulation of signaling proteins in the brain by light. Prog Neurobiol 2019; 180:101638. [DOI: 10.1016/j.pneurobio.2019.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
|
26
|
Jüttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, Hantz P, Szikra T, Esposti F, Cowan CS, Bharioke A, Patino-Alvarez CP, Keles Ö, Kusnyerik A, Azoulay T, Hartl D, Krebs AR, Schübeler D, Hajdu RI, Lukats A, Nemeth J, Nagy ZZ, Wu KC, Wu RH, Xiang L, Fang XL, Jin ZB, Goldblum D, Hasler PW, Scholl HPN, Krol J, Roska B. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 2019; 22:1345-1356. [PMID: 31285614 DOI: 10.1038/s41593-019-0431-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
Abstract
Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.
Collapse
Affiliation(s)
- Josephine Jüttner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arnold Szabo
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rei K Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Santiago B Rompani
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Peter Hantz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Federico Esposti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Division of Neuroscience, San Raffaele Research Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arjun Bharioke
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Claudia P Patino-Alvarez
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Özkan Keles
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Akos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Dominik Hartl
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Rozina I Hajdu
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Akos Lukats
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Janos Nemeth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltan Z Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Kun-Chao Wu
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Rong-Han Wu
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Lue Xiang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Xiao-Long Fang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - David Goldblum
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
27
|
Ingusci S, Cattaneo S, Verlengia G, Zucchini S, Simonato M. A Matter of Genes: The Hurdles of Gene Therapy for Epilepsy. Epilepsy Curr 2019; 19:38-43. [PMID: 30838918 PMCID: PMC6610370 DOI: 10.1177/1535759718822846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Gene therapy has recently advanced to the level of standard of care for several
diseases. However, its application to neurological disorders is still in the
experimental phase. In this review, we discuss recent advancements in the field
that provide optimism on the possibility to have first-in-human studies for gene
therapy of some forms of epilepsy in the not so distant future.
Collapse
Affiliation(s)
- Selene Ingusci
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Stefano Cattaneo
- 2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Gianluca Verlengia
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Zucchini
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,3 Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
28
|
Logrip ML. Molecular tools to elucidate factors regulating alcohol use. Alcohol 2019; 74:3-9. [PMID: 30033149 DOI: 10.1016/j.alcohol.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Alcohol use disorder (AUD) is a pervasive societal problem, marked by high levels of alcohol intake and recidivism. Despite these common disease traits, individuals diagnosed with AUD display a range of disordered drinking and alcohol-related behaviors. The diversity in disease presentation, as well as the established polygenic nature of the disorder and complex neurocircuitry, speaks to the variety of neurochemical changes resulting from alcohol intake that may differentially regulate alcohol-related behaviors. Investigations into the molecular adaptations responsible for maladaptive alcohol-related behavioral outcomes require an ever-evolving set of molecular tools to elucidate with increasing precision how alcohol alters behavior through neurochemical changes. This review highlights recent advances in molecular methodology, addressing how incorporation of these cutting-edge techniques not only may enhance current knowledge of the molecular bases of AUD, but also may facilitate identification of improved treatment targets that may be therapeutic in specific subpopulations of AUD individuals.
