1
|
Nisa FU, Naqvi RZ, Arshad F, Ilyas I, Asif M, Amin I, Mrode R, Mansoor S, Mukhtar Z. Assessment of Genomic Diversity and Selective Pressures in Crossbred Dairy Cattle of Pakistan. Biochem Genet 2024; 62:4137-4156. [PMID: 38664326 DOI: 10.1007/s10528-024-10809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/08/2024] [Indexed: 09/28/2024]
Abstract
Improving the low productivity levels of native cattle breeds in smallholder farming systems is a pressing concern in Pakistan. Crossbreeding high milk-yielding holstein friesian (HF) breed with the adaptability and heat tolerance of Sahiwal cattle has resulted in offspring that are well-suited to local conditions and exhibit improved milk yield. The exploration of how desirable traits in crossbred dairy cattle are selected has not yet been investigated. This study aims to provide the first overview of the selective pressures on the genome of crossbred dairy cattle in Pakistan. A total of eighty-one crossbred, thirty-two HF and twenty-four Sahiwal cattle were genotyped, and additional SNP genotype data for HF and Sahiwal were collected from a public database to equate the sample size in each group. Within-breed selection signatures in crossbreds were investigated using the integrated haplotype score. Crossbreds were also compared to each of their parental breeds to discover between-population signatures of selection using two approaches: cross-population extended haplotype homozygosity and fixation index. We identified several overlapping genes associated with production, immunity, and adaptation traits, including U6, TMEM41B, B4GALT7, 5S_rRNA, RBM27, POU4F3, NSD1, PRELID1, RGS14, SLC34A1, TMED9, B4GALT7, OR2AK3, OR2T16, OR2T60, OR2L3, and CTNNA1. Our results suggest that regions responsible for milk traits have generally experienced stronger selective pressure than others.
Collapse
Affiliation(s)
- Fakhar Un Nisa
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Fazeela Arshad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Iram Ilyas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, UK
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
- International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan.
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan.
| |
Collapse
|
2
|
Bhat RR, Bhat NN, Shabir A, Mir MUR, Ahmad SB, Hussain I, Hussain SA, Ali A, Shamim K, Rehman MU. SNP Analysis of TLR4 Promoter and Its Transcriptional Factor Binding Profile in Relevance to Bovine Subclinical Mastitis. Biochem Genet 2024; 62:3605-3623. [PMID: 38158465 DOI: 10.1007/s10528-023-10578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 01/03/2024]
Abstract
Bovine mastitis is a complex infectious disease that develops in the mammary gland, predominantly caused by a bacterial infection of mammary tissue. Genetic variability of mastitis is well established and depends upon different quantitative trait loci (QTL) related to mastitis resistance or susceptibility. The susceptibility is often attributed to single-nucleotide polymorphisms (SNPs) in the variable cow breed genomes. Several global investigative attempts have resulted in studies mapping mastitis to the variations in the relevant genes. Reports have been attributed to dramatic genetic expression changes in Toll-Like Receptor 4 (TLR4) genes in mastitis-positive cows. However, the mechanism behind this variable genetic expression of TLR4 genes has been studied poorly. The present study aims to investigate SCM through various screening tests like somatic cell count (SCC), electric conductivity (EC), pH, and California mastitis test (CMT) in milk samples. This study also aims to investigate possible mechanisms behind this variable expression of TLR4 by comparative SNP evaluation and transcriptional factor profile mining. So that the important genetic mutations and effects thereof can be exploited in selecting specific breeds with higher mastitis resistance and milk yield. Seventy Holstein Frisian (HF) crossbred dairy cows were selected in the present study. The animals were screened based on various diagnostic tests (SCC, pH, EC, and CMT). Blood samples (5 mL) were collected for extraction of DNA followed by amplification of PPR1 and PPR2 of the promoter region and 5'UTR of the bovine TLR4 gene using specific primers. Sanger's enzymatic DNA sequencing technique sequenced the amplified PCR products. Further, the identification of SNPs was done through various bioinformatic tools used in this study. The findings of the present study revealed that CMT, EC, pH, and SCC could be used for the early detection of subclinical mastitis. In the present study, a significant increase in the EC, pH, and SCC in milk samples of animals affected with SCM was found in comparison to the healthy animals. The present study also revealed 16 SNPs falling in TLR4 promoter and 5' untranslated region (5'UTR) sequences in mastitis-positive genotypes compared to reference genomes. The study also investigates the potential transcriptional factor program deployed in response to variable mastitis development resistance. In the present study, the allelic and genotype frequencies of all SNP variants in the three regions viz., PPR1, PPR2, and 5'UTR, were the same indicating the absence of heterozygous condition at the respective loci. The present study has wide applicability for researchers developing mastitis-resistant breeding programs and the data generated may aid in the selection of better genetic breeds. The transcription factor binding profiles can serve as concrete leads about the studies on bovine mastitis at the molecular level and may also aid global research groups working on transcription factor (TF)-based molecular pathology of mastitis.
