1
|
Yan S, Ding J, Wang Z, Zhang Y, Xu Y, Jia Y, Yang J, Qiu H. CTRP6 alleviates endometrial fibrosis by regulating Smad3 pathway in intrauterine adhesion†. Biol Reprod 2024; 111:322-331. [PMID: 38984926 DOI: 10.1093/biolre/ioae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 01/18/2024] [Indexed: 07/11/2024] Open
Abstract
Intrauterine adhesion (IUA) is manifestations of endometrial fibrosis and excessive extracellular matrix deposition. C1q/tumor necrosis factor-related protein-6 (CTRP6) is a newly identified adiponectin paralog which has been reported to modulate the fibrosis process of several diseases; however, the endometrial fibrosis function of CTRP6 remains unknown. Our study aimed to assess the role of CTRP6 in endometrial fibrosis and further explore the underlying mechanism. Here, we found that the expression of CTRP6 was downregulated in the endometrial tissues of IUA. In vitro experiments demonstrated the reduced level of CTRP6 in facilitated transforming growth factor-β1 (TGF-β1)-induced human endometrial stromal cells (HESCs). In addition, CTRP6 inhibited the expression of α-smooth muscle actin (α-SMA) and collagen I in TGF-β1-treated HESCs. Mechanistically, CTRP6 activated the AMP-activated protein kinase (AMPK) and protein kinase B (AKT) pathway in HESCs, and AMPK inhibitor (AraA) or PI3K inhibitor (LY294002) pretreatment abolished the protective effect of CTRP6 on TGF-β1-induced fibrosis. CTRP6 markedly decreased TGF-β1-induced Smad3 phosphorylation and nuclear translocation, and AMPK or AKT inhibition reversed these effects. Notably, CTRP6-overexpressing treatment alleviated the fibrosis of endometrium in vivo. Therefore, CTRP6 ameliorates endometrial fibrosis, among which AMPK and AKT are essential for the anti-fibrotic effect of CTRP6 via the Smad3 pathway. Taken together, CTRP6 may be a potential therapeutic target for the treatment of intrauterine adhesion.
Collapse
Affiliation(s)
- Sisi Yan
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yong Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
3
|
Xiong Z, Ma Y, He J, Li Q, Liu L, Yang C, Chen J, Shen Y, Han X. Apoptotic bodies of bone marrow mesenchymal stem cells inhibit endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway. Heliyon 2023; 9:e20716. [PMID: 37885720 PMCID: PMC10598495 DOI: 10.1016/j.heliyon.2023.e20716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Background Intrauterine adhesions (IUAs) are a common illness of the uterine cavity. Endometrial fibrosis is the main pathological feature. In addition to a high recurrence rate, patients with severe IUAs have a low pregnancy rate. However, there are few effective treatments for IUAs. This study aims to confirm the influence of apoptotic bodies of bone marrow mesenchymal stem cells (BMSCs) on endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway and to provide new insight for the clinical treatment of IUAs. Methods Human endometrial stromal cells (HESCs) were used to establish an IUA cell model by treatment with TGF-β1, and a rat IUA model was established by the double injury method. Apoptosis of BMSCs was detected by TUNEL assays, and cell morphology was observed by the CM-DiI tracer. The morphology of apoptotic vacuoles and apoptotic bodies (ABs) was detected by TEM. We used Western blotting to detect the expression of histone H3.3, histone H2B, C3b, cyclin D1, C1QC, α-SMA, COL1A1, COL5A2, FN, CTGF, Wnt2b, c-MYC, CK-18 and VIM. The expression levels of α-SMA, COL1A1, COL5A2, FN and CTGF were detected by RT‒qPCR. The expression levels of α-SMA, COL1A1, FN and CTGF were detected by immunofluorescence. Immunohistochemistry was used to detect the expression of TGF-β, CK-18 and VIM. Flow cytometry, cell scratch assays, CCK-8 assays, and H & E and Masson staining were used to detect the cell cycle, cell migration, cell proliferation, and endometrial pathology, respectively. Results We found that ultraviolet light (UV) irradiation induced apoptosis of BMSCs and increased the production of ABs. TGF-β1 treatment can induce HESCs to form extracellular matrix (ECM), and