Collapse
|
29
|
Ikeda K, Kaneko R, Yanagawa Y, Ogawa M, Kobayashi K, Arata S, Kawakami K, Onimaru H. Analysis of the neuronal network of the medullary respiratory center in transgenic rats expressing archaerhodopsin-3 in Phox2b-expressing cells. Brain Res Bull 2018; 144:39-45. [PMID: 30448454 DOI: 10.1016/j.brainresbull.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 11/18/2022]
Abstract
Preinspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG) comprise one of the respiratory rhythm generators in the medulla of the neonatal rat. A subgroup of pFRG/Pre-I neurons expresses the transcription factor Phox2b. To further analyze detailed neuronal mechanisms of respiratory rhythm generation in the neonatal rat, we developed a transgenic (Tg) rat line in which Phox2b-positive cells expressed archaerhodopsin-3 (Arch). Brainstem-spinal cord preparations were isolated from 0-2-day-old Tg newborn rats and were superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, pH 7.4, at 25-26 °C. Inspiratory fourth cervical ventral root (C4) activity was monitored, and membrane potentials of neurons in the pFRG including Pre-I and inspiratory neurons were recorded. Phox2b-positive cells in the Tg rats were essentially positive for enhanced green fluorescent protein (EGFP) signals (reporter for Arch) in the pFRG. Continuous photo-stimulation of the rostral ventral medulla for up to 90 s by covering the pFRG with green laser light (532 nm) induced a decrease of respiratory rate measured at C4 accompanied by membrane hyperpolarization of Phox2b-positive pFRG/Pre-I neurons. In contrast, Phox2b-negative inspiratory neurons were not hyperpolarized during the photo-stimulation. Our findings showed that Phox2b-expressing pFRG/Pre-I neurons are involved in the maintenance of the basic respiratory rhythm in neonatal rat.
Collapse
Affiliation(s)
- Keiko Ikeda
- Department of Physiology, International University of Health and Welfare (IUHW), 4-3 Kozunomori, Narita City, Chiba 286-8686, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Yuchio Yanagawa
- Department of Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Masaaki Ogawa
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan.
| |
Collapse
|
30
|
Development of lentiviral vectors for efficient glutamatergic-selective gene expression in cultured hippocampal neurons. Sci Rep 2018; 8:15156. [PMID: 30310105 PMCID: PMC6181963 DOI: 10.1038/s41598-018-33509-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/01/2018] [Indexed: 01/11/2023] Open
Abstract
Targeting gene expression to a particular subset of neurons helps study the cellular function of the nervous system. Although neuron-specific promoters, such as the synapsin I promoter and the α-CaMKII promoter, are known to exhibit selectivity for excitatory glutamatergic neurons in vivo, the cell type-specificity of these promoters has not been thoroughly tested in culture preparations. Here, by using hippocampal culture preparation from the VGAT-Venus transgenic mice, we examined the ability of five putative promoter sequences of glutamatergic-selective markers including synapsin I, α-CaMKII, the vesicular glutamate transporter 1 (VGLUT1), Dock10 and Prox1. Among these, a genomic fragment containing a 2.1 kb segment upstream of the translation start site (TSS) of the VGLUT1 implemented in a lentiviral vector with the Tet-Off inducible system achieved the highest preferential gene expression in glutamatergic neurons. Analysis of various lengths of the VGLUT1 promoter regions identified a segment between −2.1 kb and −1.4 kb from the TSS as a responsible element for the glutamatergic selectivity. Consistently, expression of channelrhodopsin under this promoter sequence allowed for selective light-evoked activation of excitatory neurons. Thus, the lentiviral system carrying the VGLUT1 promoter fragment can be used to effectively target exogenous gene expression to excitatory glutamatergic neurons in cultures.
Collapse
|
31
|
Bedbrook CN, Deverman BE, Gradinaru V. Viral Strategies for Targeting the Central and Peripheral Nervous Systems. Annu Rev Neurosci 2018; 41:323-348. [DOI: 10.1146/annurev-neuro-080317-062048] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant viruses allow for targeted transgene expression in specific cell populations throughout the nervous system. The adeno-associated virus (AAV) is among the most commonly used viruses for neuroscience research. Recombinant AAVs (rAAVs) are highly versatile and can package most cargo composed of desired genes within the capsid's ∼5-kb carrying capacity. Numerous regulatory elements and intersectional strategies have been validated in rAAVs to enable cell type–specific expression. rAAVs can be delivered to specific neuronal populations or globally throughout the animal. The AAV capsids have natural cell type or tissue tropism and trafficking that can be modified for increased specificity. Here, we describe recently engineered AAV capsids and associated cargo that have extended the utility of AAVs in targeting molecularly defined neurons throughout the nervous system, which will further facilitate neuronal circuit interrogation and discovery.
