1
|
Ju X, Zhang M, Shan Y, Liu Y, Tu Y, Ji G, Shu J. A comprehensive analysis of meat quality degradation and identification of spoilage markers in chicken during refrigerated storage using multi-method approach. Food Chem 2025; 483:144316. [PMID: 40245630 DOI: 10.1016/j.foodchem.2025.144316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
In order to better understand the stability and safety of chicken meat during its storage, to comprehend the changing law of chicken meat, and to screen markers that could characterize the deterioration of chicken meat. In this study, traditional methods for the determination of physicochemical indicators, gas chromatography-ion mobility spectrometry (GC-IMS), electronic nose, and electronic tongue were used to elucidate the quality profiles of chilled chickens during the shelf-life of 0, 1, 2, 4, 6, 8, and 10 d at 4 °C, and non-targeted and targeted metabolomics were utilized for the screening and validation of deterioration markers of chicken meat. The results indicated that the texture of the chilled chicken changed first, followed by volatile flavors. Important aldehydes degrade and ketones and alcohols increase in chicken during storage. Purine metabolism was identified as the primary pathway influencing the deterioration of meat quality, with IMP and AICAR emerging as potential markers for meat quality deterioration. This study systematically analyzed the change rule of chicken meat during its shelf-life, screened markers that could characterize the deterioration of chicken meat, and these results provided a scientific basis for the quality control and shelf-life prediction of chicken meat. Additionally, it laid a foundation for the development of more effective preservation technology, deterioration early warning systems, and fast and convenient detection methods.
Collapse
Affiliation(s)
- Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China.
| |
Collapse
|
2
|
Shi L, Wang Q, Xie Z, Wu C, Peng T, Nian X, Li L, Li H, Chen T. The changes of fungal community and flavor substances in Yunnan-style sausages: A comparative analysis of different drying methods. Food Chem 2024; 460:140750. [PMID: 39128368 DOI: 10.1016/j.foodchem.2024.140750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to investigate alterations in the fungal community and flavor substances in Yunnan-style sausages subjected to natural air-dried fermentation (NF), variable-temperature drying (VT), and constant-temperature drying (CT) and analyze the potential relationship between fungal community and flavor substances. The findings revealed that the NF group and VT group were more conducive to enhancing the accumulation of dominant fungi and characteristic flavor substances in Yunnan-style sausages. Glu, Ala, His, and Lys were identified as key taste substances based on their taste activity values (TAV ≥ 1). A total of 272 volatile compounds(VOCS) were detected in the sausage samples, while 28 key aroma compounds were screened based on the odor activity value (OAV ≥ 1). Multivariate statistical analysis showed that 12 key aroma compounds (VIP > 1) could be considered discriminative compounds, including (E,E)-2,4-nonadienal, nonanal, heptanal, benzaldehyde, Dodecanal, cyclohexanol, and hexyl-Benzene, etc. Furthermore, Wickerhamoomyces and Debaryomyces were positively correlated with most of the key flavor substances and physicochemical indices (|r| > 0.6, P < 0.05), which were potential flavor-contributing fungi in Yunnan-style sausages.
Collapse
Affiliation(s)
- Lifen Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin, Sichuan 644003, China
| | - Zhengze Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chunxia Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Tingting Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xuruo Nian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lang Li
- Yunnan Rural Science & Technology Service Center, Kunming, Yunnan 650505, China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Tao Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
3
|
Sidari R, Tofalo R. Dual Role of Yeasts and Filamentous Fungi in Fermented Sausages. Foods 2024; 13:2547. [PMID: 39200474 PMCID: PMC11354145 DOI: 10.3390/foods13162547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This contribution aims to review the presence and the potential double role-positive or beneficial and negative or harmful-of fungi in fermented sausages as well as their use as starter cultures. Traditionally, studies have been focused on lactic acid bacteria; however, over the years, interest in the study of fungi has increased. The important contribution of yeasts and filamentous fungi to the quality and safety of fermented sausages has emerged from reviewing the literature regarding these fermented products. In conclusion, this review contributes to the existing literature by considering the double role of filamentous fungi and yeasts, the global fermented sausage market size, the role and use of starters, and the starters mainly present in the worldwide market, as well as the main factors to take into account to optimize production. Finally, some suggestions for future broadening of the sector are discussed.