aggravate cell fibrosis, and adding ABs or FH535, an inhibitor of the Wnt/β-catenin signaling pathway, can inhibit TGF-β1-induced HESC fibrosis. However, the inhibitory effect of ABs on TGF-β1-induced fibrosis of HESCs was attenuated by the addition of LiCl. In the Wnt/β-catenin signaling pathway, LiCl is an activator after coculture with TGF-β1. In vivo, IUA-induced narrowing of the uterine cavity was accompanied by intrauterine adhesions, increased deposition of collagen fibers, upregulation of TGF-β1, VIM, α-SMA, COL1A1 and COL5A2, and downregulation of CK-18. These changes in expression were reversed after treatment with ABs or FH535. When ABs and LiCl were added at the same time, the inhibitory effect of ABs on IUA fibrosis was weakened. Conclusion BMSC-derived ABs inhibit the fibrosis of HESCs by inhibiting the Wnt/β-catenin signaling pathway. These results provide a new direction for the clinical treatment of IUAs.
Collapse
Affiliation(s)
- Zhenghua Xiong
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yaru Ma
- Department of Gynecology, Women and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jia He
- Department of Plastic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qin Li
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Liu Liu
- Department of Plastic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunli Yang
- Department of Gynecology, Baoshan People's Hospital, Baoshan, Yunnan, China
| | - Jia Chen
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yi Shen
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Wang S, Liu T, Nan N, Lu C, Liang M, Wang S, Wang H, He B, Chen X, Xu X, Zheng Y. Exosomes from Human Umbilical Cord Mesenchymal Stem Cells Facilitates Injured Endometrial Restoring in Early Repair Period through miR-202-3p Mediating Formation of ECM. Stem Cell Rev Rep 2023; 19:1954-1964. [PMID: 37226011 DOI: 10.1007/s12015-023-10549-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Endometrial damage repair disorder is the main reason of intrauterine adhesions (IUA) and thin endometrium (TA), which is caused by curettage or infection. Exosomal miRNAs derived from human umbilical cord mesenchymal stem cells (hucMSCs) were reported to play an important role in damage repair disorder, including endometrial fibrosis. In this study, we aimed to investigate the role of hucMSCs-derived exosomal microRNA-202-3p (miR-202-3p) in endometrial damage repair. We established rat endometrial injury model according to curettage to mimic women curettage abortion operation. The miRNA array analysis indicated that miR-202-3p was increased and matrix metallopeptidase 11 (MMP11) was decreased in the exosomes-treated rat uterine tissues. Bioinformatics analysis suggested that MMP11 is the target gene of miR-202-3p. We observed that the mRNA and protein of MMP11 were significantly decreased in exosome treatment group on day 3, and the components of extracellular matrix (ECM) COL1A1, COL3A1, COLVI and fibronectin (FN) protein were increased. And we found that when the injured human stromal cells were treated with miR-202-3p overexpression exosomes, the COLVI and FN were also upregulated in protein and mRNA expression level. For the first time MMP11 was proved to be the target gene of miR-202-3p by dual luciferase reporter system. At last, we found the state of stromal cells was better in miR-202-3p overexpression exosomes group compared to exosomes group, and miR-202-3p overexpression exosomes markedly upregulated the FN and collagen on day 3 after endometrial injury. We thought that miR-202-3p overexpression exosomes promoted endometrial repair by regulating ECM remodeling in early repair of damaged endometrium. Taken together, these experimental findings may provide a theoretical basis for understanding endometrial repair and an insight into the clinical treatment for IUA. Human umbilical cord mesenchymal stem cells exosomal miR-202-3p could regulate the expression of MMP11 and promote the accumulation of extracellular matrix, such as COL1A1, COL3A1, COLVI, FN, in the early repair period of endometrial injury.