Collapse
Affiliation(s)
- Claire N. Bedbrook
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Benjamin E. Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
32
|
Ferguson BR, Gao WJ. Thalamic Control of Cognition and Social Behavior Via Regulation of Gamma-Aminobutyric Acidergic Signaling and Excitation/Inhibition Balance in the Medial Prefrontal Cortex. Biol Psychiatry 2018; 83:657-669. [PMID: 29373121 PMCID: PMC5862785 DOI: 10.1016/j.biopsych.2017.11.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND The mediodorsal thalamus plays a critical role in cognition through its extensive innervation of the medial prefrontal cortex (mPFC), but how the two structures cooperate at the single-cell level to generate associated cognitive functions and other mPFC-dependent behaviors remains elusive. Maintaining the proper balance between excitation and inhibition (E/I balance) is of principal importance for organizing cortical activity. Furthermore, the PFC E/I balance has been implicated in successful execution of multiple PFC-dependent behaviors in both animal research and the context of human psychiatric disorders. METHODS Here, we used a pharmacogenetic strategy to decrease mediodorsal thalamic activity in adult male rats and evaluated the consequences for E/I balance in PFC pyramidal neurons as well as cognition, social interaction, and anxiety. RESULTS We found that dampening mediodorsal thalamic activity caused significant reductions in gamma-aminobutyric acidergic signaling and increased E/I balance in the mPFC and was concomitant with abnormalities in these behaviors. Furthermore, by selectively activating parvalbumin interneurons in the mPFC with a novel pharmacogenetic approach, we restored gamma-aminobutyric acidergic signaling and E/I balance as well as ameliorated all behavioral impairments. CONCLUSIONS These findings underscore the importance of thalamocortical activation of mPFC gamma-aminobutyric acidergic interneurons in a broad range of mPFC-dependent behaviors. Furthermore, they highlight this circuitry as a platform for therapeutic investigation in psychiatric diseases that involve impairments in PFC-dependent behaviors.
Collapse
Affiliation(s)
- Brielle R Ferguson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Gene-Based Neuromodulation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Abstract
Given their neuroanatomical similarities to humans and their ability to perform complex behaviors, the nonhuman primate has been an important model for understanding complex systems such as sensory processing, motor control, social interaction, and nervous system disorders. Optogenetics offers cell-type specific neural control with millisecond precision, making it a powerful neural modulation technique. Combining optogenetics with the nonhuman primate model promises to lead to significant advances in both basic and applied research. In the past few years, optogenetics has made considerable progress in the nonhuman primate. Here, we systematically review the current state-of-art of optogenetics in the nonhuman primate with an emphasis on behavioral manipulation. Given its recent successes, we believe that the progress in the nonhuman primate will boost the translation of optogenetics to clinical applications in the near future.
Collapse
Affiliation(s)
- Chunshan Deng
- 1 State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,2 Department of Neurology, Shenzhen People' s Hospital, Second Clinical College, Jinan University, Guangzhou, China
| | - Hong Yuan
- 1 State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,3 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ji Dai
- 1 State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,3 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sánchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017; 20:1172-1179. [PMID: 28671695 PMCID: PMC5529245 DOI: 10.1038/nn.4593] [Citation(s) in RCA: 968] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/20/2017] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are commonly used for in vivo gene transfer. Nevertheless, AAVs that provide efficient transduction across specific organs or cell populations are needed. Here, we describe AAV-PHP.eB and AAV-PHP.S, capsids that efficiently transduce the central and peripheral nervous systems, respectively. In the adult mouse, intravenous administration of 1 × 1011 vector genomes (vg) of AAV-PHP.eB transduced 69% of cortical and 55% of striatal neurons, while 1 × 1012 vg of AAV-PHP.S transduced 82% of dorsal root ganglion neurons, as well as cardiac and enteric neurons. The efficiency of these vectors facilitates robust cotransduction and stochastic, multicolor labeling for individual cell morphology studies. To support such efforts, we provide methods for labeling a tunable fraction of cells without compromising color diversity. Furthermore, when used with cell-type-specific promoters and enhancers, these AAVs enable efficient and targetable genetic modification of cells throughout the nervous system of transgenic and non-transgenic animals.
