1
|
Trevisani M, Conter M, Cecchini M, Lamperti L, Andriani L, Rega M, Bacci C, Perri M, Bonardi S. ELIME-IMS hybrid assay for Salmonella detection in swine mesenteric lymph nodes at slaughterhouse. Food Microbiol 2025; 125:104659. [PMID: 39448169 DOI: 10.1016/j.fm.2024.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Salmonella contamination in pig slaughterhouses is linked to infection rate on farms. Accurate diagnosis in heavy pigs relies on isolating pathogens from the gut wall or lymph nodes. A key technique is Immunocapture using Magnetic Beads (IMS), which purifies target bacteria from Salmonella enrichment broths. This is followed by an Enzyme-Linked Immunomagnetic Electrochemical (ELIME) assay for rapid detection. In our study, we developed an ELIME-IMS hybrid assay to detect Salmonella in swine mesenteric lymph nodes (MNL), involving a clean-up with N-acetylcysteine and centrifugation. Detection limits for S. Typhimurium and S. Derby were estimated at 2.80 and 3.52 Log CFU/ml, respectively. We analysed 103 MNL samples from a northern Italy slaughterhouse. Additionally, we examined 15 carcass swabs. Both the ELIME assay and the IMS-based culture method showed strong agreement with the ISO 6579-1:2017 method, especially after 20 h of enrichment (89.47% concordance). The clean-up step significantly influenced the results, as samples processed without it showed higher variability. A logistic regression model indicated high classification accuracy for negative samples using ELIME values. The ELIME-IMS assay facilitates rapid Salmonella screening and isolation in swine mesenteric lymph nodes.
Collapse
Affiliation(s)
- M Trevisani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - M Conter
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126, Parma, Italy.
| | - M Cecchini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - L Lamperti
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126, Parma, Italy
| | - L Andriani
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126, Parma, Italy
| | - M Rega
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126, Parma, Italy
| | - C Bacci
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126, Parma, Italy
| | - M Perri
- National Health Service, Veterinary Service, Local Health Agency of Modena, Via Martiniana 21, 41126, Modena, Italy
| | - S Bonardi
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126, Parma, Italy
| |
Collapse
|
2
|
Midha A, Oser L, Schlosser-Brandenburg J, Laubschat A, Mugo RM, Musimbi ZD, Höfler P, Kundik A, Hayani R, Adjah J, Groenhagen S, Tieke M, Elizalde-Velázquez LE, Kühl AA, Klopfleisch R, Tedin K, Rausch S, Hartmann S. Concurrent Ascaris infection modulates host immunity resulting in impaired control of Salmonella infection in pigs. mSphere 2024; 9:e0047824. [PMID: 39140728 PMCID: PMC11423588 DOI: 10.1128/msphere.00478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Ascaris is one of the most widespread helminth infections, leading to chronic morbidity in humans and considerable economic losses in pig farming. In addition, pigs are an important reservoir for the zoonotic salmonellosis, where pigs can serve as asymptomatic carriers. Here, we investigated the impact of an ongoing Ascaris infection on the immune response to Salmonella in pigs. We observed higher bacterial burdens in experimentally coinfected pigs compared to pigs infected with Salmonella alone. The impaired control of Salmonella in the coinfected pigs was associated with repressed interferon gamma responses in the small intestine and with the alternative activation of gut macrophages evident in elevated CD206 expression. Ascaris single and coinfection were associated with a rise of CD4-CD8α+FoxP3+ Treg in the lymph nodes draining the small intestine and liver. In addition, macrophages from coinfected pigs showed enhanced susceptibility to Salmonella infection in vitro and the Salmonella-induced monocytosis and tumor necrosis factor alpha production by myeloid cells was repressed in pigs coinfected with Ascaris. Hence, our data indicate that acute Ascaris infection modulates different immune effector functions with important consequences for the control of tissue-invasive coinfecting pathogens.IMPORTANCEIn experimentally infected pigs, we show that an ongoing infection with the parasitic worm Ascaris suum modulates host immunity, and coinfected pigs have higher Salmonella burdens compared to pigs infected with Salmonella alone. Both infections are widespread in pig production and the prevalence of Salmonella is high in endemic regions of human Ascariasis, indicating that this is a clinically meaningful coinfection. We observed the type 2/regulatory immune response to be induced during an Ascaris infection correlates with increased susceptibility of pigs to the concurrent bacterial infection.