Collapse
Affiliation(s)
- Shufang Wang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tingting Liu
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Nan Nan
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Cong Lu
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Min Liang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Siyu Wang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Hu Wang
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Bin He
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Xihua Chen
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China.
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China.
| | - Xiangbo Xu
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China.
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
5
|
Thakur L, Thakur S. The interplay of sex steroid hormones and microRNAs in endometrial cancer: current understanding and future directions. Front Endocrinol (Lausanne) 2023; 14:1166948. [PMID: 37152960 PMCID: PMC10161733 DOI: 10.3389/fendo.2023.1166948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Endometrial cancer is a hormone-dependent malignancy, and sex steroid hormones play a crucial role in its pathogenesis. Recent studies have demonstrated that microRNAs (miRNAs) can regulate the expression of sex steroid hormone receptors and modulate hormone signaling pathways. Our aim is to provide an overview of the current understanding of the role of miRNAs in endometrial cancer regulated by sex steroid hormone pathways. Methods A thorough literature search was carried out in the PubMed database. The articles published from 2018 to the present were included. Keywords related to miRNAs, endometrial cancer, and sex steroid hormones were used in the search. Results Dysregulation of miRNAs has been linked to abnormal sex steroid hormone signaling and the development of endometrial cancer. Various miRNAs have been identified as modulators of estrogen and progesterone receptor expression, and the miRNA expression profile has been shown to be a predictor of response to hormone therapy. Additionally, specific miRNAs have been implicated in the regulation of genes involved in hormone-related signaling pathways, such as the PI3K/Akt/mTOR and MAPK/ERK pathways. Conclusion The regulation of sex steroid hormones by miRNAs is a promising area of research in endometrial cancer. Future studies should focus on elucidating the functional roles of specific miRNAs in sex steroid hormone signaling and identifying novel miRNA targets for hormone therapy in endometrial cancer management.
Collapse
Affiliation(s)
- Lovlesh Thakur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil Thakur
- Origin LIFE Healthcare Solutions and Research Center, Chandigarh, India
- *Correspondence: Sunil Thakur,
| |
Collapse
|
6
|
Zou Q, Du X, Zhou L, Yao D, Dong Y, Jin J. A short peptide encoded by long non-coding RNA small nucleolar RNA host gene 6 promotes cell migration and epithelial-mesenchymal transition by activating transforming growth factor-beta/SMAD signaling pathway in human endometrial cells. J Obstet Gynaecol Res 2023; 49:232-242. [PMID: 36396030 DOI: 10.1111/jog.15476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endometrial dysfunction is closely correlated with the development of multiple severe gynecological disorders including intrauterine adhesion. Accumulating evidence supports that some long non-coding RNAs (lncRNAs) have peptide-coding potential. In this text, the peptide-coding ability of lncRNA SNHG6 was examined. Also, the effects of an SNHG6-encoded peptide on the viability and migration of human endometrial stromal cells (hESCs) and human endometrial epithelial cells (hEECs) and related molecular mechanisms were explored. METHODS The peptide-encoding potential of SNHG6 was predicted by FuncPEP and getorf databases and validated by western blot assay. Cell viability was tested by cell counting kit-8 assay. Cell migratory ability was examined by wound healing and transwell migration assays. Protein levels of genes were measured by western blot assay. RESULTS Prediction analysis suggested that SNHG6 had the potential peptide-coding ability and multiple open-reading frames (ORFs). Western blot validated that SNHG6 ORF#1 and ORF#2 could translate into short peptides. SNHG6 ORF#2 overexpression facilitated cell migration and epithelial-mesenchymal transition (EMT) in hESCs and hEECs, while these effects were abrogated by transforming growth factor-beta (TGF-β)/SMAD signaling inhibitor GW788388. Moreover, GW788388 inhibited the increase of p-SMAD2 and p-SMAD3 levels induced by SNHG6 ORF#2 in hESCs. SNHG6 ORF#2-encoded peptide did not influence endometrial stromal and epithelial cell viability. CONCLUSIONS LncRNA SNHG6 ORF#1 and ORF#2 could translate into small peptides and SNHG6 ORF#2 overexpression promoted cell migration and EMT by activating the TGF-β/SMAD pathway in hESCs and hEECs, suggesting the potential roles of SNHG6-encoded peptides in the development of endometrial stromal and epithelial cells and related gynecological diseases.