Collapse
Affiliation(s)
- Ken Y Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bryan B Yoo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Namita Ravi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei-Li Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Luis Sánchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
36
|
de Solis CA, Hosek MP, Holehonnur R, Ho A, Banerjee A, Luong JA, Jones LE, Chaturvedi D, Ploski JE. Adeno-associated viral serotypes differentially transduce inhibitory neurons within the rat amygdala. Brain Res 2017; 1672:148-162. [PMID: 28764932 DOI: 10.1016/j.brainres.2017.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Recombinant adeno-associated viruses (AAV) are frequently used to make localized genetic manipulations within the rodent brain. It is accepted that the different viral serotypes possess differing affinities for particular cell types, but it is not clear how these properties affect their ability to transduce specific neuronal cell sub-types. Here, we examined ten AAV serotypes for their ability to transduce neurons within the rat basal and lateral nuclei of the amygdala (BLA) and the central nucleus of the amygdala (CeA). AAV2 based viral genomes designed to express either green fluorescent protein (GFP) from a glutamate decarboxylase (GAD65) promoter or the far-red fluorescent protein (E2-Crimson) from a phosphate-activated glutaminase (PAG) promoter were created and pseudotyped as AAV2/1, AAV2/4, AAV2/5, AAV2/6, AAV2/7, AAV 2/8, AAV2/9, AAV2/rh10, AAV2/DJ and AAV2/DJ8. These viruses were infused into the BLA and CeA at equal titers and twenty-one days later tissue within the amygdala was examined for viral transduction efficiency. These serotypes transduced neurons with similar efficiency, except for AAV4 and AAV5, which exhibited significantly less efficient neuronal transduction. Notably, AAV4 and AAV5 possess the most divergent capsid protein sequences compared to the other commonly available serotypes. We found that the Gad65-GFP virus did not exclusively express GFP within inhibitory neurons, as assessed by fluorescent in situ hybridization (FISH), but when this virus was used to transduce CeA neurons, the majority of the neurons that expressed GFP were in fact inhibitory neurons and this was likely due to the fact that this nucleus contains a very high percentage of inhibitory neurons.
Collapse
Affiliation(s)
- C A de Solis
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - M P Hosek
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - R Holehonnur
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - A Ho
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - A Banerjee
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - J A Luong
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - L E Jones
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - D Chaturvedi
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - J E Ploski
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States.
| |
Collapse
|
37
|
El-Shamayleh Y, Kojima Y, Soetedjo R, Horwitz GD. Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum. Neuron 2017. [PMID: 28648497 DOI: 10.1016/j.neuron.2017.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Purkinje cells of the primate cerebellum play critical but poorly understood roles in the execution of coordinated, accurate movements. Elucidating these roles has been hampered by a lack of techniques for manipulating spiking activity in these cells selectively-a problem common to most cell types in non-transgenic animals. To overcome this obstacle, we constructed AAV vectors carrying the channelrhodopsin-2 (ChR2) gene under the control of a 1 kb L7/Pcp2 promoter. We injected these vectors into the cerebellar cortex of rhesus macaques and tested vector efficacy in three ways. Immunohistochemical analyses confirmed selective ChR2 expression in Purkinje cells. Neurophysiological recordings confirmed robust optogenetic activation. Optical stimulation of the oculomotor vermis caused saccade dysmetria. Our results demonstrate the utility of AAV-L7-ChR2 for revealing the contributions of Purkinje cells to circuit function and behavior, and they attest to the feasibility of promoter-based, targeted, genetic manipulations in primates.