Collapse
Affiliation(s)
- Rossana Sidari
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
4
|
Zhang G, Zhong Y, Zhang X, Wang Y, Sun Y, Li X, Liu Z, Liang J. Flavor Characteristics, Antioxidant Activity and In Vitro Digestion Properties of Bread with Large-Leaf Yellow Tea Powder. Foods 2024; 13:715. [PMID: 38472828 DOI: 10.3390/foods13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Foods containing tea could be widely utilized due to the addition of good tea ingredients, especially large-leaf yellow tea, which is rich with a good flavor. Applying this change to bread containing tea would improve its product quality. In this research, large-leaf yellow tea bread (LYB), possessing a special flavor, was developed using ultrafine large-leaf yellow tea powder and flour as the main raw materials. The amount of ultrafine large-leaf yellow tea powder added to bread was optimized using texture, sensation, and specific volume as comprehensive evaluation indicators. At the optimal dosage, the free amino acids, volatile flavor compounds, antioxidant activity, and in vitro starch digestibility of LYB were measured. Response surface optimization experimental results showed that the comprehensive score of bread was highest when the added amount of ultrafine large-leaf yellow tea powder was 3%. In particular, compared to blank bread (BB), adding ultrafine large-leaf yellow tea powder into bread could effectively increase its amino acid composition, enhance its volatile flavor compounds, improve the antioxidant capacity, and reduce the digestibility of starch.
Collapse
Affiliation(s)
- Gexing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yang Zhong
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinzhen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqi Wang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yue Sun
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Li
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
He Y, Degraeve P, Oulahal N. Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon 2024; 10:e24929. [PMID: 38318029 PMCID: PMC10839994 DOI: 10.1016/j.heliyon.2024.e24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Yeasts are a widespread group of microorganisms that are receiving increasing attention from scientists and industry. Their diverse biological activities and broad-spectrum antifungal activity make them promising candidates for application, especially in postharvest biocontrol of fruits and vegetables and food biopreservation. The present review focuses on recent knowledge of the mechanisms by which yeasts inhibit pathogenic fungi and/or spoilage fungi and bacteria. The main mechanisms of action of bioprotective yeasts include competition for nutrients and space, synthesis and secretion of antibacterial compounds, mycoparasitism and the secretion of lytic enzymes, biofilm formation, quorum sensing, induced systemic resistance of fruit host, as well as the production of reactive oxygen species. Preadaptation of yeasts to abiotic stresses such as cold acclimatization and sublethal oxidative stress can improve the effectiveness of antagonistic yeasts and thus more effectively play biocontrol roles under a wider range of environmental conditions, thereby reducing economic losses. Combined application with other antimicrobial substances can effectively improve the efficacy of yeasts as biocontrol agents. Yeasts show great potential as substitute for chemical additives in various food fields, but their commercialization is still limited. Hence, additional investigation is required to explore the prospective advancements of yeasts in the field of biopreservation for food.