Collapse
Affiliation(s)
- Rahil Razak Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Nadiem Nazir Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ambreen Shabir
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-Kashmir, Rangil, Ganderbal, J&K, 191201, India
| | - Manzoor Ur Rahman Mir
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ishraq Hussain
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Syed Ashaq Hussain
- Division of Veterinary Clinical Medicine, Ethics and Jurisprudence, FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Aarif Ali
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Kashif Shamim
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Badia-Bringué G, Canive M, Vázquez P, Garrido JM, Fernández A, Juste RA, Jiménez JA, González-Recio O, Alonso-Hearn M. Genome-Wide Association Study Reveals Quantitative Trait Loci and Candidate Genes Associated with High Interferon-gamma Production in Holstein Cattle Naturally Infected with Mycobacterium Bovis. Int J Mol Sci 2024; 25:6165. [PMID: 38892353 PMCID: PMC11172856 DOI: 10.3390/ijms25116165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNɣ) and its use in bovine selective breeding programs have not been explored. In the current study, IFNɣ production was measured using a specific IFNɣ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNɣ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNɣ in response to Mb.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Joseba M. Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| |
Collapse
|
4
|
Strillacci MG, Punturiero C, Milanesi R, Bernini F, Mason T, Bagnato A. Antibiotic treatments and somatic cell count as phenotype to map QTL for mastitis susceptibility in Holstein cattle breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
| | - Chiara Punturiero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Tiziano Mason
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
5
|
Ghiasi H, Khaldari M, Taherkhani R. Identification of hub genes associated with somatic cell score in dairy cow. Trop Anim Health Prod 2023; 55:349. [PMID: 37796357 DOI: 10.1007/s11250-023-03766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
CONTEXT Somatic cell count (SCC) is used as an indicator of udder health. The log transformation of SCC is called somatic cell score (SCS). AIM Several QTL and genes have been identified that are associated with SCS. This study aimed to identify the most important genes associated with SCS. METHODS This study compiled 168 genes that were reported to be significantly linked to SCS. Pathway analysis and network analysis were used to identify hub genes. KEY RESULTS Pathway analysis of these genes identified 73 gene ontology (GO) terms associated with SCS. These GO terms are associated with molecular function, biological processes, and cellular components, and the identified pathways are directly or indirectly linked with the immune system. In this study, a gene network was constructed, and from this network, the 17 hub genes (CD4, CXCL8, TLR4, STAT1, TLR2, CXCL9, CCR2, IGF1, LEP, SPP1, GH1, GHR, VWF, TNFSF11, IL10RA, NOD2, and PDGFRB) associated to SCS were identified. The subnetwork analysis yielded 10 clusters, with cluster 1 containing all identified hub genes (except for the VWF gene). CONCLUSION Most hub genes and pathways identified in our study were mainly involved in inflammatory and cytokine responses. IMPLICATIONS Result obtained in current study provides knowledge of the genetic basis and biological mechanisms controlling SCS. Therefore, the identified hub genes may be regarded as the main gene for the genomic selection of mastitis resistance.
