1
|
de Faria Melo CC, Amaral DS, de Moura Zanine A, de Jesus Ferreira D, de Mello Prado R, de Cássia Piccolo M. Nanosilica enhances morphogenic and chemical parameters of Megathyrsus maximus grass under conditions of phosphorus deficiency and excess stress in different soils. BMC PLANT BIOLOGY 2023; 23:497. [PMID: 37845606 PMCID: PMC10580593 DOI: 10.1186/s12870-023-04521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.
Collapse
Affiliation(s)
- Cíntia Cármen de Faria Melo
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil.
| | - Danilo Silva Amaral
- Department of Engineering and Exact Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Anderson de Moura Zanine
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Daniele de Jesus Ferreira
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), 303 Centenário Avenue, Piracicaba, SP, 13400970, Brazil
| |
Collapse
|
2
|
Jalal A, da Silva Oliveira CE, Galindo FS, Rosa PAL, Gato IMB, de Lima BH, Teixeira Filho MCM. Regulatory Mechanisms of Plant Growth-Promoting Rhizobacteria and Plant Nutrition against Abiotic Stresses in Brassicaceae Family. Life (Basel) 2023; 13:211. [PMID: 36676160 PMCID: PMC9860783 DOI: 10.3390/life13010211] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Extreme environmental conditions, such as abiotic stresses (drought, salinity, heat, chilling and intense light), offer great opportunities to study how different microorganisms and plant nutrition can influence plant growth and development. The intervention of biological agents such as plant growth-promoting rhizobacteria (PGPRs) coupled with proper plant nutrition can improve the agricultural importance of different plant species. Brassicaceae (Cruciferae) belongs to the monophyletic taxon and consists of around 338 genera and 3709 species worldwide. Brassicaceae is composed of several important species of economical, ornamental and food crops (vegetables, cooking oils, forage, condiments and industrial species). Sustainable production of Brassicas plants has been compromised over the years due to several abiotic stresses and the unbalanced utilization of chemical fertilizers and uncertified chemicals that ultimately affect the environment and human health. This chapter summarized the influence of PGPRs and nutrient management in the Brassicaceae family against abiotic stresses. The use of PGPRs contributed to combating climate-induced change/abiotic factors such as drought, soil and water salinization and heavy metal contamination that limits the general performance of plants. Brassica is widely utilized as an oil and vegetable crop and is harshly affected by abiotic stresses. Therefore, the use of PGPRs along with proper mineral nutrients management is a possible strategy to cope with abiotic stresses by improving biochemical, physiological and growth attributes and the production of brassica in an eco-friendly environment.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Faculty of Agricultural and Technological Sciences, Campus of Dracena, São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil
| | - Poliana Aparecida Leonel Rosa
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Isabela Martins Bueno Gato
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Bruno Horschut de Lima
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Health, Rural Engineering, and Soils, Campus of Ilha Solteira, São Paulo State University (UNESP), Av. Brasil, 56- Centro, Ilha Solteira 15385-000, SP, Brazil
| |
Collapse
|