Collapse
Affiliation(s)
- Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Larissa Oser
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Josephine Schlosser-Brandenburg
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Laubschat
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert M Mugo
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D Musimbi
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Philipp Höfler
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Rima Hayani
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Saskia Groenhagen
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Malte Tieke
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Luis E Elizalde-Velázquez
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Core unit of Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Rodríguez A, Sacristán C, Iglesias I, de la Torre A. Salmonella assessment along the Spanish food chain: Likelihood of Salmonella occurrence in poultry and pig products is maintained across the food chain stages. Zoonoses Public Health 2023; 70:665-673. [PMID: 37612884 DOI: 10.1111/zph.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Salmonellosis is one of the most important foodborne diseases worldwide, including the European Union. Despite the One Health approach measures for risk assessment and risk management implemented by the European Union, the occurrence of disease and disease outbreaks remains high (e.g. 694 outbreaks were reported in 2020), highlighting the need of new assessment methods. Herein we applied machine learning using the random forests method to evaluate and identify key points regarding the occurrence of Salmonella sp. along the Spanish food chain during 2015-2020, using data provided by the Spanish Agency for Food Safety and Nutrition. We compared the role of the three categorical variables [product (20 categories), region (18 categories) and stage (11 categories)]. Salmonella presence was influenced by the three explanatory variables considered: first by product, followed by region and stage. The most determinant product for Salmonella probability was 'meat', while the most important stage was 'slaughterhouse'. Specifically, the highest values were found in pig and poultry meats. In these products, the Salmonella probability was high at the early and final stages of the food chain, although not at intermediate stages. The presence of Salmonella in the final stages (retail) of the food chain is of concern, as it can cause human cases of salmonellosis, including outbreaks. This study demonstrates the utility of the random forest method to identify key points and evaluate the control efforts. We recommend improving the surveillance and control measures, especially in the product and stages pointed out by our analysis, and enhancing the data collection harmonization among the different autonomous communities.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
- Université Clermont Auvergne, INRAE, VetAgro Sup, UREP, Clermont-Ferrand, France
| | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Irene Iglesias
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Ana de la Torre
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| |
Collapse
|
4
|
Alvarez-Molina A, Cobo-Díaz JF, Alexa EA, Crispie F, Prieto M, López M, Cotter PD, Alvarez-Ordóñez A. Sequencing-based analysis of the microbiomes of Spanish food processing facilities reveals environment-specific variation in the dominant taxa and antibiotic resistance genes. Food Res Int 2023; 173:113442. [PMID: 37803768 DOI: 10.1016/j.foodres.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
In the last years, advances in high throughput sequencing technologies have opened the possibility to broaden environmental monitoring activities in facilities processing food, offering expanded opportunities for characterizing in an untargeted manner the microbiome and resistome of foods and food processing environments (FPE) with huge potential benefits in food safety management systems. Here the microbiome and resistome of FPE from slaughterhouses (n = 3), dairy (n = 12) and meat (n = 10) processing plants were assessed through whole metagenome sequencing of 2 composite samples for each facility, comprising 10 FPE swabs taken from food contact surfaces and 10 FPE samples from non-food contact surfaces, respectively. FPE from slaughterhouses had more diverse microbiomes and resistomes, while FPE from dairy processing plants showed the highest β-dispersion, consistent with a more heterogeneous microbiome and resistome composition. The predominant bacterial genera depended on the industry type, with Pseudomonas and Psychrobacter being highly dominant in surfaces from slaughterhouses and meat industries, while different lactic acid bacteria predominated in dairy industries. The most abundant antimicrobial resistance genes (ARG) found were associated with resistance to aminoglycosides, tetracyclines and quaternary ammonium compounds (QAC). ARGs relating to resistance to aminoglycosides and tetracyclines were significantly more prevalent in slaughterhouses than in food processing plants, while QAC resistance genes were particularly abundant in some food contact surfaces from dairy and meat processing plants, suggesting that daily sanitation under suboptimal conditions may be selecting for persistent microbiota tolerant to these biocides in some facilities. The taxonomic mapping of ARG pointed to specific bacterial genera, such as Escherichia, Bacillus, or Staphylococcus, as carriers of the most relevant resistance determinants. About 63% of all ARG reads were assigned to contigs classified as plasmid-associated, indicating that the resistome of FPE may be strongly shaped through the spread of mobile genetic elements. Overall, the relevance of FPE as reservoirs of ARG was confirmed and it was demonstrated that next generation sequencing technologies allowing a deep characterisation of sources and routes of spread of microorganisms and antimicrobial resistance determinants in food industry settings hold promise to be integrated in monitoring and food safety management programmes.
