1
|
Agwa HMM, Saleh HM, Ayyat MS, Abdel-Rahman GA. Effect of replacing cottonseed meal with canola meal on growth performance, blood metabolites, thyroid function, and ruminal parameters of growing lambs. Trop Anim Health Prod 2023; 55:122. [PMID: 36933051 PMCID: PMC10024659 DOI: 10.1007/s11250-023-03528-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
The objective was to clarify the impact of replacing cottonseed meal with canola meal (CM) on growth performance, blood metabolites, thyroxin function, and ruminal parameters of growing lambs. Twenty-four growing Barki male lambs (4-5 months of age) were assigned randomly into four equal groups (6 lambs each). Four dietary treatments were the control group with 0% CM (CON) and three experimental groups where CM replaced 25% (CN1), 50% (CN2), and 75% (CN3) of cottonseed meal. There were no dietary effects (P > 0.05) on the lambs' feed intake, average daily gain, and feed conversion ratio of the lambs. The dietary CM linearly decreased the concentrations of serum total proteins (P = 0.003), albumin (P = 0.010), globulin (P = 0.011), AST (P = 0.041), and urea (P = 0.001) in growing lambs. The levels of ALT and creatinine, however, were not significantly affected by dietary treatments (P > 0.05). Furthermore, serum triiodothyronine, thyroxine, and electrolyte concentrations were similar (P > 0.05) in different dietary groups. Dietary treatments significantly affected the values of ruminal pH and ammonia at 0 h (P = 0.003 and 0.048, respectively) and 3 h (P = 0.033 and P = 0.006, respectively) postfeeding. The CN3 group showed significantly higher concentrations of ruminal ammonia at 0 and 3 h postfeeding. Furthermore, dietary CM (CN3) significantly reduced the ruminal pH values at 0 and 3 h postfeeding. Meanwhile, dietary treatments did not affect the concentration of total VFAs in the ruminal fluid. In conclusion, CM can replace the cottonseed meal (up to 75%) in lamb diets without compromising their growth performance, thyroid function, and ruminal fermentation parameters.
Collapse
Affiliation(s)
- Haitham M M Agwa
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Hisham M Saleh
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Salah Ayyat
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Gamal A Abdel-Rahman
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Hodak CR, Bescucci DM, Shamash K, Kelly LC, Montina T, Savage PB, Inglis GD. Antimicrobial Growth Promoters Altered the Function but Not the Structure of Enteric Bacterial Communities in Broiler Chicks ± Microbiota Transplantation. Animals (Basel) 2023; 13:ani13060997. [PMID: 36978538 PMCID: PMC10044420 DOI: 10.3390/ani13060997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Non-antibiotic alternatives to antimicrobial growth promoters (AGPs) are required, and understanding the mode of action of AGPs may facilitate the development of effective alternatives. The temporal impact of the conventional antibiotic AGP, virginiamycin, and an AGP alternative, ceragenin (CSA-44), on the structure and function of the broiler chicken cecal microbiota was determined using next-generation sequencing and 1H-nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. To elucidate the impact of enteric bacterial diversity, oral transplantation (±) of cecal digesta into 1-day-old chicks was conducted. Microbiota transplantation resulted in the establishment of a highly diverse cecal microbiota in recipient chicks that did not change between day 10 and day 15 post-hatch. Neither virginiamycin nor CSA-44 influenced feed consumption, weight gain, or feed conversion ratio, and did not affect the structure of the cecal microbiota in chicks possessing a low or high diversity enteric microbiota. However, metabolomic analysis of the cecal contents showed that the metabolome of cecal digesta was affected in birds administered virginiamycin and CSA-44 as a function of bacterial community diversity. As revealed by metabolomics, glycolysis-related metabolites and amino acid synthesis pathways were impacted by virginiamycin and CSA-44. Thus, the administration of AGPs did not influence bacterial community structure but did alter the function of enteric bacterial communities. Hence, alterations to the functioning of the enteric microbiota in chickens may be the mechanism by which AGPs impart beneficial health benefits, and this possibility should be examined in future research.
