1
|
Hajiazizi F, Sadeghi A, Ibrahim S. Camelina sativa (L. Crantz) products; an alternative feed ingredient for poultry diets with its nutritional and physiological consequences. Trop Anim Health Prod 2024; 56:59. [PMID: 38273063 DOI: 10.1007/s11250-024-03904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Due to increased demand for common feedstuffs such as corn, soybean and fish meals for poultry diets, the search for alternative sources of energy and protein for feed production could help to reduce production costs in the commercial poultry industry. Camelina sativa might be considered a new source of protein, energy and n-3 fatty acids (FA) in poultry diets. The oil content of camelina seeds (CS) is about 35 to 40%. Approximately 50% of this oil is composed of polyunsaturated FA. Moreover, camelina meal (CM) has 16% crude fat. The major n-3 FA of CS and CM is α-linolenic acid (about 30%) which is considered to be nutritionally important. The oil contains other bio-active compounds such as γ-tocopherol, flavonoids and phenolic compounds. Camelina seeds and meal can produce 6258 and 5110 kcal/kg of gross energy, 245-292 and 315-398 g/kg crude protein and 248 and 127 g/kg crude fibre, respectively. However, CS and CM contain 21.77 and 28.08 μmol/g glucosinolates and 12.10 and 12.93 TIU /mg trypsin inhibitors, respectively as anti-nutritional factors (ANFs) that can affect poultry performance adversely. Overall, dietary inclusion of camelina products will supply energy and protein for bird, enhance the antioxidant capacity and lipid stability of poultry products and provide health-promoting n-3 FA and tocopherol rich-foods to humans. However, raw CS contains some ANFs, and its maximum safe level (MSL) is 5% meal or seed, and 2% oil for all type of birds. Hence, it is necessary to establish suitable techniques for removing anti-nutritional factors from CS and increase its MSL in poultry diets.
Collapse
Affiliation(s)
- Farzaneh Hajiazizi
- Departments of Animal Science, College of Agriculture, University of Kurdistan, Sanandaj, 6617715175, Iran.
| | - Amirali Sadeghi
- Departments of Animal Science, College of Agriculture, University of Kurdistan, Sanandaj, 6617715175, Iran
| | - Salam Ibrahim
- Food Microbiology and Biotechnology Laboratory, 173 Carver Hall, North Carolina Agriculture and Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
2
|
Xia Y, Zhu J, Qu M, Yang W, Fu S, Yu L, Fan B. Acute and subchronic oral toxicity study of Camelina sativa oil in Wistar rats. Heliyon 2024; 10:e23654. [PMID: 38187340 PMCID: PMC10770588 DOI: 10.1016/j.heliyon.2023.e23654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Objective The aim of these studies was to ascertain if Camelina sativa oil is harmful in both the acute and subchronic states. Methods Wistar rats of both sexes were used in an acute toxicity test, and the fatal dosage (LD50) of oral Camelina sativa oil was greater than 27.6 g/kg bw. Rats were gavaged with Camelina sativa oil at dosages of 0.00, 0.92, 1.84, and 3.68 g/kg bw per day for 90 days. In addition, satellite groups were established in the control and high-dose groups for a 28-day recovery period. The following factors were assessed: mortality, clinical anomalies, body weight, food intake, hematological, serum biochemistry, urine, gross necropsy, and histology. Results There were no observable toxicity-related changes in any of the three dosage groups. There is no toxicological relevance to the change in the high-dose hematological indicator PLT at the conclusion of the recovery period because it was within the usual range for this strain in our laboratory. The test material did not result in any pathological alterations, according to a pathological examination. Conclusion Since the results of the current study, the no-observed-adverse-effect-level (NOAEL) for Camelina sativa oil in rats has been determined to be greater than 3.68 g/kg bw.