Collapse
Affiliation(s)
- Yan He
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Pascal Degraeve
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Nadia Oulahal
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| |
Collapse
|
6
|
Zhang Q, Shen J, Meng G, Wang H, Liu C, Zhu C, Zhao G, Tong L. Selection of yeast strains in naturally fermented cured meat as promising starter cultures for fermented cured beef, a traditional fermented meat product of northern China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:883-891. [PMID: 37698856 DOI: 10.1002/jsfa.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/13/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Fermented meat products are meat products with a unique flavor, color, and texture as well as an extended shelf life under natural or artificially controlled conditions. Microorganisms or enzymes are used to ferment the raw meat so that it undergoes a series of biochemical and physical changes. Common fermentation strains are lactic acid bacteria, yeasts, staphylococci, molds, and so forth. Studies on the inhibitory effect of yeast fermentation strain on N-nitrosamines in fermented meat products have not been reported. Two excellent yeast starters were identified to solve the problem of nitrosamines in fermented meat products. RESULTS Meyerozyma guilliermondii and Debaryomyces hansenii led to weak acid production, strong resistance to NaCl and NaNO2 , and high tolerance to low acidic conditions. The inoculated fermented beef exhibited decreased lightness, moisture content, water activity, pH, protein content, nitrite content, and N-nitrosamine content in comparison with the control group fermented bacon. M. guilliermondii had a better effect, reducing pH from 5.69 to 5.41, protein content from 254.24 to 221.92 g·kg-1 , nitrite content from 28.61 to 25.33 mg·kg-1 and N-nitrosamine by 18.97%, and giving the fermented beef the desired meat color, mouthfeel, odor, taste, and tissue quality. CONCLUSION In this study, two strains of yeast fermenters that can degrade N-nitrosamine precursors were identified, which to some extent solves the problem of the high risk of generating nitrosamines such as N-nitrosodiethylamine (NDEA) by processing fermented meat products with nitrites as precursors. These two strains are likely to be used as starter cultures for fermented meat products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuhui Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jialong Shen
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Gaoge Meng
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Han Wang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chang Liu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chaozhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Gaiming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Lin Tong
- Tongliao Comprehensive Test Station, Tongliao, People's Republic of China
| |
Collapse
|
7
|
Álvarez M, Núñez F, Cebrián E, Roncero E, Andrade MJ. Effect of selected agents for ochratoxin A biocontrol on the colour, texture and volatile profile of dry-cured fermented sausages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7862-7868. [PMID: 37467398 DOI: 10.1002/jsfa.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Traditional dry-cured fermented sausages favour the growth of an autochthonous microbial population, which plays an important role in their sensory aspects. However, some moulds can produce mycotoxins such as ochratoxin A (OTA). The biocontrol agents (BCAs) Debaryomyces hansenii FHSCC 253H and Staphylococcus xylosus FHSCC Sx8 have been demonstrated to reduce OTA production in dry-cured meat products, but their influence in the sensory characteristics of sausages has to be tested. The aim of this study was to evaluate the effect of these BCAs on the colour, texture and volatile profile of dry-cured fermented sausages. RESULTS D. hansenii caused few differences in the tested parameters with respect to the control batch. S. xylosus modified the texture and colour, although the values found were within the range expected for dry-cured fermented sausages 'salchichón'. Additionally, the volatile profile revealed the potential antioxidant effect of both BCAs and their ability to produce compounds associated with the ripened aroma that could increase product acceptability. CONCLUSION The results indicate that there were no inconveniences in implementing both BCAs during the processing of dry-cured fermented sausages 'salchichón'. Moreover, D. hansenii FHSCC 253H could improve the volatile profile of this product. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Micaela Álvarez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Félix Núñez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Eva Cebrián
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Elia Roncero
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - María Jesús Andrade
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
8
|
Álvarez M, Andrade MJ, Cebrián E, Roncero E, Delgado J. Perspectives on the Probiotic Potential of Indigenous Moulds and Yeasts in Dry-Fermented Sausages. Microorganisms 2023; 11:1746. [PMID: 37512918 PMCID: PMC10385761 DOI: 10.3390/microorganisms11071746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
The role of indigenous fungi in the appropriate development of sensory properties and the safety of dry-fermented sausages has been widely established. Nonetheless, their applications as probiotic agents have not been elucidated in such products yet, despite their promising functional features. Thus, it should be interesting to evaluate the probiotic potential of native Debaryomyces hansenii isolates from dry-fermented sausages and their application in the meat industry, because it is the most frequently isolated yeast species from these foodstuffs and its probiotic effects for animals as well as its possible probiotic activity for human beings have been demonstrated. Within the functional ability of foodborne yeasts, anti-inflammatory, antioxidant, antimicrobial, antigenotoxic, and immunomodulatory properties have been reported. Similarly, the use of dry-fermented sausages as vehicles for probiotic moulds remains a challenge because the survival and development of moulds in the gastrointestinal tract are still unknown. Nevertheless, some moulds have been isolated from faeces possibly from their spores as a form of resistance. Additionally, their beneficial effects on animals and humans, such as the decrease in lipid content and the anti-inflammatory activity, have been reported, although they seem to be more related to their postbiotic capacity due to the generated bioactive compounds with profunctional attributes than to their role as probiotics. Therefore, further studies providing knowledge useful for generating dry-fermented sausages with improved functionality are fully necessary.
