1
|
Desarkar P. Neuroplasticity-based novel brain stimulation support intervention options for autistic population. Front Hum Neurosci 2025; 19:1522718. [PMID: 40026819 PMCID: PMC11868071 DOI: 10.3389/fnhum.2025.1522718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Transcranial magnetic stimulation (TMS), introduced in 1985, has become a vital tool for investigating brain-behaviour relationships and therapeutic interventions. Repetitive TMS (rTMS) as a therapeutic tool has shown promise for various neuropsychiatric conditions, including autism, which affects approximately 1% of the global population. Evidence suggests that atypical neuroplasticity characterizes the neurobiology of autism. Recent studies using TMS paradigms like theta-burst stimulation (TBS) indicate an excessive neuroplasticity or hyper-plasticity in the form of an excessive long-term potentiation (LTP) in the motor cortex of autistic adults compared to neurotypical controls. Hyper-plasticity may negatively impact cognitive and behavioural outcomes. Our proposed neuroplasticity-based rTMS intervention protocols aim to address motor function, sensory sensitivities, and executive function difficulties in autistic adults. We present a testable framework to evaluate neuroplasticity in the motor, sensory, and dorsolateral prefrontal cortices, hypothesizing the presence of hyper-plasticity in autistic adults. We anticipate that this hyper-plasticity underpins motor, sensory, and executive function difficulties in autistic adults. Additionally, we propose investigating the efficacy of bilateral rTMS to reduce hyper-plasticity and improve these functions in autistic adults. This approach not only seeks to enhance therapeutic options but also provides biological insights into the brain mechanisms underlying some of the common autism-associated difficulties.
Collapse
Affiliation(s)
- Pushpal Desarkar
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Anshu K, Nair AK, Srinath S, Laxmi TR. Altered Developmental Trajectory in Male and Female Rats in a Prenatal Valproic Acid Exposure Model of Autism Spectrum Disorder. J Autism Dev Disord 2023; 53:4390-4411. [PMID: 35976506 DOI: 10.1007/s10803-022-05684-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Early motor and sensory developmental delays precede Autism Spectrum Disorder (ASD) diagnosis and may serve as early indicators of ASD. The literature on sensorimotor development in animal models is sparse, male centered, and has mixed findings. We characterized early development in a prenatal valproic acid (VPA) model of ASD and found sex-specific developmental delays in VPA rats. We created a developmental composite score combining 15 test readouts, yielding a reliable gestalt measure spanning physical, sensory, and motor development, that effectively discriminated between VPA and control groups. Considering the heterogeneity in ASD phenotype, the developmental composite offers a robust metric that can enable comparison across different animal models of ASD and can serve as an outcome measure for early intervention studies.
Collapse
Affiliation(s)
- Kumari Anshu
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Ajay Kumar Nair
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, 53703, WI, USA
| | - Shoba Srinath
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
| | - T Rao Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
3
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
4
|
Schiavi S, La Rosa P, Petrillo S, Carbone E, D'Amico J, Piemonte F, Trezza V. N-Acetylcysteine Mitigates Social Dysfunction in a Rat Model of Autism Normalizing Glutathione Imbalance and the Altered Expression of Genes Related to Synaptic Function in Specific Brain Areas. Front Psychiatry 2022; 13:851679. [PMID: 35280167 PMCID: PMC8916240 DOI: 10.3389/fpsyt.2022.851679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Prenatal exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD) in humans and it induces autistic-like behaviors in rodents. Imbalances between GABAergic and glutamatergic neurotransmission and increased oxidative stress together with altered glutathione (GSH) metabolism have been hypothesized to play a role in both VPA-induced embriotoxicity and in human ASD. N-acetylcysteine (NAC) is an antioxidant precursor of glutathione and a modulator of glutamatergic neurotransmission that has been tested in ASD, although the clinical studies currently available provided controversial results. Here, we explored the effects of repeated NAC (150 mg/kg) administration on core autistic-like features and altered brain GSH metabolism in the VPA (500 mg/kg) rat model of ASD. Furthermore, we measured the mRNA expression of genes encoding for scaffolding and transcription regulation proteins, as well as the subunits of NMDA and AMPA receptors and metabotropic glutamate receptors mGLUR1 and mGLUR5 in brain areas that are relevant to ASD. NAC administration ameliorated the social deficit displayed by VPA-exposed rats in the three-chamber test, but not their stereotypic behavior in the hole board test. Furthermore, NAC normalized the altered GSH levels displayed by these animals in the hippocampus and nucleus accumbens, and it partially rescued the altered expression of post-synaptic terminal network genes found in VPA-exposed rats, such as NR2a, MGLUR5, GLUR1, and GLUR2 in nucleus accumbens, and CAMK2, NR1, and GLUR2 in cerebellum. These data indicate that NAC treatment selectively mitigates the social dysfunction displayed by VPA-exposed rats normalizing GSH imbalance and reestablishing the expression of genes related to synaptic function in a brain region-specific manner. Taken together, these data contribute to clarify the behavioral impact of NAC in ASD and the molecular mechanisms that underlie its effects.