Collapse
Affiliation(s)
- Ying Xia
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jie Zhu
- Henan Napu Biotechnology Co., Ltd., Zhengzhou, 450002, China
| | - Min Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wenxiang Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Shaohua Fu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Liqin Yu
- Henan Napu Biotechnology Co., Ltd., Zhengzhou, 450002, China
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| |
Collapse
|
3
|
Da Cunha MR, Maia FLM, Iatecola A, Massimino LC, Plepis AMDG, Martins VDCA, Da Rocha DN, Mariano ED, Hirata MC, Ferreira JRM, Teixeira ML, Buchaim DV, Buchaim RL, De Oliveira BEG, Pelegrine AA. In Vivo Evaluation of Collagen and Chitosan Scaffold, Associated or Not with Stem Cells, in Bone Repair. J Funct Biomater 2023; 14:357. [PMID: 37504852 PMCID: PMC10381363 DOI: 10.3390/jfb14070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Natural polymers are increasingly being used in tissue engineering due to their ability to mimic the extracellular matrix and to act as a scaffold for cell growth, as well as their possible combination with other osteogenic factors, such as mesenchymal stem cells (MSCs) derived from dental pulp, in an attempt to enhance bone regeneration during the healing of a bone defect. Therefore, the aim of this study was to analyze the repair of mandibular defects filled with a new collagen/chitosan scaffold, seeded or not with MSCs derived from dental pulp. Twenty-eight rats were submitted to surgery for creation of a defect in the right mandibular ramus and divided into the following groups: G1 (control group; mandibular defect with clot); G2 (defect filled with dental pulp mesenchymal stem cells-DPSCs); G3 (defect filled with collagen/chitosan scaffold); and G4 (collagen/chitosan scaffold seeded with DPSCs). The analysis of the scaffold microstructure showed a homogenous material with an adequate percentage of porosity. Macroscopic and radiological examination of the defect area after 6 weeks post-surgery revealed the absence of complete repair, as well as absence of signs of infection, which could indicate rejection of the implants. Histomorphometric analysis of the mandibular defect area showed that bone formation occurred in a centripetal fashion, starting from the borders and progressing towards the center of the defect in all groups. Lower bone formation was observed in G1 when compared to the other groups and G2 exhibited greater osteoregenerative capacity, followed by G4 and G3. In conclusion, the scaffold used showed osteoconductivity, no foreign body reaction, malleability and ease of manipulation, but did not obtain promising results for association with DPSCs.
Collapse
Affiliation(s)
- Marcelo Rodrigues Da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (M.R.D.C.)
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil
| | | | - Amilton Iatecola
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (M.R.D.C.)
| | - Lívia Contini Massimino
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), São Carlos 13566-970, Brazil
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), São Carlos 13566-590, Brazil
| | | | | | | | | | | | | | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | | |
Collapse
|
4
|
Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals (Basel) 2022; 12:ani12091082. [PMID: 35565509 PMCID: PMC9101957 DOI: 10.3390/ani12091082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Camelina sativa, belonging to the Brassicaceae family, has been grown since 4000 B.C. as an oilseed crop that is more drought- and cold-resistant. Increased demand for its oil, meal, and other derivatives has increased researchers’ interest in this crop. Its anti-nutritional factors can be reduced by solvent, enzyme and heat treatments, and genetic engineering. Inclusion of camelina by-products increases branched-chain volatile fatty acids, decreases neutral detergent fiber digestibility, has no effect on acid detergent fiber digestibility, and lowers acetate levels in dairy cows. Feeding camelina meal reduces ruminal methane, an environmental benefit of using camelina by-products in ruminant diets. The addition of camelina to dairy cow diets decreases ruminal cellulolytic bacteria and bio-hydrogenation. This reduced bio-hydrogenation results in an increase in desirable fatty acids and a decrease in saturated fatty acids in milk obtained from cows fed diets with camelina seeds or its by-products. Studies suggest that by-products of C. sativa can be used safely in dairy cows at appropriate inclusion levels. However, suppression in fat milk percentage and an increase in trans fatty acid isomers should be considered when increasing the inclusion rate of camelina by-products, due to health concerns.