Collapse
Affiliation(s)
- Heydar Ghiasi
- Department of Animal Science, Faculty of Agricultural Science, Payame Noor University, Tehran, 19395-4697, Iran.
| | - Majid Khaldari
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorram-Abad, Iran
| | - Reza Taherkhani
- Department of Animal Science, Faculty of Agricultural Science, Payame Noor University, Tehran, 19395-4697, Iran
| |
Collapse
|
6
|
Devadasan MJ, Ramesha KP, Ramesh P, Kootimole CN, Jeyakumar S, Ashwitha A, Ammankallu S, Rai AB, Kumaresan A, Vedamurthy VG, Raju R, Das DN, Kataktalware MA, Prasad TSK. Exploring molecular dynamic indicators associated with reproductive performance of Bos indicus cattle in blood plasma samples through data-independent acquisition mass spectrometry. J Proteomics 2023; 285:104950. [PMID: 37321300 DOI: 10.1016/j.jprot.2023.104950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Improving reproductive performance of cattle is of paramount importance for sustainable dairy farming. Poor reproduction performance (RP) hinders the genetic improvement of important Bos indicus cattle breeds. It is well known that incorporation of molecular information along with conventional breeding method is far better than use of conventional method alone for the genetic improvement of reproductive performance traits in cattle. Therefore, the present study sought to investigate the plasma proteome of the Deoni cows in cyclical (n = 6) and pregnant (n = 6) reproductive phases with varying reproductive performance (high and low). High-throughput data independent acquisition (DIA) based proteomics was performed to understand corresponding proteome. We identified a total of 430 plasma proteins. Among cyclic cows, twenty proteins were differentially regulated in low RP as compared to high RP. BARD1 and AFP proteins were observed upregulated in cyclical cows whose upregulation reported to affect reproductive performance in cattle. Among the pregnant cows, thirty-five proteins were differentially regulated, including the downregulation of FGL2 and ZNFX1 that modulates the maternal immune response mechanism which is required for successful implantation of the embryo. Also, proteins such as AHSG, CLU and SERPINA6 were upregulated in the pregnant cows whose upregulation reported to reduced reproductive performance. The results of this study will be helpful in establishing a framework for future research on the aspect of improving reproductive performance in Bos indicus cattle breeds. SIGNIFICANCE: The Indian subcontinent is the center of domestication for Bos indicus cattle breeds and they are known for their disease resistance, heat tolerance, ability to survive in low input regime and harsh climatic conditions. In recent times, population of many important Bos indicus breeds including Deoni cattle is declining due to various factors, especially due to reproductive performance. Traditional breeding methods are not sufficient enough to understand and improve the reproductive performance traits in important Bos indicus cattle breeds. Proteomics approach is a promising technology to understand the complex biological factors which leads to poor reproductive performance in cattle. The present study utilized DIA based LC- MS/MS analysis to identify the plasma proteins associated with reproductive performance in cyclical and pregnant cows. This study if improved further, can be used to develop potential protein markers associated with reproductive performance which is useful for the selection and genetic improvement of important Bos indicus breeds.