Collapse
Affiliation(s)
- Qian Zou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Xin Du
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Yi Dong
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Jing Jin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| |
Collapse
|
7
|
Liu HD, Wang SW. Role of noncoding RNA in the pathophysiology and treatment of intrauterine adhesion. Front Genet 2022; 13:948628. [PMID: 36386826 PMCID: PMC9650223 DOI: 10.3389/fgene.2022.948628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine adhesion (IUA) is one of the most common diseases of the reproductive system in women. It is often accompanied by serious clinical problems that damage reproductive function, such as menstrual disorder, infertility, or recurrent abortion. The clinical effect of routine treatment is not ideal, and the postoperative recurrence rate is still very high. Therefore, exploring the pathological mechanism of IUA and finding new strategies for the effective prevention and treatment of IUA are needed. The main pathological mechanism of IUA is endometrial fibrosis and scar formation. Noncoding RNA (ncRNA) plays an important role in the fibrosis process, which is one of the latest research advances in the pathophysiology of IUA. Moreover, the exosomal miRNAs derived from mesenchymal stem cells can be used to improve IUA. This paper reviewed the role of ncRNAs in IUA pathogenesis, summarized the core pathways of endometrial fibrosis regulated by ncRNAs, and finally introduced the potential of ncRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Hui-Dong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Wei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shao-Wei Wang,
| |
Collapse
|
8
|
Yuan L, Cao J, Hu M, Xu D, Li Y, Zhao S, Yuan J, Zhang H, Huang Y, Jin H, Chen M, Liu D. Bone marrow mesenchymal stem cells combined with estrogen synergistically promote endometrial regeneration and reverse EMT via Wnt/β-catenin signaling pathway. Reprod Biol Endocrinol 2022; 20:121. [PMID: 35971112 PMCID: PMC9377128 DOI: 10.1186/s12958-022-00988-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a clinical disease characterized by the uterine cavity occlusion caused by the damage of the endometrial basal layer. Bone marrow mesenchymal stem cells (BMSCs) transplantation have the potential to promote endometrial regeneration mainly through paracrine ability. Estrogen is an indispensable and important factor in the repair of endometrial damage, which has been reported as a promising and adjunctive therapeutic application for stem cell transplantation therapy. This study aims to investigate the synergistic effect of BMSCs and estrogen on improving the endometrial regeneration and restoring the endometrium morphology in a dual damage model of IUA in rabbits and the underlying molecular mechanisms. METHODS BMSCs were isolated and identified by adipogenic and osteogenic differentiation and flow cytometry assays. The rabbit IUA animal model was established by a dual damage method of mechanical curettage and lipopolysaccharide infection. Additionally, we investigated the therapeutic impact of both BMSCs and estrogen either separately or in combination in a rabbit model. The retention of PKH26-labeled BMSCs was observed by vivo fluorescence imaging.The number of endometrial glands and the degree of fibrosis were observed by H&E and Masson staining respectively. Western blotting, Immunohistochemistry and immunofluorescence staining were performed to detect biomarkers related to endometrial epithelium, endometrial fibrosis and EMT. Finally, the protein expression of core molecules of Wnt/β-catenin pathway was detected by Western blotting. RESULTS PKH26-labeled fluorescence results revealed that BMSCs appeared and located in the endometrial glands and extracellular matrix area when orthotopic transplanted into the uterine cavity. Histological assays showed that remarkably increasing the number of endometrial glands and decreasing the area of endometrial fibrosis in the BMSCs combined with estrogen treatment group. Moreover, downregulated expression of fibrosis markers (fibronectin, CollagenI, a-SMA) and interstitial markers (ZEB1, Vimentin, N-cadherin), as well as upregulated E-cadherin expression were found in the combined group. Further study of in vivo staining