Collapse
Affiliation(s)
- Micaela Álvarez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - María J Andrade
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Eva Cebrián
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Elia Roncero
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| |
Collapse
|
9
|
Rossi F, Tucci P, Del Matto I, Marino L, Amadoro C, Colavita G. Autochthonous Cultures to Improve Safety and Standardize Quality of Traditional Dry Fermented Meats. Microorganisms 2023; 11:1306. [PMID: 37317280 DOI: 10.3390/microorganisms11051306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Traditional dry fermented meat products are obtained artisanally in many countries, where they represent a gastronomic heritage well distinguished from industrial counterparts. This food category is most often obtained from red meat, a food commodity that is under attack because of evidence of increased risk of cancer and degenerative diseases with high consumption. However, traditional fermented meat products are intended for moderate consumption and gastronomic experience, and, as such, their production must be continued, which would also help safeguard the culture and economy of the geographical areas of origin. In this review, the main risks attributed to these products are considered, and how these risks are reduced by the application of autochthonous microbial cultures is highlighted by reviewing studies reporting the effects of autochthonous lactic acid bacteria (LAB), coagulase negative staphylococci (CNS), Debaryomyces hansenii and Penicillium nalgiovense on microbiological and chemical safety and on sensory attributes. The role of dry fermented sausages as a source of microorganisms that can be beneficial to the host is also considered. From the results of the studies reviewed here it appears that the development of autochthonous cultures for these foods can ensure safety and stabilize sensory characteristics and has the capacity to be extended to a larger variety of traditional products.
Collapse
Affiliation(s)
- Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Sezione di Campobasso, 86100 Campobasso, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Sezione di Campobasso, 86100 Campobasso, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Sezione di Campobasso, 86100 Campobasso, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Sezione di Campobasso, 86100 Campobasso, Italy
| | - Carmela Amadoro
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Giampaolo Colavita
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, 86100 Campobasso, Italy
| |
Collapse
|
10
|
Mohamed HMA, Aljasir SF, Moftah RF, Younis W. Mycological evaluation of frozen meat with special reference to yeasts. Vet World 2023; 16:571-579. [PMID: 37041834 PMCID: PMC10082747 DOI: 10.14202/vetworld.2023.571-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Fungi can play beneficial and detrimental roles in meat products; however, the diversity and significance of fungi in meat products are poorly understood. This study aimed to isolate and characterize fungal species from frozen beef samples collected from retail stores in the Qena Governorate, Egypt. Materials and Methods A total of 70 frozen beef samples were collected from retail stores in Qena, Egypt. All samples were subjected to mycological examination. Fungal colonies were identified using conventional approaches, as well as the VITEK 2 system and DNA sequencing of the internal transcribed spacer region. Analyses of enzymatic activity, biofilm formation ability, and the antimicrobial resistance profiles of the isolated yeasts were also conducted. Results Molds and yeasts were isolated from 40% and 60% of meat samples, respectively. Mold isolates were dominated by Aspergillus, Penicillium, and Cladosporium spp., whereas yeast isolates were identified as Candida albicans, Candida parapsilosis, Yarrowia lipolytica, Saccharomyces cerevisiae, and Rhodotorula mucilaginosa. Compared to other yeast species, the highest production of lipase and protease was observed in Candida species. The strongest ability to form biofilms was observed in Candida spp., followed by S. cerevisiae, Y. lipolytica, and R. mucilaginosa. The results of antimicrobial susceptibility testing revealed that all yeast isolates showed notable resistance to fluconazole and itraconazole. Conclusion A significant correlation between antimicrobial resistance and biofilm formation was observed in several species. This study highlights the importance of the dangers of yeasts in food products and the extent of their impact on public health.