Collapse
Affiliation(s)
- M Joel Devadasan
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Kerekoppa P Ramesha
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India.
| | - Poornima Ramesh
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Chinmaya Narayana Kootimole
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sakthivel Jeyakumar
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - A Ashwitha
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Shruthi Ammankallu
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Akhila Balakrishna Rai
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Arumugam Kumaresan
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Veerappa G Vedamurthy
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Rajesh Raju
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - D N Das
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Mukund A Kataktalware
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | | |
Collapse
|
7
|
Bakhshaei F, Sharifiyazdi H, Rowshan-Ghasrodashti A, Zare HR, Mirzaei A, Nazifi S. Polymorphism in neutrophil cytosolic factor 4 (NCF4) of dairy cows had mastitis in previous lactations, and the relationship with the respiratory burst. Res Vet Sci 2023; 160:39-44. [PMID: 37263099 DOI: 10.1016/j.rvsc.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), as a key factor in innate immunity, consists of several components, one of them is p40phox which is encoded by neutrophil cytosolic factor 4 (NCF4). Respiratory burst and reactive oxygen species (ROS) production are antimicrobial mechanisms associated with NADPH oxidase. This study evaluated the effects of g.18174 A > G and g.18270C > T single-nucleotide polymorphisms (SNP) in NCF4 on bovine mastitis and the respiratory burst capacity of neutrophils. SNPs of 160 dairy cattle were determined using a novel PCR-RFLP protocol by employing restriction enzymes, MboI and FokI. Also, the flow cytometry measured respiratory burst in 82 blood samples. Our results indicated that only g.18174 A > G SNP reduced the respiratory burst capacity. However, both SNPs were not significantly correlated with clinical mastitis. We concluded that g.18174 A > G decreases the function of NADPH oxidase. However, both SNPs were not significantly correlated with clinical mastitis.
Collapse
Affiliation(s)
- Farnoosh Bakhshaei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hassan Sharifiyazdi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abbas Rowshan-Ghasrodashti
- Large Animal Internal Medicine, Department of Clinical Studies, School of Veterinary Medicine, Islamic Azad University, Kazerun Branch, Shiraz, Iran
| | - Hamid-Reza Zare
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Flowcytometry, Sa'adati Pathobiology Laboratory, Shiraz, Iran
| | - Abdollah Mirzaei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
8
|
Ilie DE, Gavojdian D, Kusza S, Neamț RI, Mizeranschi AE, Mihali CV, Cziszter LT. Kompetitive Allele Specific PCR Genotyping of 89 SNPs in Romanian Spotted and Romanian Brown Cattle Breeds and Their Association with Clinical Mastitis. Animals (Basel) 2023; 13:ani13091484. [PMID: 37174521 PMCID: PMC10177413 DOI: 10.3390/ani13091484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mastitis is the most common production disease in the dairy sector worldwide, its incidence being associated with both cows' exposure to bacteria and the cows' genetic make-up for resistance to pathogens. The objective of our study was to analyse 89 missense SNPs belonging to six genes (CXCR2, CXCL8, TLR4, BRCA1, LTF, BOLA-DRB3), which were found to be associated with genetic resistance or susceptibility to mastitis. A total of 298 cattle (250 Romanian Spotted and 48 Romanian Brown) were genotyped by Kompetitive Allele Specific PCR (KASP) and a chi-squared test was used for genetic association studies with clinical mastitis. A total of 35 SNPs (39.3%) among the selected 89 SNPs were successfully genotyped, of which 31 markers were monomorphic. The polymorphic markers were found in two genes: TLR4 (rs460053411) and BOLA-DRB3 (rs42309897, rs208816121, rs110124025). The polymorphic SNPs with MAF > 5% and call rates > 95% were used for the association study. The results showed that rs110124025 in the BOLA-DRB3 gene was significantly associated with mastitis prevalence (p ≤ 0.05) in both investigated breeds. Current results show that the SNP rs110124025 in the BOLA-DRB3 gene can be used as a candidate genetic marker in selection for mastitis resistance in Romanian dairy cattle.