revealed that fluorescence intensity of CK7 was stronger in the combined group than that of direct BMSCs intrauterine transplantation, while vimentin showed the opposite results. Moreover, the protein levels of β-catenin, Axin2, C-myc, CycinE of Wnt/β-catenin signaling pathway increased in the BMSCs combined with estrogen group than in the other treatment groups. CONCLUSION BMSCs combined with estrogen can promote the differentiation of stem cells into endometrial epithelial cells to facilitate the regeneration of damaged endometrium. The potential mechanism of the synergistic effect may inhibit the occurrence of EMT by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liwei Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mingyue Hu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shiyun Zhao
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juanjuan Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huixing Zhang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yani Huang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - He Jin
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meixia Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dan Liu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
A review of the effects of estrogen and epithelial-mesenchymal transformation on intrauterine adhesion and endometriosis. Transpl Immunol 2022; 79:101679. [PMID: 35908631 DOI: 10.1016/j.trim.2022.101679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
Abstract
Uterus transplantation has become an option for women suffering from some form of infertility. Current review discusses key physiological functions of the endometrium requiring the transition of tissue cells between the mesenchyme and epithelial cell phenotype, a process known as epithelial-mesenchymal transition (EMT). Estrogen and EMT play a key role in the pathogenesis and treatment of intrauterine adhesion and endometriosis. There is also a close regulatory relationship between estrogen and EMT, and investigation of this relationship is of great significance for the treatment of endometrial disorders. The present review discusses the effects of estrogen on endometrial dysfunction, with a focus on the relationship between estrogen and EMT in endometrial disorders, taking into consideration the mechanisms by which receptors that regulate their functions and proteins that regulate their local biological functions interact with the factors involved in EMT. In addition, the review summarizes emerging drugs targeting receptors or proteins and provides information on the direction of new therapies for endometrial disorders.
Collapse
|
10
|
Chen Y, Sun D, Shang D, Jiang Z, Miao P, Gao J. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endometrial epithelial cells. Open Med (Wars) 2022; 17:518-526. [PMID: 35350836 PMCID: PMC8919841 DOI: 10.1515/med-2022-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine adhesion (IUA) is the clinical manifestation of endometrial fibrosis. The dysregulation of microRNAs (miRNAs) has been confirmed to implicate in a diversity of human diseases, including IUA. Nevertheless, the specific function of miR-223-3p in IUA remains to be clarified. Reverse transcription quantitative polymerase chain reaction analysis displayed the downregulation of miR-223-3p in IUA tissues and endometrial epithelial cells (EECs). Results from wound healing assay, Transwell assay and western blotting showed that TGF-β facilitated the migration and invasion of EECs and induced epithelial-mesenchymal transition (EMT) process as well as extracellular matrix (ECM) deposition. Overexpression of miR-223-3p in EECs was shown to suppress the effects induced by TGF-β. Bioinformatics analysis and luciferase reporter assay revealed the binding relation between miR-223-3p and SP3. SP3 was highly expressed in IUA and its expression was inversely correlated with miR-223-3p expression in IUA tissue samples. Additionally, upregulation of SP3 reversed the influence of miR-223-3p on the phenotypes of EECs. In conclusion, miR-223-3p alleviates TGF-β-induced cell migration, invasion, EMT process and ECM deposition in EECs by targeting SP3.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, 745 Wuluo Road, Wuchang District, Wuhan 430000, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|