Collapse
Affiliation(s)
- Yasmine El-Shamayleh
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA
| | - Yoshiko Kojima
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA
| | - Robijanto Soetedjo
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA
| | - Gregory D Horwitz
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA.
| |
Collapse
|
38
|
Wykes RC, Lignani G. Gene therapy and editing: Novel potential treatments for neuronal channelopathies. Neuropharmacology 2017; 132:108-117. [PMID: 28564577 DOI: 10.1016/j.neuropharm.2017.05.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/14/2023]
Abstract
Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- R C Wykes
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, UK.
| | - G Lignani
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, UK.
| |
Collapse
|
39
|
Natarajan G, Leibowitz JA, Zhou J, Zhao Y, McElroy JA, King MA, Ormerod BK, Carney PR. Adeno-associated viral vector-mediated preprosomatostatin expression suppresses induced seizures in kindled rats. Epilepsy Res 2017; 130:81-92. [PMID: 28167431 DOI: 10.1016/j.eplepsyres.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/29/2023]
Abstract
Somatostatin is expressed widely in the hippocampus and notably in hilar GABAergic neurons that are vulnerable to seizure neuropathology in chronic temporal lobe epilepsy. We previously demonstrated that sustained bilateral preprosomatostatin (preproSST) expression in the hippocampus prevents the development of generalized seizures in the amygdala kindling model of temporal lobe epilepsy. Here we tested whether sustained preproSST expression is anticonvulsant in rats already kindled to high-grade seizures. Rats were kindled until they exhibited 3 consecutive Racine Grade 5 seizures before adeno-associated virus serotype 5 (AAV5) vector driving either eGFP (AAV5-CBa-eGFP) or preproSST and eGFP (AAV5-CBa-preproSST-eGFP) expression was injected bilaterally into the hippocampal dentate gyrus and CA1 region. Retested 3 weeks later, rats that received control vector (AAV5-CBa-eGFP) continued to exhibit high-grade seizures whereas 6/13 rats that received preproSST vector (AAV5-CBa-preproSST-eGFP) were seizure-free. Of these rats, 5/6 remained seizure-free after repeated stimulation sessions and when the stimulation current was increased. These results suggest that vector-mediated expression of preproSST may be a viable therapeutic strategy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Gowri Natarajan
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey A Leibowitz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Junli Zhou
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Yang Zhao
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Jessica A McElroy
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Michael A King
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA; NF/SG VA Medical Center, University of Florida, Gainesville, FL 32611, USA
| | - Brandi K Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Paul R Carney
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
40
|
Tsang AH, Astiz M, Leinweber B, Oster H. Rodent Models for the Analysis of Tissue Clock Function in Metabolic Rhythms Research. Front Endocrinol (Lausanne) 2017; 8:27. [PMID: 28243224 PMCID: PMC5304405 DOI: 10.3389/fendo.2017.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
The circadian timing system consists on a distributed network of cellular clocks that together coordinate 24-h rhythms of physiology and behavior. Clock function and metabolism are tightly coupled, from the cellular to the organismal level. Genetic and non-genetic approaches in rodents have been employed to study circadian clock function in the living organism. Due to the ubiquitous expression of clock genes and the intricate interaction between the circadian system and energy metabolism, genetic approaches targeting specific tissue clocks have been used to assess their contribution in systemic metabolic processes. However, special requirements regarding specificity and efficiency have to be met to allow for valid conclusions from such studies. In this review, we provide a brief summary of different approaches developed for dissecting tissue clock function in the metabolic context in rodents, compare their strengths and weaknesses, and suggest new strategies in assessing tissue clock output and the consequences of circadian clock disruption in vivo.
Collapse
Affiliation(s)
- Anthony H. Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
- Department of Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Mariana Astiz
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
- *Correspondence: Henrik Oster,
| |
Collapse
|
41
|
O'Shea DJ, Trautmann E, Chandrasekaran C, Stavisky S, Kao JC, Sahani M, Ryu S, Deisseroth K, Shenoy KV. The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Exp Neurol 2017; 287:437-451. [PMID: 27511294 PMCID: PMC5154795 DOI: 10.1016/j.expneurol.2016.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/19/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Eric Trautmann
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | | | - Sergey Stavisky
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Jonathan C Kao
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Maneesh Sahani
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| | - Stephen Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States; Deparment of Neurobiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
42
|
Sjulson L, Cassataro D, DasGupta S, Miesenböck G. Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annu Rev Genet 2016; 50:571-594. [PMID: 27732792 DOI: 10.1146/annurev-genet-120215-035011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.