Collapse
Affiliation(s)
- Colten R. Hodak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Danisa M. Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Karen Shamash
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Laisa C. Kelly
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
3
|
Brown CLJ, Zaytsoff SJM, Iwaniuk AN, Metz GAS, Montina T, Inglis GD. Comparative Analysis of the Temporal Impacts of Corticosterone and Simulated Production Stressors on the Metabolome of Broiler Chickens. Metabolites 2023; 13:metabo13020144. [PMID: 36837763 PMCID: PMC9961940 DOI: 10.3390/metabo13020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The impact of physiological stress on the metabolome of breast muscle, liver, kidney, and hippocampus was investigated in Ross 308 broiler chicks. Simulated on-farm stressors were compared to a corticosterone model of physiological stress. The three different stressors investigated were: (i) corticosterone at a dose of 15 mg/kg of feed; (ii) heat treatment of 36 °C and 40% RH for 8 h per day; and (iii) isolation for 1 h per day. Liver, kidney, breast muscle, and hippocampus samples were taken after 2, 4, 6, and 8 days of stress treatment, and subjected to untargeted 1H-nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis to provide insights on how stress can modulate metabolite profiles and biomarker discovery. Many of the metabolites that were significantly altered in tissues were amino acids, with glycine and alanine showing promise as candidate biomarkers of stress. Corticosterone was shown to significantly alter alanine, aspartate, and glutamate metabolism in the liver, breast, and hippocampus, while isolation altered the same pathways, but only in the kidneys and hippocampus. Isolation also significantly altered the glycine, serine, and threonine metabolism pathway in the liver and breast, while the same pathway was significantly altered by heat in the liver, kidneys, and hippocampus. The study's findings support corticosterone as a model of stress. Moreover, a number of potential metabolite biomarkers were identified in chicken tissues, which may allow producers to effectively monitor stress and to objectively develop and evaluate on-farm mitigations, including practices that reduce stress and enhance bird health.
Collapse
Affiliation(s)
- Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Andrew N. Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A. S. Metz
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (T.M.); (G.D.I.); Tel.: +1-403-394-3927 (T.M.); +1-403-360-7975 (G.D.I.)
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence: (T.M.); (G.D.I.); Tel.: +1-403-394-3927 (T.M.); +1-403-360-7975 (G.D.I.)
| |
Collapse
|
4
|
Zaytsoff SJM, Montina T, Boras VF, Brassard J, Moote PE, Uwiera RRE, Inglis GD. Microbiota Transplantation in Day-Old Broiler Chickens Ameliorates Necrotic Enteritis via Modulation of the Intestinal Microbiota and Host Immune Responses. Pathogens 2022; 11:pathogens11090972. [PMID: 36145404 PMCID: PMC9503007 DOI: 10.3390/pathogens11090972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A microbiota transplant (MT) originating from mature adult chicken ceca and propagated in bioreactors was administered to day-old broiler chicks to ascertain the degree to which, and how, the MT affects Clostridium perfringens (Cp)-incited necrotic enteritis (NE). Using a stress predisposition model of NE, birds administered the MT and challenged with Cp showed fewer necrotic lesions, and exhibited a substantially higher α- and β-diversity of bacteria in their jejunum and ceca. Birds challenged with Cp and not administered the MT showed decreased Lactobacillus and increased Clostridium sensu strico 1 in the jejunum. In ceca, Megamonas, a genus containing butyrate-producing bacteria, was only present in birds administered the MT, and densities of this genus were increased in birds challenged with Cp. Metabolite profiles in cecal digesta were altered in birds administered the MT and challenged with the pathogen; 59 metabolites were differentially abundant following MT treatment, and the relative levels of short chain fatty acids, butyrate, valerate, and propionate, were decreased in birds with NE. Birds administered the MT and challenged with Cp showed evidence of enhanced restoration of intestinal barrier functions, including elevated mRNA of MUC2B, MUC13, and TJP1. Likewise, birds administered the MT exhibited higher mRNA of IL2, IL17A, and IL22 at 2-days post-inoculation with Cp, indicating that these birds were better immunologically equipped to respond to pathogen challenge. Collectively, study findings demonstrated that administering a MT containing a diverse mixture of microorganisms to day-old birds ameliorated NE in broilers by increasing bacterial diversity and promoting positive immune responses.