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, University "Roma Tre", Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University, Rome, Italy
| | - Sara Petrillo
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emilia Carbone
- Department of Science, University "Roma Tre", Rome, Italy
| | - Jessica D'Amico
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Department of Science, University "Roma Tre", Rome, Italy
| |
Collapse
|
5
|
The early overgrowth theory of autism spectrum disorder: Insight into convergent mechanisms from valproic acid exposure and translational models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020. [PMID: 32711813 DOI: 10.1016/bs.pmbts.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The development of new approaches for the clinical management of autism spectrum disorder (ASD) can only be realized through a better understanding of the neurobiological changes associated with ASD. One strategy for gaining deeper insight into the neurobiological mechanisms associated with ASD is to identify converging pathogenic processes associated with human idiopathic clinicopathology that are conserved in translational models of ASD. In this chapter, we first present the early overgrowth theory of ASD. Second, we introduce valproic acid (VPA), one of the most robust and well-known environmental risk factors associated with ASD, and we summarize the rapidly growing body of animal research literature using VPA as an ASD translational model. Lastly, we will detail the mechanisms of action of VPA and its impact on functional neural systems, as well as discuss future research directions that could have a lasting impact on the field.
Collapse
|
6
|
Wang J, Feng S, Li M, Liu Y, Yan J, Tang Y, Du D, Chen F. Increased Expression of Kv10.2 in the Hippocampus Attenuates Valproic Acid-Induced Autism-Like Behaviors in Rats. Neurochem Res 2019; 44:2796-2808. [DOI: 10.1007/s11064-019-02903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
|
7
|
Fuentealba CR, Fiedler JL, Peralta FA, Avalos AM, Aguayo FI, Morgado-Gallardo KP, Aliaga EE. Region-Specific Reduction of BDNF Protein and Transcripts in the Hippocampus of Juvenile Rats Prenatally Treated With Sodium Valproate. Front Mol Neurosci 2019; 12:261. [PMID: 31787877 PMCID: PMC6853897 DOI: 10.3389/fnmol.2019.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by a deep deficit in language and social interaction, accompanied by restricted, stereotyped and repetitive behaviors. The use of genetic autism animal models has revealed that the alteration of the mechanisms controlling the formation and maturation of neural circuits are points of convergence for the physiopathological pathways in several types of autism. Brain Derived Neurotrophic Factor (BDNF), a key multifunctional regulator of brain development, has been related to autism in several ways. However, its precise role is still elusive, in part, due to its extremely complex posttranscriptional regulation. In order to contribute to this topic, we treated prenatal rats with Valproate, a well-validated model of autism, to analyze BDNF levels in the hippocampus of juvenile rats. Valproate-treated rats exhibited an autism-like behavioral profile, characterized by a deficit in social interaction, anxiety-like behavior and repetitive behavior. In situ hybridization (ISH) experiments revealed that Valproate reduced BDNF mRNA, especially long-3′UTR-containing transcripts, in specific areas of the dentate gyrus (DG) and CA3 regions. At the same time, Valproate reduced BDNF immunoreactivity in the suprapyramidal and lucidum layers of CA3, but improved hippocampus-dependent spatial learning. The molecular changes reported here may help to explain the cognitive and behavioral signs of autism and reinforce BDNF as a potential molecular target for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Constanza R Fuentealba
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny L Fiedler
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Francisco A Peralta
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Felipe I Aguayo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Katherine P Morgado-Gallardo
- Department of Psychology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Esteban E Aliaga