Collapse
Affiliation(s)
- Hams M. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Sulaiman F. Aljasir
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rofida F. Moftah
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Waleed Younis
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- Corresponding author: Waleed Younis, e-mail: Co-authors: HMAM: , SFA: , RFM:
| |
Collapse
|
11
|
Liao Y, Ding Y, Wu Y, Du Q, Xia J, Jia J, Lin H, Benjakul S, Zhang B, Hu Y. Analysis of volatile compounds and flavor fingerprint in hairtail ( Trichiurus lepturus) during air-drying using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Front Nutr 2023; 9:1088128. [PMID: 36712508 PMCID: PMC9875018 DOI: 10.3389/fnut.2022.1088128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
In the present study, changes in volatile compounds during processing were analyzed using the headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), to investigate the generation of aroma in hairtails (Trichiurus lepturus) during air-drying. Physicochemical indices, such as moisture content and thiobarbituric acid reactive substances (TBARS), were also detected. Flavor fingerprints were studied and developed to distinguish the samples of fresh hairtails (0 day) from air-dried hairtails (2 and 4 days). A total of 75 volatile organic compounds (VOCs) were identified in hairtails, in which alcohols, aldehydes, ketones, and esters were the principal contributors to the formation of the overall flavor of hairtails during air-drying. Seven flavor compounds (ethanol, 3-methyl-1-butanol, 1-pentanol, hexanal, octanal, benzaldehyde, and 3-methylbutanal), two flavor compounds (acetoin and dimethyl sulfide), and eight flavor compounds (1-hexanol, 1-octen-3-ol, nonanal, heptanal, 2-heptanone, ethyl acetate, trimethylamine, and ammonia) were identified in 0, 2, and 4 air-dried hairtails as biomarkers, respectively. The results showed that HS-GC-IMS could detect VOCs in different air-dried hairtails rapidly and comprehensively.
Collapse
Affiliation(s)
- Yueqin Liao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yixuan Ding
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jiangyue Xia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Junqi Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Huimin Lin
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,*Correspondence: Huimin Lin ✉ ; ✉
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,Bin Zhang ✉ ; ✉
| | - Yi Hu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
12
|
Gong X, Mi R, Chen X, Zhu Q, Xiong S, Qi B, Wang S. Evaluation and selection of yeasts as potential aroma enhancers for the production of dry-cured ham. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Non-targeted analysis of VOCs by HS-SPME-G C/MS coupled with chemometrics as a potential tool for authentication of White Kołuda oat goose. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
This study tested the possibility of using non-targeted analysis of volatile organic compounds by headspace solid-phase microextraction-gas chromatography-mass spectrometry coupled with chemometrics as a potential tool for differentiating leg meat of oat- and wheat-fed (ad libitum) White Kołuda geese. Thirty-six classification models were obtained for which the correct classification rate and classification accuracy for oatfed and wheat-fed geese were calculated based on a seven-fold cross-validation. Generally, the most advantageous method of the sample preparation was the high-temperature heat treatment version, whereas the highest correct classification rate was obtained when the chemometric analysis was carried out on the female, then male, and finally male + female variant of group comparisons (P<0.01). Furthermore, log-transformation appeared to be a slightly better data preprocessing technique in comparison to systematic ratio normalization. The obtained classification models can potentially differentiate the meat of oat-fattened from wheat-fattened White Kołuda geese.