Collapse
Affiliation(s)
- Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Paul E. Moote
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
5
|
Brown CL, Montina T, Inglis GD. Feather pulp: a novel substrate useful for proton nuclear magnetic resonance spectroscopy metabolomics and biomarker discovery. Poult Sci 2022; 101:101866. [PMID: 35679673 PMCID: PMC9189206 DOI: 10.1016/j.psj.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Noninvasive biomarkers of stress that are predictive of poultry health are needed. Feather pulp is highly vascularized and represents a potential source of biomarkers that has not been extensively explored. We investigated the feasibility and use of feather pulp for novel biomarker discovery using 1H-Nuclear Magnetic Resonance Spectroscopy (NMR)-based metabolomics. To this end, high quality NMR metabolomic spectra were obtained from chicken feather pulp extracted using either ultrafiltration (UF) or Bligh-Dyer methanol-chloroform (BD) methods. In total, 121 and 160 metabolites were identified using the UF and BD extraction methods, respectively, with 71 of these common to both methods. The metabolome of feather pulp differed in broiler breeders that were 1-, 23-, and 45-wk-of-age. Moreover, feather pulp was more difficult to obtain from older birds, indicating that age must be considered when targeting feather pulp as a source of biomarkers. The metabolomic profile of feather pulp obtained from 12-day-old broilers administered corticosterone differed from control birds, indicating that the metabolome of feather pulp was sensitive to induced physiological stress. A comparative examination of feather pulp and serum in broilers revealed that the feather pulp metabolome differed from that of serum but provided more information. The study findings show that metabolite biomarkers in chicken feather pulp may allow producers to effectively monitor stress, and to objectively develop and evaluate on-farm mitigations, including practices that reduce stress and enhance bird health.
Collapse
|
6
|
Zhao J, Wang L, Cheng S, Zhang Y, Yang M, Fang R, Li H, Man C, Jiang Y. A Potential Synbiotic Strategy for the Prevention of Type 2 Diabetes: Lactobacillus paracasei JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039. Nutrients 2022; 14:nu14020377. [PMID: 35057558 PMCID: PMC8782018 DOI: 10.3390/nu14020377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
The disturbance of intestinal microorganisms and the exacerbation of type 2 diabetes (T2D) are mutually influenced. In this study, the effect of exopolysaccharides (EPS) from Lactobacillus plantarum JY039 on the adhesion of Lactobacillus paracasei JY062 was investigated, as well as their preventive efficacy against T2D. The results showed that the EPS isolated from L. plantarum JY039 effectively improved the adhesion rate of L. paracasei JY062 to Caco-2 cells (1.8 times) and promoted the proliferation of L. paracasei JY062. In the mice experiment, EPS, L. paracasei JY062 and their complex altered the structure of the intestinal microbiota, which elevated the proportion of Bifidobacterium, Faecalibaculum, while inversely decreasing the proportion of Firmicutes, Muribaculaceae, Lachnospiraceae and other bacteria involved in energy metabolism (p < 0.01; p < 0.05); enhanced the intestinal barrier function; promoted secretion of the gut hormone peptide YY (PYY) and glucagon-like peptide-1 (GLP-1); and reduced inflammation by balancing pro-inflammatory factors IL-6, TNF-α and anti-inflammatory factor IL-10 (p < 0.01; p < 0.05). These results illustrate that EPS and L. paracasei JY062 have the synbiotic potential to prevent and alleviate T2D.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaoxin Man
- Correspondence: (C.M.); (Y.J.); Tel.: +86-18946196731(C.M.); +86-451-55191820(Y.J.)