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
8
|
Nagode DA, Meng X, Winkowski DE, Smith E, Khan-Tareen H, Kareddy V, Kao JPY, Kanold PO. Abnormal Development of the Earliest Cortical Circuits in a Mouse Model of Autism Spectrum Disorder. Cell Rep 2017; 18:1100-1108. [PMID: 28147267 PMCID: PMC5488290 DOI: 10.1016/j.celrep.2017.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/21/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) involves deficits in speech and sound processing. Cortical circuit changes during early development likely contribute to such deficits. Subplate neurons (SPNs) form the earliest cortical microcircuits and are required for normal development of thalamocortical and intracortical circuits. Prenatal valproic acid (VPA) increases ASD risk, especially when present during a critical time window coinciding with SPN genesis. Using optical circuit mapping in mouse auditory cortex, we find that VPA exposure on E12 altered the functional excitatory and inhibitory connectivity of SPNs. Circuit changes manifested as "patches" of mostly increased connection probability or strength in the first postnatal week and as general hyper-connectivity after P10, shortly after ear opening. These results suggest that prenatal VPA exposure severely affects the developmental trajectory of cortical circuits and that sensory-driven activity may exacerbate earlier, subtle connectivity deficits. Our findings identify the subplate as a possible common pathophysiological substrate of deficits in ASD.
Collapse
Affiliation(s)
- Daniel A Nagode
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ed Smith
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hamza Khan-Tareen
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure. Sci Rep 2016; 6:27400. [PMID: 27264355 PMCID: PMC4893673 DOI: 10.1038/srep27400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders characterized by impairments in social interactions and stereotyped behaviors. Valproic acid (VPA) is frequently used to treat epilepsy and bipolar disorders. When taken during pregnancy, VPA increases the risk of the unborn child to develop an ASD. In rodents, in utero VPA exposure can precipitate behavioral phenotypes related to ASD in the offspring. Therefore, such rodent models may allow for identification of synaptic pathophysiology underlying ASD risk. Here, we systematically probed alterations in synaptic proteins that might contribute to autism-related behavior in the offspring of in utero VPA-exposed mice. Moreover, we tested whether direct VPA exposure of cultured neocortical neurons may recapitulate the molecular alterations seen in vivo. VPA-exposed neurons in culture exhibit a significant increase in the number of glutamatergic synapses accompanied by a significant decrease in the number of GABAergic synapses. This shift in excitatory/inhibitory balance results in substantially increased spontaneous activity in neuronal networks arising from VPA-exposed neurons. Pharmacological experiments demonstrate that the alterations in GABAergic and glutamatergic synaptic proteins and structures are largely caused by inhibition of histone deacetylases. Therefore, our study highlights an epigenetic mechanism underlying the synaptic pathophysiology in this ASD model.
Collapse
|
10
|
Anomal RF, de Villers-Sidani E, Brandão JA, Diniz R, Costa MR, Romcy-Pereira RN. Impaired Processing in the Primary Auditory Cortex of an Animal Model of Autism. Front Syst Neurosci 2015; 9:158. [PMID: 26635548 PMCID: PMC4644803 DOI: 10.3389/fnsys.2015.00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022] Open
Abstract
Autism is a neurodevelopmental disorder clinically characterized by deficits in communication, lack of social interaction and repetitive behaviors with restricted interests. A number of studies have reported that sensory perception abnormalities are common in autistic individuals and might contribute to the complex behavioral symptoms of the disorder. In this context, hearing incongruence is particularly prevalent. Considering that some of this abnormal processing might stem from the unbalance of inhibitory and excitatory drives in brain circuitries, we used an animal model of autism induced by valproic acid (VPA) during pregnancy in order to investigate the tonotopic organization of the primary auditory cortex (AI) and its local inhibitory circuitry. Our results show that VPA rats have distorted primary auditory maps with over-representation of high frequencies, broadly tuned receptive fields and higher sound intensity thresholds as compared to controls. However, we did not detect differences in the number of parvalbumin-positive interneurons in AI of VPA and control rats. Altogether our findings show that neurophysiological impairments of hearing perception in this autism model occur independently of alterations in the number of parvalbumin-expressing interneurons. These data support the notion that fine circuit alterations, rather than gross cellular modification, could lead to neurophysiological changes in the autistic brain.