Collapse
Affiliation(s)
- Lucas Sjulson
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016; .,Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Daniela Cassataro
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Shamik DasGupta
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom; .,Present address: Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom;
| |
Collapse
|
43
|
Jin L, Lange W, Kempmann A, Maybeck V, Günther A, Gruteser N, Baumann A, Offenhäusser A. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses. J Biotechnol 2016; 233:171-80. [DOI: 10.1016/j.jbiotec.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
44
|
Abstract
In this issue of Neuron, Klein et al. (2016) used cell-type-specific optogenetics and electrical microstimulation to characterize the koniocellular geniculocortical projections in nonhuman primates. Their work offers a powerful platform for refining our understanding of the mechanisms of visual information processing in the lateral geniculate nucleus and primary visual cortex.
Collapse
|
45
|
Ringach DL, Mineault PJ, Tring E, Olivas ND, Garcia-Junco-Clemente P, Trachtenberg JT. Spatial clustering of tuning in mouse primary visual cortex. Nat Commun 2016; 7:12270. [PMID: 27481398 PMCID: PMC4974656 DOI: 10.1038/ncomms12270] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint orientation and spatial frequency domain. We found that the similarity of tuning decreases as a function of cortical distance, revealing a weak but statistically significant spatial clustering. Clustering was also observed across different cortical depths, consistent with a columnar organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on a local scale, it resembles a degraded version of the organization seen in higher mammals, hinting at a possible common origin. The preference of cells in mouse primary visual cortex are thought to be randomly distributed in a salt-and-pepper map, in contrast to the smooth cortical maps observed in higher mammals. Here the authors show that excitatory cells in mouse primary visual cortex are spatially clustered, resembling a degraded version of the organization seen in higher mammals.
Collapse
Affiliation(s)
- Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Psychology, University of California, Los Angeles, California 90095, USA
| | - Patrick J Mineault
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nicholas D Olivas
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Pablo Garcia-Junco-Clemente
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
46
|
Tian J, Geng F, Gao F, Chen YH, Liu JH, Wu JL, Lan YJ, Zeng YN, Li XW, Yang JM, Gao TM. Down-Regulation of Neuregulin1/ErbB4 Signaling in the Hippocampus Is Critical for Learning and Memory. Mol Neurobiol 2016; 54:3976-3987. [DOI: 10.1007/s12035-016-9956-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
47
|
El-Shamayleh Y, Ni AM, Horwitz GD. Strategies for targeting primate neural circuits with viral vectors. J Neurophysiol 2016; 116:122-34. [PMID: 27052579 PMCID: PMC4961743 DOI: 10.1152/jn.00087.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level.
Collapse
Affiliation(s)
- Yasmine El-Shamayleh
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Amy M Ni
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory D Horwitz
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| |
Collapse
|
48
|
Parker KL. Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 27069384 PMCID: PMC4826776 DOI: 10.31887/dcns.2016.18.1/kparker] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optogenetics refers to the ability to control cells that have been genetically modified to express light-sensitive ion channels. The introduction of optogenetic approaches has facilitated the dissection of neural circuits. Optogenetics allows for the precise stimulation and inhibition of specific sets of neurons and their projections with fine temporal specificity. These techniques are ideally suited to investigating neural circuitry underlying motor and cognitive dysfunction in animal models of human disease. Here, we focus on how optogenetics has been used over the last decade to probe striatal circuits that are involved in Parkinson disease, a neurodegenerative condition involving motor and cognitive abnormalities resulting from degeneration of midbrain dopaminergic neurons. The precise mechanisms underlying the striatal contribution to both cognitive and motor dysfunction in Parkinson disease are unknown. Although optogenetic approaches are somewhat removed from clinical use, insight from these studies can help identify novel therapeutic targets and may inspire new treatments for Parkinson disease. Elucidating how neuronal and behavioral functions are influenced and potentially rescued by optogenetic manipulation in animal models could prove to be translatable to humans. These insights can be used to guide future brain-stimulation approaches for motor and cognitive abnormalities in Parkinson disease and other neuropsychiatric diseases.