| | - Yujun Jiang
- Correspondence: (C.M.); (Y.J.); Tel.: +86-18946196731(C.M.); +86-451-55191820(Y.J.)
| |
Collapse
|
7
|
Brown CLJ, Zaytsoff SJM, Montina T, Inglis GD. Corticosterone-Mediated Physiological Stress Alters Liver, Kidney, and Breast Muscle Metabolomic Profiles in Chickens. Animals (Basel) 2021; 11:3056. [PMID: 34827788 PMCID: PMC8614290 DOI: 10.3390/ani11113056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
The impact of physiological stress on the metabolomes of liver, kidney, and breast muscle was investigated in chickens. To incite a stress response, birds were continuously administered corticosterone (CORT) in their drinking water at three doses (0, 10, and 30 mg L-1), and they were sampled 1, 5, and 12 days after the start of the CORT administration. To solubilize CORT, it was first dissolved in ethanol and then added to water. The administration of ethanol alone significantly altered branched chain amino acid metabolism in both the liver and the kidney, and amino acid and nitrogen metabolism in breast muscle. CORT significantly altered sugar and amino acid metabolism in all three tissues, but to a much greater degree than ethanol alone. In this regard, CORT administration significantly altered 11, 46, and 14 unique metabolites in liver, kidney, and breast muscle, respectively. Many of the metabolites that were affected by CORT administration, such as mannose and glucose, were previously linked to increases in glycosylation and gluconeogenesis in chickens under conditions of production stress. Moreover, several of these metabolites, such as dimethylglycine, galactose, and carnosine were also previously linked to reduced quality meat. In summary, the administration of CORT in chickens significantly modulated host metabolism. Moreover, results indicated that energy potentials are diverted from muscle anabolism to muscle catabolism and gluconeogenesis during periods of stress.
Collapse
Affiliation(s)
- Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Science Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
| |
Collapse
|
8
|
Zhao R, Huang F, Shen GX. Dose-Responses Relationship in Glucose Lowering and Gut Dysbiosis to Saskatoon Berry Powder Supplementation in High Fat-High Sucrose Diet-Induced Insulin Resistant Mice. Microorganisms 2021; 9:microorganisms9081553. [PMID: 34442633 PMCID: PMC8399366 DOI: 10.3390/microorganisms9081553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Administration of freeze-dried powder of Saskatoon berry (SB), a popular fruit enriched with antioxidants, reduced glucose level, inflammatory markers and gut microbiota disorder in high fat-high sucrose (HFHS) diet-induced insulin resistant mice. The present study examined the dose-response relationship in metabolic, inflammatory and gut microbiotic variables to SB power (SBp) supplementation in HFHS diet-fed mice. Male C57 BL/6J mice were fed with HFHS diet supplemented with 0, 1%, 2.5% or 5% SBp for 11 weeks. HFHS diet significantly increased the levels of fast plasma glucose (FPG), cholesterol, triglycerides, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), tumor necrosis factor-α, monocyte chemotactic protein-1 and plasminogen activator inhibitor-1, but decreased fecal Bacteroidetes phylum bacteria and Muribaculaceae family bacteria compared to low fat diet. SBp dose-dependently reduced metabolic and inflammatory variables and gut dysbiosis in mice compared with mice receiving HFHS diet alone. Significant attenuation of HFHS diet-induced biochemical disorders were detected in mice receiving ≥1% SBp. The abundances of Muribaculaceae family bacteria negatively correlated with body weights, FPG, lipids, insulin, HOMA-IR and inflammatory markers in the mice. The results suggest that SBp supplementation dose-dependently attenuated HFHS diet-induced metabolic and inflammatory disorders, which was associated with the amelioration of gut dysbiosis in the mice.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; (R.Z.); (F.H.)
| | - Fei Huang
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; (R.Z.); (F.H.)
| | - Garry X. Shen
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; (R.Z.); (F.H.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3816; Fax: +1-204-789-3987
| |
Collapse
|