Collapse
Affiliation(s)
| | | | | | - Rebecca Diniz
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | | |
Collapse
|
11
|
Favre MR, La Mendola D, Meystre J, Christodoulou D, Cochrane MJ, Markram H, Markram K. Predictable enriched environment prevents development of hyper-emotionality in the VPA rat model of autism. Front Neurosci 2015; 9:127. [PMID: 26089770 PMCID: PMC4452729 DOI: 10.3389/fnins.2015.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/27/2015] [Indexed: 12/27/2022] Open
Abstract
Understanding the effects of environmental stimulation in autism can improve therapeutic interventions against debilitating sensory overload, social withdrawal, fear and anxiety. Here, we evaluate the role of environmental predictability on behavior and protein expression, and inter-individual differences, in the valproic acid (VPA) model of autism. Male rats embryonically exposed (E11.5) either to VPA, a known autism risk factor in humans, or to saline, were housed from weaning into adulthood in a standard laboratory environment, an unpredictably enriched environment, or a predictably enriched environment. Animals were tested for sociability, nociception, stereotypy, fear conditioning and anxiety, and for tissue content of glutamate signaling proteins in the primary somatosensory cortex, hippocampus and amygdala, and of corticosterone in plasma, amygdala and hippocampus. Standard group analyses on separate measures were complemented with a composite emotionality score, using Cronbach's Alpha analysis, and with multivariate profiling of individual animals, using Hierarchical Cluster Analysis. We found that predictable environmental enrichment prevented the development of hyper-emotionality in the VPA-exposed group, while unpredictable enrichment did not. Individual variation in the severity of the autistic-like symptoms (fear, anxiety, social withdrawal and sensory abnormalities) correlated with neurochemical profiles, and predicted their responsiveness to predictability in the environment. In controls, the association between socio-affective behaviors, neurochemical profiles and environmental predictability was negligible. This study suggests that rearing in a predictable environment prevents the development of hyper-emotional features in animals exposed to an autism risk factor, and demonstrates that unpredictable environments can lead to negative outcomes, even in the presence of environmental enrichment.
Collapse
Affiliation(s)
- Mônica R Favre
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Deborah La Mendola
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Julie Meystre
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Dimitri Christodoulou
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Melissa J Cochrane
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Henry Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Kamila Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
12
|
Kang J, Kim E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors. Front Mol Neurosci 2015; 8:17. [PMID: 26074764 PMCID: PMC4444740 DOI: 10.3389/fnmol.2015.00017] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/09/2015] [Indexed: 12/12/2022] Open
Abstract
Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs). Previous studies have identified enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits.
Collapse
Affiliation(s)
- Jaeseung Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, Korea ; Center for Synaptic Brain Dysfunctions, Institute for Basic Science Daejeon, Korea
| |
Collapse
|
13
|
Olde Loohuis NFM, Kole K, Glennon JC, Karel P, Van der Borg G, Van Gemert Y, Van den Bosch D, Meinhardt J, Kos A, Shahabipour F, Tiesinga P, van Bokhoven H, Martens GJM, Kaplan BB, Homberg JR, Aschrafi A. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis 2015; 80:42-53. [PMID: 25986729 DOI: 10.1016/j.nbd.2015.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/14/2015] [Accepted: 05/10/2015] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders are severe neurodevelopmental disorders, marked by impairments in reciprocal social interaction, delays in early language and communication, and the presence of restrictive, repetitive and stereotyped behaviors. Accumulating evidence suggests that dysfunction of the amygdala may be partially responsible for the impairment of social behavior that is a hallmark feature of ASD. Our studies suggest that a valproic acid (VPA) rat model of ASD exhibits an enlargement of the amygdala as compared to controls rats, similar to that observed in adolescent ASD individuals. Since recent research suggests that altered neuronal development and morphology, as seen in ASD, may result from a common post-transcriptional process that is under tight regulation by microRNAs (miRs), we examined genome-wide transcriptomics expression in the amygdala of rats prenatally exposed to VPA, and detected elevated miR-181c and miR-30d expression levels as well as dysregulated expression of their cognate mRNA targets encoding proteins involved in neuronal system development. Furthermore, selective suppression of miR-181c function attenuates neurite outgrowth and branching, and results in reduced synaptic density in primary amygdalar neurons in vitro. Collectively, these results implicate the small non-coding miR-181c in neuronal morphology, and provide a framework of understanding how dysregulation of a neurodevelopmentally relevant miR in the amygdala may contribute to the pathophysiology of ASD.