Collapse
Affiliation(s)
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Elena A Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
5
|
Soliani L, Rugna G, Prosperi A, Chiapponi C, Luppi A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023; 12:1267. [PMID: 37887782 PMCID: PMC10610219 DOI: 10.3390/pathogens12101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.
Collapse
Affiliation(s)
- Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 25124 Brescia, Italy; (G.R.); (A.P.); (C.C.); (A.L.)
| | | | | | | | | |
Collapse
|
6
|
Inflammatory Responses Induced by the Monophasic Variant of Salmonella Typhimurium in Pigs Play a Role in the High Shedder Phenotype and Fecal Microbiota Composition. mSystems 2023; 8:e0085222. [PMID: 36629432 PMCID: PMC9948705 DOI: 10.1128/msystems.00852-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pigs infected with Salmonella may excrete large amounts of Salmonella, increasing the risk of spread of this pathogen in the food chain. Identifying Salmonella high shedder pigs is therefore required to mitigate this risk. We analyzed immune-associated markers and composition of the gut microbiota in specific-pathogen-free pigs presenting different shedding levels after an oral infection with Salmonella. Immune response was studied through total blood cell counts, production of anti-Salmonella antibodies and cytokines, and gene expression quantification. Total Salmonella shedding for each pig was estimated and hierarchical clustering was used to cluster pigs into high, intermediate, and low shedders. Gut microbiota compositions were assessed using 16S rRNA microbial community profiling. Comparisons were made between control and inoculated pigs, then between high and low shedders pigs. Prior to infection, high shedders had similar immunological profiles compared to low shedders. As soon as 1 day postinoculation (dpi), significant differences on the cytokine production level and on the expression level of several host genes related to a proinflammatory response were observed between high and low shedders. Infection with Salmonella induced an early and profound remodeling of the immune response in all pigs, but the intensity of the response was stronger in high shedders. In contrast, low shedders seroconverted earlier than high shedders. Just after induction of the proinflammatory response (at 2 dpi), some taxa of the fecal microbiota were specific to the shedding phenotypes. This was related to the enrichment of several functional pathways related to anaerobic respiration in high shedders. In conclusion, our data show that the immune response to Salmonella modifies the fecal microbiota and subsequently could be responsible for shedding phenotypes. Influencing the gut microbiota and reducing intestinal inflammation could be a strategy for preventing Salmonella high shedding in livestock. IMPORTANCE Salmonellosis remains the most frequent human foodborne zoonosis after campylobacteriosis and pork meat is considered one of the major sources of human foodborne infections. At the farm, host heterogeneity in pig infection is problematic. High Salmonella shedders contribute more significantly to the spread of this foodborne pathogen in the food chain. The identification of predictive biomarkers for high shedders could help to control Salmonella in pigs. The purpose of the present study was to investigate why some pigs become super shedders and others low shedders. We thus investigated the differences in the fecal microbial composition and the immune response in orally infected pigs presenting different Salmonella shedding patterns. Our data show that the proinflammatory response induced by S. Typhimurium at 1 dpi could be responsible for the modification of the fecal microbiota composition and functions observed mainly at 2 and 3 dpi and to the low and super shedder phenotypes.