Collapse
Affiliation(s)
- Daniela Elena Ilie
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
| | - Dinu Gavojdian
- The Research Department, Research and Development Institute for Bovine Balotesti, 077015 Balotesti, Romania
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, 4032 Debrecen, Hungary
| | - Radu Ionel Neamț
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
| | | | - Ciprian Valentin Mihali
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
- Department of Life Sciences, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, 310025 Arad, Romania
| | - Ludovic Toma Cziszter
- The Research Department, Research and Development Station for Bovine Arad, 310059 Arad, Romania
- Department of Animal Production Engineering, Faculty of Bioengineering of Animal Resources, University of Life Sciences 'King Mihai I' from Timișoara, 300645 Timișoara, Romania
| |
Collapse
|
9
|
Brajnik Z, Ogorevc J. Candidate genes for mastitis resistance in dairy cattle: a data integration approach. J Anim Sci Biotechnol 2023; 14:10. [PMID: 36759924 PMCID: PMC9912691 DOI: 10.1186/s40104-022-00821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammation of the mammary tissue (mastitis) is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector. Improving mastitis resistance is becoming an important goal in dairy ruminant breeding programmes. However, mastitis resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult. Currently, the only applicable approach to identify candidate loci for complex traits in large farm animals is to combine different information that supports the functionality of the identified genomic regions with respect to a complex trait. METHODS To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate loci. Mastitis-associated candidate genes reported in association, expression, and mouse model studies were collected by searching the relevant literature and databases. The collected data were integrated into a single database, screened for overlaps, and used for gene set enrichment analysis. RESULTS The database contains candidate genes from association and expression studies and relevant transgenic mouse models. The 2448 collected candidate loci are evenly distributed across bovine chromosomes. Data integration and analysis revealed overlaps between different studies and/or with mastitis-associated QTL, revealing promising candidate genes for mastitis resistance. CONCLUSION Mastitis resistance is a complex trait influenced by numerous alleles. Based on the number of independent studies, we were able to prioritise candidate genes and propose a list of the 22 most promising. To our knowledge this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting genes for functional validation studies.
Collapse
Affiliation(s)
- Zala Brajnik
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230 Slovenia
| | - Jernej Ogorevc
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230, Slovenia.
| |
Collapse
|
10
|
Massender E, Oliveira HR, Brito LF, Maignel L, Jafarikia M, Baes CF, Sullivan B, Schenkel FS. Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. J Dairy Sci 2023; 106:1168-1189. [PMID: 36526463 DOI: 10.3168/jds.2022-22223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Increasing the productivity of Canadian dairy goats is critical to the competitiveness of the sector; however, little is known about the underlying genetic architecture of economically important traits in these populations. Consequently, the objectives of this study were as follows: (1) to perform a single-step GWAS for milk production traits (milk, protein, and fat yields, and protein and fat percentages in first and later lactations) and conformation traits (body capacity, dairy character, feet and legs, fore udder, general appearance, rear udder, suspensory ligament, and teats) in the Canadian Alpine and Saanen breeds; and (2) to identify positional and functional candidate genes related to these traits. The data available for analysis included 305-d milk production records for 6,409 Alpine and 3,434 Saanen does in first lactation and 5,827 Alpine and 2,632 Saanen does in later lactations; as well as linear type conformation records for 5,158 Alpine and 2,342 Saanen does. Genotypes were available for 833 Alpine and 874 Saanen animals. Both single-breed and multiple-breed GWAS were performed using single-trait animal models. Positional and functional candidate genes were then identified in downstream analyses. The GWAS identified 189 unique SNP that were significant at the chromosomal level, corresponding to 271 unique positional candidate genes within 50 kb up- and downstream, across breeds and traits. This study provides evidence for the economic importance of several candidate genes (e.g., CSN1S1, CSN2, CSN1S2, CSN3, DGAT1, and ZNF16) in the Canadian Alpine and Saanen populations that have been previously reported in other dairy goat populations. Moreover, several novel positional and functional candidate genes (e.g., RPL8, DCK, and MOB1B) were also identified. Overall, the results of this study have provided greater insight into the genetic architecture of milk production and conformation traits in the Canadian Alpine and Saanen populations. Greater understanding of these traits will help to improve dairy goat breeding programs.