Collapse
Affiliation(s)
- N F M Olde Loohuis
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K Kole
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - P Karel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G Van der Borg
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Y Van Gemert
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - D Van den Bosch
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J Meinhardt
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - A Kos
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - F Shahabipour
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - P Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - H van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - J R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A Aschrafi
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Engineer CT, Centanni TM, Im KW, Kilgard MP. Speech sound discrimination training improves auditory cortex responses in a rat model of autism. Front Syst Neurosci 2014; 8:137. [PMID: 25140133 PMCID: PMC4122159 DOI: 10.3389/fnsys.2014.00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022] Open
Abstract
Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.
Collapse
Affiliation(s)
- Crystal T Engineer
- Cortical Plasticity Laboratory, School of Behavioral and Brain Sciences, The University of Texas at Dallas Richardson, TX, USA
| | - Tracy M Centanni
- Cortical Plasticity Laboratory, School of Behavioral and Brain Sciences, The University of Texas at Dallas Richardson, TX, USA
| | - Kwok W Im
- Cortical Plasticity Laboratory, School of Behavioral and Brain Sciences, The University of Texas at Dallas Richardson, TX, USA
| | - Michael P Kilgard
- Cortical Plasticity Laboratory, School of Behavioral and Brain Sciences, The University of Texas at Dallas Richardson, TX, USA
| |
Collapse
|
15
|
Engineer CT, Centanni TM, Im KW, Borland MS, Moreno NA, Carraway RS, Wilson LG, Kilgard MP. Degraded auditory processing in a rat model of autism limits the speech representation in non-primary auditory cortex. Dev Neurobiol 2014; 74:972-86. [PMID: 24639033 DOI: 10.1002/dneu.22175] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/17/2014] [Accepted: 03/07/2014] [Indexed: 01/22/2023]
Abstract
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism.
Collapse
Affiliation(s)
- C T Engineer
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, 75080
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Favre MR, Barkat TR, LaMendola D, Khazen G, Markram H, Markram K. General developmental health in the VPA-rat model of autism. Front Behav Neurosci 2013; 7:88. [PMID: 23898245 PMCID: PMC3721005 DOI: 10.3389/fnbeh.2013.00088] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/01/2013] [Indexed: 12/28/2022] Open
Abstract
Autism is a neurodevelopmental condition diagnosed by impaired social interaction, abnormal communication and, stereotyped behaviors. While post-mortem and imaging studies have provided good insights into the neurobiological symptomology of autism, animal models can be used to study the neuroanatomical, neurophysiological and molecular mediators in more detail and in a more controlled environment. The valproic acid (VPA) rat model is an environmentally triggered model with strong construct and clinical validity. It is based on VPA teratogenicity in humans, where mothers who are medicated with VPA during early pregnancy show an increased risk for giving birth to an autistic child. In rats, early embryonic exposure, around the time of neural tube closure, leads to autism-like anatomical and behavioral abnormalities in the offspring. Considering the increasing use of the VPA rat model, we present our observations of the general health of Wistar dams treated with a single intraperitoneal injection of 500 or, 600 mg/kg VPA on embryonic day E12.5, as well as their male and female offspring, in comparison to saline-exposed controls. We report increased rates of complete fetal reabsorption after both VPA doses. VPA 500 mg/kg showed no effect on dam body weight during pregnancy or, on litter size. Offspring exposed to VPA 500 mg/kg showed smaller brain mass on postnatal days 1 (P1) and 14 (P14), in addition to abnormal nest seeking behavior at P10 in the olfactory discrimination test, relative to controls. We also report increased rates of physical malformations in the offspring, rare occurrences of chromodacryorrhea and, developmentally similar body mass gain. Further documentation of developmental health may guide sub-grouping of individuals in a way to better predict core symptom severity.