Collapse
|
5
|
The Influence of Nesfatin-1 on Bone Metabolism Markers Concentration, Densitometric, Tomographic and Mechanical Parameters of Skeletal System of Rats in the Conditions of Established Osteopenia. Animals (Basel) 2022; 12:ani12050654. [PMID: 35268222 PMCID: PMC8909152 DOI: 10.3390/ani12050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Nesfatin-1 is an adipokine with little known effect on the skeletal system. In this study, we examined the effect of 8-wk administration of nesfatin-1 on densitometric, tomographic, and mechanical parameters of bones, as well as the concentration of bone metabolism markers in rats with experimentally induced established osteopenia. Abstract Our study aimed to evaluate the impact of nesfatin-1 administration on bone metabolism and properties in established osteopenia in ovariectomized female rats. In total, 21 female Wistar rats were assigned to two groups: sham-operated (SHAM, n = 7) and ovariectomized (OVA, n = 14). After 12 weeks of osteopenia induction in the OVA females, the animals were given i.p. physiological saline (OVA, n = 7) or 2 µg/kg body weight of nesfatin-1(NES, n = 7) for the next 8 weeks. The SHAM animals received physiological saline at the same time. Final body weight, total bone mineral density and content of the skeleton were estimated. Then, isolated femora and tibias were subjected to densitometric, tomographic, and mechanical tests. Bone metabolism markers, i.e., osteocalcin, bone specific alkaline phosphatase (bALP), and crosslinked N-terminal telopeptide of type I collagen (NTx) were determined in serum using an ELISA kit. Ovariectomy led to negative changes in bone metabolism associated with increased resorption, thus diminishing the densitometric, tomographic, and mechanical parameters. In turn, the administration of nesfatin-1 led to an increase in the value of the majority of the tested parameters of bones. The lowest bALP concentration and the highest NTx concentration were found in the OVA females. The bALP concentration was significantly higher after nesfatin-1 administration in comparison to the OVA rats. In conclusion, the results indicate that nesfatin-1 treatment limits bone loss, preserves bone architecture, and increases bone strength in condition of established osteopenia.
Collapse
|
6
|
Li YZ, Lazarus WF, Reese C, Hilbrands AM, Cox RB, Forcella F, Gesch RW, Johnston LJ. Integrating Camelina Into Organic Pig Production—Impact on Growth Performance of Pigs, Costs, and Returns. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.759721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sustainability of organic production and cover crops depends on production costs and the economic value of products. Feed cost, contributing 65–75% of the total production cost, has a significant impact on profitability of organic pig farming. Utilizing grains harvested from cover crops as a feed ingredient for organic pigs can potentially protect the environment and increase the economic value of cover crops. This study was the first to evaluate the viability of integrating winter cover crop, camelina, into organic pig production. Winter camelina was grown organically in single or relay with soybeans to increase the total yield per hectare. Camelina yields in monocrop and in relay-crop fields were 1,394 and 684 kg ha−1, respectively. Although the total yield of camelina and soybean (1,894 kg ha−1) in the relay-crop field was higher than camelina yield in the monocrop field, monocropping camelina is more economical than relay-planting with soybeans due to the difference in production costs. Camelina press-cake was supplemented in diets fed to pigs raised under near-organic standards. Supplementing 10% camelina press-cake in diets reduced feed intake, weight gain, final weight at market, carcass weight, and dressing percent of pigs, but did not affect feed efficiency, belly firmness or pork quality. The viability of integrating camelina into organic pig production depends on marketing organic pigs for $2.4 kg−1 of live weight and marketing camelina oil for $3.59 kg−1 or more if monocropping.
Collapse
|
7
|
Mondor M, Hernández‐Álvarez AJ. Camelina sativa
Composition, Attributes, and Applications: A Review. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Mondor
- St‐Hyacinthe Research and Development Centre Agriculture and Agri‐Food Canada 3600 Casavant Blvd. West, St‐Hyacinthe Quebec J2S 8E3 Canada
- Institute of Nutrition and Functional Foods (INAF) Université Laval Quebec QC G1V 0A6 Canada
| | | |
Collapse
|