1
|
Mostovaya O, Shiabiev I, Ovchinnikov D, Pysin D, Mukhametzyanov T, Stanavaya A, Abashkin V, Shcharbin D, Khannanov A, Kutyreva M, Shen M, Shi X, Padnya P, Stoikov I. PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding. Pharmaceutics 2024; 16:1379. [PMID: 39598503 PMCID: PMC11597237 DOI: 10.3390/pharmaceutics16111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Current promising treatments for many diseases are based on the use of therapeutic nucleic acids, including DNA. However, the list of nanocarriers is limited due to their low biocompatibility, high cost, and toxicity. The design of synthetic building blocks for creating universal delivery systems for genetic material is an unsolved problem. In this work, we propose PAMAM dendrimers with rigid thiacalixarene core in various conformations, i.e., PAMAM-calix-dendrimers, as a platform for a supramolecular universal constructor for nanomedicine. Results: Third generation PAMAM dendrimers with a macrocyclic core in three conformations (cone, partial cone, and 1,3-alternate) were synthesized for the first time. The obtained dendrimers were capable of binding and compacting calf thymus DNA, whereby the binding efficiency improved with increasing generation, while the influence of the macrocyclic core was reduced. A dramatic effect of the macrocyclic core conformation on the hemolytic activity of PAMAM-calix-dendrimers was observed. Specifically, a notable reduction in hemotoxicity was associated with a decrease in compound amphiphilicity. Conclusions: We hope the results will help reduce financial and labor costs in developing new drug delivery systems based on dendrimers.
Collapse
Affiliation(s)
- Olga Mostovaya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Igor Shiabiev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Daniil Ovchinnikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Dmitry Pysin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Timur Mukhametzyanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Alesia Stanavaya
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus; (A.S.); (V.A.); (D.S.)
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus; (A.S.); (V.A.); (D.S.)
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus; (A.S.); (V.A.); (D.S.)
| | - Arthur Khannanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Marianna Kutyreva
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (M.S.); (X.S.)
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (M.S.); (X.S.)
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (O.M.); (I.S.); (D.O.); (D.P.); (T.M.); (A.K.); (M.K.)
| |
Collapse
|
2
|
Cardama GA, Bucci PL, Lemos JS, Llavona C, Benavente MA, Hellmén E, Fara ML, Medrano E, Spitzer E, Demarco IA, Sabella P, Garona J, Alonso DF. In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma. Animals (Basel) 2023; 13:2507. [PMID: 37570315 PMCID: PMC10417262 DOI: 10.3390/ani13152507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Canine mammary carcinomas (CMC) are associated with major aggressive clinical behavior and high mortality. The current standard of care is based on surgical resection, without an established effective treatment scheme, highlighting the urgent need to develop novel effective therapies. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis and progression in the majority of solid cancers, including human and canine mammary carcinomas. The first therapy developed to target VEGF was bevacizumab, a recombinant humanized monoclonal antibody, which has already been approved as an anticancer agent in several human cancers. The goal of this work was to establish the therapeutic value of MB02 bevacizumab biosimilar in CMC. First, through different in silico approaches using the MUSCLE multiple-sequence alignment tool and the FoldX protein design algorithm, we were able to predict that canine VEGF is recognized by bevacizumab, after showing an extremely high sequence similarity between canine and human VEGF. Further, by using an ELISA-based in vitro binding assay, we confirmed that MB02 biosimilar was able to recognize canine VEGF. Additionally, canine VEGF-induced microvascular endothelial cell proliferation was inhibited in a concentration-dependent manner by MB02 biosimilar. These encouraging results show a high potential for MB02 as a promising therapeutic agent for the management of CMC.