Collapse
|
14
|
Vilar EG, O'Sullivan MG, Kerry JP, Kilcawley KN. Volatile organic compounds in beef and pork by gas chromatography‐mass spectrometry: A review. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elena Garicano Vilar
- Food Quality & Sensory Science Department Teagasc Food Research Centre, Moorepark Ireland
- School of Food and Nutritional Science University College Cork Cork Ireland
| | | | - Joseph P. Kerry
- School of Food and Nutritional Science University College Cork Cork Ireland
| | - Kieran N. Kilcawley
- Food Quality & Sensory Science Department Teagasc Food Research Centre, Moorepark Ireland
- School of Food and Nutritional Science University College Cork Cork Ireland
| |
Collapse
|
15
|
Ekonomou S, Parlapani F, Kyritsi M, Hadjichristodoulou C, Boziaris I. Preservation status and microbial communities of vacuum-packed hot smoked rainbow trout fillets. Food Microbiol 2022; 103:103959. [DOI: 10.1016/j.fm.2021.103959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
|
16
|
Muñoz R, Viveros N, Bevilacqua A, Pérez MS, Arévalo-Villena M. Effects of ultrasound treatments on wine microorganisms. ULTRASONICS SONOCHEMISTRY 2021; 79:105775. [PMID: 34649166 PMCID: PMC8517920 DOI: 10.1016/j.ultsonch.2021.105775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound is one of the most promising non-thermal an emerging technique in food technology. The objective of the present work was to evaluate the effect of different ultrasonic treatments on the most important wine microbiota (Saccharomyces and non-Saccharomyces yeasts and lactic acid bacteria). Two stages were carried out: the assessment step, where six different ultrasonic treatments (with varying power, time, and pulses) were used on Saccharomyces cerevisiae, Brettanomyces spp., and Lactiplantibacillus plantarum; and the validation step, where two chosen ultrasonic treatments were used on Zigosaccharomyces bailli, Brettanomyces spp., Saccharomyces cerevisiae, Saccharomyces bayanus, Pichia membranifaciens, Schizosaccharomyces pombe, and Hanseniaspora osmophila. The most sensitive microorganism was Brettanomyces spp., and the most resistant was Lactiplantibacillus plantarum. Ultrasonic treatments had varying effects on vitality (delay of growth or maximum OD reduction) and on viability (reduction of microbial growth).
Collapse
Affiliation(s)
- Raquel Muñoz
- Food Science and Technology Department, Av. Camilo José Cela S/N, Edificio Marie Curie, 13071 Ciudad Real, Castilla-La Mancha University, Spain
| | - Noelia Viveros
- Food Science and Technology Department, Av. Camilo José Cela S/N, Edificio Marie Curie, 13071 Ciudad Real, Castilla-La Mancha University, Spain
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food, Natural Resources and Engineering (DAFNE), Via Napoli 25, 71122 Foggia, University of Foggia, Italy
| | - María Soledad Pérez
- Food Science and Technology Department, Av. Camilo José Cela S/N, Edificio Marie Curie, 13071 Ciudad Real, Castilla-La Mancha University, Spain
| | - María Arévalo-Villena
- Food Science and Technology Department, Av. Camilo José Cela S/N, Edificio Marie Curie, 13071 Ciudad Real, Castilla-La Mancha University, Spain.