Collapse
Affiliation(s)
- Erin Massender
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Hinayah R Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Laurence Maignel
- Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Mohsen Jafarikia
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Brian Sullivan
- Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Shafique L, Aqib AI, Liang Q, Qin C, Ali MM, Adil M, Sarwar Z, Saleem A, Ajmal M, Khan A, Pan H, Cui K, Liu Q. Genomic and Therapeutic Analyses of Staphylococcus aureus Isolated from Cattle Reproductive Tract. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6240711. [PMID: 36147637 PMCID: PMC9489358 DOI: 10.1155/2022/6240711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is emerging as a ubiquitous multidrug-resistant pathogen circulating among animals, humans, and their environment. The current study focused on molecular epidemiology and evidence-based treatment against S. aureus from bovine endometritis. For this study, n = 304 cattle were screened for endometritis using ultrasonography while presenting case history, and clinical signs were also considered. S. aureus was isolated from endometritis-positive uterine samples which were further put to molecular identification, phylogenetic analysis, susceptibility to antibiotics, and testing of novel drug combinations in both in vitro and field trials. The findings of the study revealed 78.20% of bovine endometritis samples positive for S. aureus, while nuc gene-based genotyping of S. aureus thermal nuclease (SA-1, SA-2, and SA-3) showed close relatedness with S. aureus thermal nuclease of Bos taurus. Drug combinations showed 5.00 to 188.88% rise in zones of inhibitions (ZOI) for drugs used in combination compared to the drugs used alone. Gentamicin in combination with amoxicillin and enrofloxacin with metronidazol showed synergistic interactions in an in vitro trial. Co-amoxiclav with gentamicin, gentamicin with enrofloxacin, and metronidazole with enrofloxacin showed 100%, 80%, and 60% efficacy in treating clinical cases in field trials, respectively. As a result, the study came to the conclusion the higher prevalence of endometritis-based S. aureus, genetic host shifts, narrow options for single drugs, and need for novel drug combinations to treat clinical cases.
Collapse
Affiliation(s)
- Laiba Shafique
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan 528225, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterianry and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Qin Liang
- Jinan City Zhangqiu District Animal Husbandry and Veterinary Development Center, China
| | - Chaobin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Memoona Adil
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Zaeem Sarwar
- Department of Theriogenology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur-63100, Pakistan
| | - Arslan Saleem
- Department of Aerospace and Geodesy, Technical University of Munich, Arcisstra. 21, 80333 Munich, Germany
| | - Muhammad Ajmal
- Department of Veterinary Medicine, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Alveena Khan
- Allama Iqbal Medical College Lahore (University of Health Sciences), 54770, Pakistan
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan 528225, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan 528225, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, China
| |
Collapse
|
12
|
A Practical Application of Genomic Predictions for Mastitis Resistance in Italian Holstein Heifers. Animals (Basel) 2022; 12:ani12182370. [PMID: 36139231 PMCID: PMC9494965 DOI: 10.3390/ani12182370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Heifers are a fundamental resource on farms, and their importance is reflected in both farm management and economy. Therefore, the selection of heifers to be reared on a farm should be carefully performed to select only the best animals. Genomic selection is available nowadays to evaluate animals in a fast and economic way. However, it is mainly used on the sire line and on performance traits. Ten farms were selected based on their 5-year records of average somatic cell count and evenly classified into high (>300,000 cells/mL) and low somatic cell count (<150,000 cells/mL). Genomic indexes (regarding both wellness and productive traits) were evaluated in 157 Italian Holstein heifers reared in the selected ten farms (90 from high-cells farms and 67 from low-cells ones). Linear mixed models were fitted to analyze the effects of the abovementioned genomic indexes on related phenotypes. Results have shown that farms classified into low somatic cell count had an overall better animal genomic pool compared to high somatic cell count ones. Additionally, the results shown in this study highlighted a difference in wellness genomic indexes in animals from farms with either a high or a low average somatic cell count. Applying genomic tools directly to heifer selection could improve economic aspects related to herd turnover.