Collapse
|
49
|
Shima Y, Sugino K, Hempel CM, Shima M, Taneja P, Bullis JB, Mehta S, Lois C, Nelson SB. A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types. eLife 2016; 5:e13503. [PMID: 26999799 PMCID: PMC4846381 DOI: 10.7554/elife.13503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022] Open
Abstract
There is a continuing need for driver strains to enable cell-type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However, since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu). DOI:http://dx.doi.org/10.7554/eLife.13503.001 Scientists can track and even alter the activity of different kinds of neurons, as well as the connections between neurons, by manipulating their genes. However, most genes are active in many different kinds of cells in many different places in the brain, making it difficult to track or target only a particular neuron or brain area. Enhancers are sections of DNA that can regulate the activity of nearby genes so that they are only active in very specific cell types, and an “enhancer trap” is a genetic approach that essentially hijacks enhancers to express artificial genes in those same cell types. The technique relies on inserting a genetic marker, which can be easily tracked, into random locations in the genome. If this marker then interacts with an enhancer, it is activated and the effect of the enhancer on gene expression can be assessed. This method has been used in fruit flies and fish to identify enhancers that specifically restrict gene expression to a small subset of cells. Now, Shima et al. show that enhancer traps can be used successfully in mammals too. The experiments produced over 200 different strains of mice, many with the fluorescent marker only in specific brain areas or in specific kinds of brain cells. Some of the types of brain cells uncovered by these experiments are new, and the labelling of specific brain cells and brain areas in different strains makes these mice a useful resource for future work. Furthermore, it will be relatively straightforward to produce many more strains of these mice, because it would simply involve crossbreeding mice. It is likely that some of these to-be-discovered strains will be useful tools for research as well. DOI:http://dx.doi.org/10.7554/eLife.13503.002
Collapse
Affiliation(s)
- Yasuyuki Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Chris Martin Hempel
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Masami Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Praveen Taneja
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - James B Bullis
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Sonam Mehta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Sacha B Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
50
|
Genomic Views of Transcriptional Enhancers: Essential Determinants of Cellular Identity and Activity-Dependent Responses in the CNS. J Neurosci 2016; 35:13819-26. [PMID: 26468181 DOI: 10.1523/jneurosci.2622-15.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Sprinkled throughout the genome are a million regulatory sequences called transcriptional enhancers that activate gene promoters in the right cells, at the right time. Enhancers endow the brain with its incredible diversity of cell types and also translate neural activity into gene induction. Thanks to rapid advances in genomic technologies, it is now possible to identify thousands of enhancers rapidly, test their transcriptional function en masse, and address their neurobiological functions via genome editing. Enhancers also promise to be a great technological opportunity for neuroscience, offering the potential for cell-type-specific genetic labeling and manipulation without the need for transgenesis. The objective of this review and the accompanying 2015 SfN mini-symposium is to highlight the use of new and emerging genomic technologies to probe enhancer function in the nervous system. SIGNIFICANCE STATEMENT Transcriptional enhancers turn on genes in the right cells, at the right time. Enhancers are also the genomic sequences that encode the incredible diversity of cell types in the brain and enable the brain to turn genes on in response to new experiences. New technology enables enhancers to be found and manipulated. The study of enhancers promises to inform our understanding of brain development and function. The application of enhancer technology holds promise in accelerating basic neuroscience research and enabling gene therapies to be targeted to specific cell types in the brain.
Collapse
|