Collapse
Affiliation(s)
- Georgina A. Cardama
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
| | - Paula L. Bucci
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Jesús S. Lemos
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Candela Llavona
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red S.A.M.I.C. El Cruce “Nestor Kirchner”, Florencio Varela B5401, Argentina
| | - Micaela A. Benavente
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
- Laboratorio de Endocrinología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7000, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET—CICPBA—Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7000, Argentina
| | - Eva Hellmén
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden;
| | - María Laura Fara
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | - Eduardo Medrano
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | - Eduardo Spitzer
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | | | | | - Juan Garona
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red S.A.M.I.C. El Cruce “Nestor Kirchner”, Florencio Varela B5401, Argentina
| | - Daniel F. Alonso
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
| |
Collapse
|
3
|
Scott MA, Woolums AR, Swiderski CE, Finley A, Perkins AD, Nanduri B, Karisch BB. Hematological and gene co-expression network analyses of high-risk beef cattle defines immunological mechanisms and biological complexes involved in bovine respiratory disease and weight gain. PLoS One 2022; 17:e0277033. [PMID: 36327246 PMCID: PMC9632787 DOI: 10.1371/journal.pone.0277033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Bovine respiratory disease (BRD), the leading disease complex in beef cattle production systems, remains highly elusive regarding diagnostics and disease prediction. Previous research has employed cellular and molecular techniques to describe hematological and gene expression variation that coincides with BRD development. Here, we utilized weighted gene co-expression network analysis (WGCNA) to leverage total gene expression patterns from cattle at arrival and generate hematological and clinical trait associations to describe mechanisms that may predict BRD development. Gene expression counts of previously published RNA-Seq data from 23 cattle (2017; n = 11 Healthy, n = 12 BRD) were used to construct gene co-expression modules and correlation patterns with complete blood count (CBC) and clinical datasets. Modules were further evaluated for cross-populational preservation of expression with RNA-Seq data from 24 cattle in an independent population (2019; n = 12 Healthy, n = 12 BRD). Genes within well-preserved modules were subject to functional enrichment analysis for significant Gene Ontology terms and pathways. Genes which possessed high module membership and association with BRD development, regardless of module preservation (“hub genes”), were utilized for protein-protein physical interaction network and clustering analyses. Five well-preserved modules of co-expressed genes were identified. One module (“steelblue”), involved in alpha-beta T-cell complexes and Th2-type immunity, possessed significant correlation with increased erythrocytes, platelets, and BRD development. One module (“purple”), involved in mitochondrial metabolism and rRNA maturation, possessed significant correlation with increased eosinophils, fecal egg count per gram, and weight gain over time. Fifty-two interacting hub genes, stratified into 11 clusters, may possess transient function involved in BRD development not previously described in literature. This study identifies co-expressed genes and coordinated mechanisms associated with BRD, which necessitates further investigation in BRD-prediction research.
Collapse
Affiliation(s)
- Matthew A. Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States of America
- * E-mail:
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Cyprianna E. Swiderski
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Abigail Finley
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States of America
| | - Andy D. Perkins
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS, United States of America
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
4
|
Mostovaya OA, Vavilova AA, Stoikov II. Supramolecular Systems Based on Thiacalixarene Derivatives and Biopolymers. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Pilgrim CR, McCahill KA, Rops JG, Dufour JM, Russell KA, Koch TG. A Review of Fetal Bovine Serum in the Culture of Mesenchymal Stromal Cells and Potential Alternatives for Veterinary Medicine. Front Vet Sci 2022; 9:859025. [PMID: 35591873 PMCID: PMC9111178 DOI: 10.3389/fvets.2022.859025] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Fetal bovine serum (FBS) remains widely used as a supplement in cell culture media used in the isolation and expansion of mesenchymal stromal cells (MSC) despite longstanding practical, clinical, and ethical concerns over its use. As a result, research on alternative culture media supplement solutions that conserve crucial MSC characteristics has become increasingly relevant. Species-specific supplements and serum-free media such as platelet lysate or chemically defined media have been assessed for their effect in MSC cultures regarding proliferation, differentiation, and immunomodulatory capacity. While none of the alternatives offer a complete solution in replacing traditional FBS supplemented media for culturing MSCs for all species, short-term or transitional use of FBS-free media can perform equally well and could address some of the concerns over the use of FBS.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas G. Koch
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Mostovaya O, Padnya P, Shiabiev I, Mukhametzyanov T, Stoikov I. PAMAM-calix-dendrimers: Synthesis and Thiacalixarene Conformation Effect on DNA Binding. Int J Mol Sci 2021; 22:ijms222111901. [PMID: 34769329 PMCID: PMC8585033 DOI: 10.3390/ijms222111901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/16/2022] Open
Abstract
A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.
Collapse
Affiliation(s)
| | - Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|