Collapse
|
13
|
Divergent Analyses of Genetic Relatedness and Evidence-Based Assessment of Therapeutics of Staphylococcus aureus from Semi-intensive Dairy Systems. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5313654. [PMID: 35769677 PMCID: PMC9236795 DOI: 10.1155/2022/5313654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022]
Abstract
Use of antibiotics without following standard guidelines is routine practice in developing countries which is giving rise to genetic divergence and increased drug resistance. The current study analyzed genetic divergence and drug resistance by S. aureus and therapeutic efficacy of novel antibiotic combinations. The study revealed that 42.30% (minimum 20%-maximum 70%) of milk samples are positive for S. aureus. Study also revealed seven SNPs in the S. aureus nuc gene (c.53A>G, c.61A>G, c.73T>C, c.93C>A, c.217C>T, c.280T>C, and c.331T>A). Local isolates Staph-2 and Staph-3 were closely related to Bos taurus nuc gene (bovine S. aureus), while Staph-1 was closely related to Homo sapiens (human S. aureus) indicating shifting of host. Change of two amino acids and staphylococcal nuclease conserved domain was observed in all local isolates of S. aureus. The isoelectric points predicted by protParam of Staph-1, Staph-2, and Staph-3 proteins were 9.30, 9.20, and 9.20, respectively. The antibiotic susceptibility profile of S. aureus presented highest resistance against penicillin (46.67%) and glycopeptide (43.33%). When a single antibiotic regimen was adopted in a field trial, the highest efficacy was reported in the case of oxytetracycline (80%) while lowest was presented by azithromycin. Among antibiotics' combined regimen, the highest efficacy (80%) was presented by gentamicin with oxytetracycline: cefotaxime with vancomycin; and ciprofloxacin with vancomycin. The current study concluded rising percentages of S. aureus from dairy milk, proofs of genetic host shifts, and altered responses of in on field therapeutics.
Collapse
|
14
|
Trujano-Chavez MZ, Sánchez-Ramos R, Pérez-Rodríguez P, Ruíz-Flores A. Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle. Vet Sci 2021; 8:vetsci8120329. [PMID: 34941856 PMCID: PMC8707377 DOI: 10.3390/vetsci8120329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Mastitis is a disease that causes significant economic losses, since resistance to mastitis is a difficult trait to be improved due to its multifactorial occurrence. Therefore, our objective was to characterize a Mexican Braunvieh cattle population for genetic resistance and susceptibility to mastitis. We used 66 SNP markers for 45 candidate genes in 150 animals. The average heterozygosity was 0.445 ± 0.076, a value higher than those reported for some European breeds. The inbreeding coefficient was slightly negative for resistance to subclinical (−0.058 ± 0.055) and clinical (−0.034 ± 0.076) mastitis, possibly due to low selection for the immunological candidate genes that influence these traits. The genotypic profiles for the candidate loci per K-means group were obtained, as well as the group distribution through the graphics of the principal component analysis. The genotypic profiles showed high genetic diversity among groups. Resistance to clinical mastitis had the lowest presence of the heterozygous genotypes. Although the percentage of highly inbred animals (>50%) is up to 13.3%, there are highly heterozygous groups in terms of the studied traits, a favorable indicator of the presence of genetic diversity. The results of this study constitute evidence of the genetic potential of the Mexican Braunvieh population to improve mastitis-related traits.
Collapse
Affiliation(s)
- Mitzilin Zuleica Trujano-Chavez
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
| | - Reyna Sánchez-Ramos
- Recursos Genéticos y Productividad, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Paulino Pérez-Rodríguez
- Socio Economía Estadística e Informática-Estadística, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Agustín Ruíz-Flores
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
- Correspondence: ; Tel.: +52-595-952-1621
| |
Collapse
|