| |
Collapse
|
17
|
Ramos-Moreno L, Ruiz-Pérez F, Rodríguez-Castro E, Ramos J. Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products. Microorganisms 2021; 9:microorganisms9071512. [PMID: 34361947 PMCID: PMC8303870 DOI: 10.3390/microorganisms9071512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Debaryomyces hansenii yeast represents a promising target for basic and applied biotechnological research It is known that D. hansenii is abundant in sausages and dry-meat products, but information regarding its contribution to their characteristics is blurry and contradictory. The main goal in this review was to define the biological contribution of D. hansenii to the final features of these products. Depending on multiple factors, D. hansenii may affect diverse physicochemical characteristics of meat products. However, there is general agreement about the significant generation of volatile and aromatic compounds caused by the metabolic activities of this yeast, which consequently provide a tendency for improved consumer acceptance. We also summarize current evidence highlighting that it is not possible to predict what the results would be after the inoculation of a meat product with a selected D. hansenii strain without a pivotal previous study. The use of D. hansenii as a biocontrol agent and to manufacture new meat products by decreasing preservatives are examples of exploring research lines that will complement current knowledge and contribute to prepare new and more ecological products.
Collapse
|
18
|
Wang F, Gao Y, Wang H, Xi B, He X, Yang X, Li W. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci 2021; 175:108449. [PMID: 33550158 DOI: 10.1016/j.meatsci.2021.108449] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
In this study, gas chromatography coupled to an ion mobility spectrometry (GC-IMS) was used for analyzing some volatile components and flavor fingerprint in samples from Jingyuan lambs of different ages (2, 6, and 12 months). The data obtained from ion mobility were processed using laboratory analysis view processing software for fingerprint recognition, and the principal component analysis (PCA) was performed. GC-IMS provided information on the characteristics and strength of 66 volatile flavor compounds (monomers and dimers). The differences in flavoring substances between lambs of different ages were observed. The compounds with higher intensity peaks in the lamb meat samples were alcohols (1-octen-3-ol, ethanol, (E)-2-hexen-1-ol, 1-pentanol, and 2-propanol), ketones (2-pentanone, 2-heptanone, 3-hydroxy-2-butanone, 2-hexanone, 2-butanone, 2-propanone, and 4-methyl-2-pentanone), aldehydes (n-nonanal, octanal, heptanal, 3-methylbutanal, hexanal, pentanal, 2-methylbutanal, (E)-2-octenal, (E)-2-nonenal, methional, and phenylacetaldehyde), esters (methyl benzoate), furan (2-pentylfuran), and thiazole (trimethylthiazole). The results showed that the flavor fingerprint in samples from Jingyuan lambs of different ages (2, 6, and 12 months) can be established by GC-IMS and PCA based on the identified volatile compounds. This method might be used for the rapid and comprehensive analysis of volatile components in lamb meat.
Collapse
Affiliation(s)
- Fang Wang
- Lanzhou Institute of Animal Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Quality Safety Risk Assessment of Animal Products (Lanzhou), Ministry of Agriculture, Lanzhou 730050, China
| | - Yaqin Gao
- Lanzhou Institute of Animal Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Quality Safety Risk Assessment of Animal Products (Lanzhou), Ministry of Agriculture, Lanzhou 730050, China.
| | - Hongbo Wang
- Lanzhou Institute of Animal Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Quality Safety Risk Assessment of Animal Products (Lanzhou), Ministry of Agriculture, Lanzhou 730050, China
| | - Bin Xi
- Lanzhou Institute of Animal Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Quality Safety Risk Assessment of Animal Products (Lanzhou), Ministry of Agriculture, Lanzhou 730050, China
| | - Xiaona He
- Lanzhou Institute of Animal Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Quality Safety Risk Assessment of Animal Products (Lanzhou), Ministry of Agriculture, Lanzhou 730050, China
| | - Xiaoling Yang
- Lanzhou Institute of Animal Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Quality Safety Risk Assessment of Animal Products (Lanzhou), Ministry of Agriculture, Lanzhou 730050, China
| | - Weihong Li
- Lanzhou Institute of Animal Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Quality Safety Risk Assessment of Animal Products (Lanzhou), Ministry of Agriculture, Lanzhou 730050, China
| |
Collapse
|