Collapse
|
7
|
Oludairo OO, Kwaga JKP, Kabir J, Abdu PA, Gitanjali A, Perrets A, Cibin V, Lettini AA, Aiyedun JO. Ecology and epidemiology of Salmonella spp. isolated from the environment and the roles played by wild animals in their maintenance. INTERNATIONAL JOURNAL OF ONE HEALTH 2023. [DOI: 10.14202/ijoh.2023.1-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Salmonella is a ubiquitous organism of public health importance that causes diarrhea and other systemic disease syndromes. The ecology and epidemiology of the organism in addition to the roles played by wild animals are important in understanding its disease. Relevant published peer-reviewed literature was obtained after imputing the study's keywords into the Google search engine. The publications were thereafter saved for the study. The study revealed the ecology of Salmonella is directly related to its epidemiology. These were found to be either positively or negatively influenced by the living and non-living parts of the environment. Free-ranging and captive wild animals can serve as asymptomatic carriers of Salmonella, therefore, help to maintain the cycle of the disease since wildlife serves as reservoir hosts to over 70% of emerging zoonotic diseases. Cockroaches transmit Salmonella through their feces, and body parts and when ingested by birds and animals. The statistically significant over 83% of Salmonella isolation in lizards suggests the reptile could be a source of Salmonella distribution. Snakes, foxes, badgers, rodents, and raccoons have been reported to have Salmonella as a natural component of their gut with the ability to shed the organism often. The high occurrence (>45%) of diverse Salmonella serovars coupled with the fact that some of these animals were handled, kept as pets and consumed by man portends these animals as potential sources of transmission of the organism and the disease. The etiology and epidemiology of Salmonella are overtly affected by several environmental factors which also determine their survival and maintenance. The roles played by wild animals in the relationship, transmission, growth or interaction within and between Salmonella spp., the occurrence, prevalence, and distribution of the organism help maintain the organism in the environment. An understanding of the roles played by the different parts of the environment and wild animals in the ecology and epidemiology of Salmonella can help make informed decisions on the prevention and control of the diseases it causes. This review aimed to investigate the relationship between ecology, epidemiology, and environment, including the roles played by wild animals in the maintenance of the organism and its disease.
Collapse
Affiliation(s)
- Oladapo Oyedeji Oludairo
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Jacob K. P. Kwaga
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Junaid Kabir
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Paul A. Abdu
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Arya Gitanjali
- OIE Salmonella Reference Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Ann Perrets
- OIE Salmonella Reference Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Veronica Cibin
- Salmonella Reference Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie Viale dell'Università, Legnaro (PD), Italy
| | - Antonia Anna Lettini
- Salmonella Reference Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie Viale dell'Università, Legnaro (PD), Italy
| | - Julius O. Aiyedun
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
8
|
Multiple antibiotic-resistant Salmonella enterica serovars Enteritidis and Typhimurium in ready-to-eat battered street foods, and their survival under simulated gastric fluid and microwave heating. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
10
|
Thanki AM, Mignard G, Atterbury RJ, Barrow P, Millard AD, Clokie MRJ. Prophylactic Delivery of a Bacteriophage Cocktail in Feed Significantly Reduces Salmonella Colonization in Pigs. Microbiol Spectr 2022; 10:e0042222. [PMID: 35579475 PMCID: PMC9241700 DOI: 10.1128/spectrum.00422-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
Nontyphoidal Salmonella spp. are a leading cause of human food poisoning and can be transmitted to humans via consuming contaminated pork. To reduce Salmonella spread to the human food chain, bacteriophage (phage) therapy could be used to reduce bacteria from animals' preslaughter. We aimed to determine if adding a two-phage cocktail to feed reduces Salmonella colonization in piglets. This first required spray drying phages to allow them to be added as a powder to feed, and phages were spray dried in different excipients to establish maximum recovery. Although laboratory phage yields were not maintained during scale up in a commercial spray dryer (titers fell from 3 × 108 to 2.4 × 106 PFU/g respectively), the phage titers were high enough to progress. Spray dried phages survived mixing and pelleting in a commercial feed mill, and sustained no further loss in titer when stored at 4°C or barn conditions over 6 months. Salmonella-challenged piglets that were prophylactically fed the phage-feed diet had significantly reduced Salmonella colonization in different gut compartments (P < 0.01). 16S rRNA gene sequencing of fecal and gut samples showed phages did not negatively impact microbial communities as they were similar between healthy control piglets and those treated with phage. Our study shows delivering dried phages via feed effectively reduces Salmonella colonization in pigs. IMPORTANCE Infections caused by Salmonella spp. cause 93.8 million cases of human food poisoning worldwide, each year of which 11.7% are due to consumption of contaminated pork products. An increasing number of swine infections are caused by multidrug-resistant (MDR) Salmonella strains, many of which have entered, and continue to enter the human food chain. Antibiotics are losing their efficacy against these MDR strains, and thus antimicrobial alternatives are needed. Phages could be developed as an alternative approach, but research is required to determine the optimal method to deliver phages to pigs and to determine if phage treatment is effective at reducing Salmonella colonization in pigs. The results presented in this study address these two aspects of phage development and show that phages delivered via feed prophylactically to pigs reduces Salmonella colonization in challenged pigs.