Collapse
Affiliation(s)
- Mônica R. Favre
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Tania R. Barkat
- Department of Neuroscience and Pharmacology, Copenhagen UniversityCopenhagen, Denmark
| | - Deborah LaMendola
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Georges Khazen
- Computer Science and Mathematics Department, School of Arts and Sciences, Lebanese American UniversityByblos, Lebanon
| | - Henry Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Kamila Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
17
|
Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int J Neuropsychopharmacol 2013; 16:1309-18. [PMID: 23228615 PMCID: PMC3674140 DOI: 10.1017/s1461145712001216] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The biological mechanisms of autism spectrum disorders (ASDs) are largely unknown in spite of extensive research. ASD is characterized by altered function of multiple brain areas including the temporal cortex and by an increased synaptic excitation:inhibition ratio. While numerous studies searched for evidence of increased excitation in ASD, fewer have investigated the possibility of reduced inhibition. We characterized the cortical γ-amino butyric acid (GABA)ergic system in the rat temporal cortex of an ASD model [offspring of mothers prenatally injected with valproic acid (VPA)], by monitoring inhibitory post-synaptic currents (IPSCs) with patch-clamp. We found that numerous features of inhibition were severely altered in VPA animals compared to controls. Among them were the frequency of miniature IPSCs, the rise time and decay time of electrically-evoked IPSCs, the slope and saturation of their input/output curves, as well as their modulation by adrenergic and muscarinic agonists and by the synaptic GABAA receptor allosteric modulator zolpidem (but not by the extra-synaptic modulator gaboxadol). Our data suggest that both pre- and post-synaptic, but not extra-synaptic, inhibitory transmission is impaired in the offspring of VPA-injected mothers. We speculate that impairment in the GABAergic system critically contributes to an increase in the ratio between synaptic excitation and inhibition, which in genetically predisposed individuals may alter cortical circuits responsible for emotional, communication and social impairments at the core of ASD.
Collapse
|
18
|
Abstract
Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and synaptic weights were surprisingly predictable. Synaptic weights follow very closely the number of connections in a group of neurons, saturating after only 20% of possible connections are formed between neurons in a group. When we examined the network topology of connectivity between neurons, we found that the neurons cluster into small world networks that are not scale-free, with less than 2 degrees of separation. We found a simple clustering rule where connectivity is directly proportional to the number of common neighbors, which accounts for these small world networks and accurately predicts the connection probability between any two neurons. This pyramidal neuron network clusters into multiple groups of a few dozen neurons each. The neurons composing each group are surprisingly distributed, typically more than 100 μm apart, allowing for multiple groups to be interlaced in the same space. In summary, we discovered a synaptic organizing principle that groups neurons in a manner that is common across animals and hence, independent of individual experiences. We speculate that these elementary neuronal groups are prescribed Lego-like building blocks of perception and that acquired memory relies more on combining these elementary assemblies into higher-order constructs.
Collapse
|
19
|
Markram K, Markram H. The intense world theory - a unifying theory of the neurobiology of autism. Front Hum Neurosci 2010; 4:224. [PMID: 21191475 PMCID: PMC3010743 DOI: 10.3389/fnhum.2010.00224] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022] Open
Abstract
Autism covers a wide spectrum of disorders for which there are many views, hypotheses and theories. Here we propose a unifying theory of autism, the Intense World Theory. The proposed neuropathology is hyper-functioning of local neural microcircuits, best characterized by hyper-reactivity and hyper-plasticity. Such hyper-functional microcircuits are speculated to become autonomous and memory trapped leading to the core cognitive consequences of hyper-perception, hyper-attention, hyper-memory and hyper-emotionality. The theory is centered on the neocortex and the amygdala, but could potentially be applied to all brain regions. The severity on each axis depends on the severity of the molecular syndrome expressed in different brain regions, which could uniquely shape the repertoire of symptoms of an autistic child. The progression of the disorder is proposed to be driven by overly strong reactions to experiences that drive the brain to a hyper-preference and overly selective state, which becomes more extreme with each new experience and may be particularly accelerated by emotionally charged experiences and trauma. This may lead to obsessively detailed information processing of fragments of the world and an involuntarily and systematic decoupling of the autist from what becomes a painfully intense world. The autistic is proposed to become trapped in a limited, but highly secure internal world with minimal extremes and surprises. We present the key studies that support this theory of autism, show how this theory can better explain past findings, and how it could resolve apparently conflicting data and interpretations. The theory also makes further predictions from the molecular to the behavioral levels, provides a treatment strategy and presents its own falsifying hypothesis.
Collapse
Affiliation(s)
- Kamila Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Henry Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|