Collapse
Affiliation(s)
- Anisha M. Thanki
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Guillaume Mignard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford, United Kingdom
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
11
|
Bernad-Roche M, Casanova-Higes A, Marín-Alcalá CM, Mainar-Jaime RC. Salmonella Shedding in Slaughter Pigs and the Use of Esterified Formic Acid in the Drinking Water as a Potential Abattoir-Based Mitigation Measure. Animals (Basel) 2022; 12:1620. [PMID: 35804519 PMCID: PMC9264893 DOI: 10.3390/ani12131620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pigs shedding Salmonella at slaughter are considered a source of carcass contamination and human infection. To assess this potential risk, the proportion of Salmonella shedders that arrive for slaughter was evaluated in a population of 1068 pigs from 24 farms. Shedding was present in 27.3% of the pigs, and the monophasic variant of Salmonella Typhimurium, an emerging zoonotic serotype, was the most prevalent (46.9%). Antimicrobial resistance (AMR) in Salmonella isolates was common, but few isolates showed AMR to antimicrobials of critical importance for humans such as third-generation cephalosporins (5%), colistin (0%), or carbapenems (0%). However, AMR to tigecycline was moderately high (15%). The efficacy of an esterified formic acid in the lairage drinking water (3 kg formic acid/1000 L) was also assessed as a potential abattoir-based strategy to reduce Salmonella shedding. It was able to reduce the proportion of shedders (60.7% in the control group (CG) vs. 44.3% in the treatment group (TG); p < 0.01). After considering clustering and confounding factors, the odds of shedding Salmonella in the CG were 2.75 (95% CI = 1.80−4.21) times higher than those of the TG, suggesting a potential efficacy of reduction in shedding as high as 63.6%. This strategy may contribute to mitigating the burden of abattoir environmental contamination.
Collapse
Affiliation(s)
- María Bernad-Roche
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| | - Alejandro Casanova-Higes
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| | - Clara María Marín-Alcalá
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50059 Zaragoza, Spain;
| | - Raúl Carlos Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| |
Collapse
|
12
|
Siddi G, Piras F, Spanu V, Demontis M, Meloni MP, Sanna R, Cibin V, De Santis EPL, Scarano C. Trend of Salmonella enterica occurrence and serotypes in Sardinian pig slaughterhouses. Ital J Food Saf 2021; 10:9362. [PMID: 34532301 PMCID: PMC8419715 DOI: 10.4081/ijfs.2021.9362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate Salmonella prevalence and serotypes in four Sardinian pig slaughterhouses. Moreover, a population study was conducted with pulsed field gel electrophoresis (PFGE). The results were compared with previous investigations carried out during years 2008 and 2014. A total of 147 samples were collected, 117 from slaughtered pigs (lymph nodes, colon content and carcass surface) and 30 from the slaughterhouse environment (surfaces in contact and not in contact with meat). Salmonella was isolated from 3.4% pig samples and was not detected from environmental samples. Comparing the results with those of previous investigations, occurrence showed a sharp decrease through the years in both animals (18.8% in 2008, 10% in 2014 and 3.4% in 2020) and environmental samples (34.1% in 2008, 3.7 in 2014, and 0% in 2020). At the same time, prevalence of carriers (pigs positive at lymph nodes and/or colon content level) showed a reduction through the years and was always lower in animals coming from local farms rather than those coming from other European Member States, probably indicating the role of stressful factors as transport in increasing Salmonella susceptibility and shedding. Salmonella serotypes were monophasic Typhimurium, Rissen and Muenchen. Overall, 13 different Salmonella serotypes were identified during the three surveys with the most prevalent being serotypes often isolated from slaughtered pigs and during human salmonellosis cases: S. Derby and S. Typhimurium in 2008, S. Anatum and S. Rissen in 2014, monophasic S. Typhimurium in 2020. Population study with pulsed field gel electrophoresis showed a high similarity between Salmonella strains belonging to the same serotype. The results of the investigations showed a decrease of Salmonella occurrence during twelve years in Sardinia, probably due to the improvement in the application of correct GMPs and GHPs at slaughterhouse and also to a reduction of the rate of carrier pigs at farm level.
Collapse
Affiliation(s)
- Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari
| | | | - Vincenzo Spanu
- Department of Veterinary Medicine, University of Sassari
| | | | | | - Rita Sanna
- Department of Veterinary Medicine, University of Sassari
| | - Veronica Cibin
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | | | | |
Collapse
|