1
|
Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64:12040-12060. [PMID: 37589483 DOI: 10.1080/10408398.2023.2246554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The use of antibiotics had reached a plateau due to antibiotic resistance, overuse, and residue. Bacteriophages have recently attracted considerable attention as alternative biocontrol agents. Here, we provide an up-to-date overview of phage applications in the food industry. We reviewed recently reported phages against ten typical foodborne pathogens, studies of competitive phage-encoded endolysins, and the primary outcomes of phage encapsulation in food packaging and pathogen detection. Furthermore, we identified existing barriers that still need to be addressed and proposed potential solutions to overcome these obstacles in the future.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
2
|
Dlamini SB, Gigante AM, Hooton SPT, Atterbury RJ. Efficacy of Different Encapsulation Techniques on the Viability and Stability of Diverse Phage under Simulated Gastric Conditions. Microorganisms 2023; 11:2389. [PMID: 37894046 PMCID: PMC10608910 DOI: 10.3390/microorganisms11102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Salmonella causes a range of diseases in humans and livestock of considerable public health and economic importance. Widespread antimicrobial use, particularly in intensively produced livestock (e.g., poultry and pigs) may contribute to the rise of multidrug-resistant Salmonella strains. Alternative treatments such as bacteriophages have shown promise when used to reduce the intestinal carriage of Salmonella in livestock. However, the digestive enzymes and low pH encountered in the monogastric GI tract can significantly reduce phage viability and impact therapeutic outcomes. This study deployed alginate-carrageenan microcapsules with and without CaCO3 to protect a genomically diverse set of five Salmonella bacteriophages from simulated gastrointestinal conditions. None of the unprotected phage could be recovered following exposure to pH < 3 for 10 min. Alginate-carrageenan encapsulation improved phage viability at pH 2-2.5 after exposure for 10 min, but not at pH 2 after 1 h. Including 1% (w/v) CaCO3 in the formulation further reduced phage loss to <0.5 log10 PFU/mL, even after 1 h at pH 2. In all cases, phage were efficiently released from the microcapsules following a shift to a neutral pH (7.5), simulating passage to the duodenum. In summary, alginate-carrageenan-CaCO3 encapsulation is a promising approach for targeted intestinal delivery of genomically diverse Salmonella bacteriophages.
Collapse
Affiliation(s)
- Sicelo B Dlamini
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Adriano M Gigante
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Steven P T Hooton
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|
3
|
Montoro-Dasi L, Lorenzo-Rebenaque L, Marco-Fuertes A, Vega S, Marin C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023; 11:1765. [PMID: 37512937 PMCID: PMC10386103 DOI: 10.3390/microorganisms11071765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Salmonella spp. has been globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products. Salmonella Enteritidis, S. Typhimurium, and its monophasic variant are the main serovars responsible for human disease. However, a serovar known as S. Infantis has emerged as the fourth most prevalent serovar associated with human disease. A total of 95% of isolated S. Infantis serovars originate from broilers and their derived products. This serovar is strongly associated with an elevated antimicrobial (AMR) and multidrug resistance, a resistance to disinfectants, an increased tolerance to environmental mercury, a heightened virulence, and an enhanced ability to form biofilms and attach to host cells. Furthermore, this serovar harbors genes that confer resistance to colistin, a last-resort antibiotic in human medicine, and it has the potential to acquire additional transferable AMR against other critically important antimicrobials, posing a new and significant challenge to global public health. This review provides an overview of the current status of the S. Infantis serovar in the poultry sector, focusing on its key virulence factors, including its virulence genes, antimicrobial resistance, and biofilm formation. Additionally, novel holistic strategies for controlling S. Infantis along the entire food chain are presented in this review.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
4
|
Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction. Antibiotics (Basel) 2023; 12:antibiotics12030595. [PMID: 36978463 PMCID: PMC10045043 DOI: 10.3390/antibiotics12030595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Salmonella enterica subsp. enterica is a zoonotic bacterial pathogen that causes foodborne outbreaks in humans. Lytic bacteriophages to control Salmonella in food production are already being used in scientific studies and some are commercially available. However, phage application is still controversial. In addition to virulent phages, which are used in phage therapy and lyse the bacterial host, lysogenic phages coexist in the environment and can reside as prophages in the bacterial host. Therefore, information about Salmonella prophages is essential to understand successful phage therapy. In 100 Salmonella food isolates of the serovars Enteritidis and Typhimurium, we propagated prophages by oxidative stress. In isolates of the serovars Typhimurium and Enteritidis, 80% and 8% prophages could be activated, respectively. In the phage lysates from the serovar Typhimurium, the following antibiotic resistance genes or gene fragments were detected by PCR: sul1, sul2, blaTEM, strA and cmlA; however, no tetA,B,C, blaOXA, blaCMY, aadA1, dfr1,2 or cat were detected. In contrast, no resistance genes were amplified in the phage lysates of the serovar Enteritidis. None of the phage lysates was able to transduce phenotypic resistance to WT 14028s. Most of the prophage lysates isolated were able to infect the various Salmonella serovars tested. The high abundance of prophages in the genome of the serovar Typhimurium may counteract phage therapy through phage resistance and the development of hybrid phages.
Collapse
|
5
|
Pardo-Freire M, Domingo-Calap P. Phages and Nanotechnology: New Insights against Multidrug-Resistant Bacteria. BIODESIGN RESEARCH 2023; 5:0004. [PMID: 37849463 PMCID: PMC10521656 DOI: 10.34133/bdr.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 10/19/2023] Open
Abstract
Bacterial infections are a major threat to the human healthcare system worldwide, as antibiotics are becoming less effective due to the emergence of multidrug-resistant strains. Therefore, there is a need to explore nontraditional antimicrobial alternatives to support rapid interventions and combat the spread of pathogenic bacteria. New nonantibiotic approaches are being developed, many of them at the interface of physics, nanotechnology, and microbiology. While physical factors (e.g., pressure, temperature, and ultraviolet light) are typically used in the sterilization process, nanoparticles and phages (bacterial viruses) are also applied to combat pathogenic bacteria. Particularly, phage-based therapies are rising due to the unparalleled specificity and high bactericidal activity of phages. Despite the success of phages mostly as compassionate use in clinical cases, some drawbacks need to be addressed, mainly related to their stability, bioavailability, and systemic administration. Combining phages with nanoparticles can improve their performance in vivo. Thus, the combination of nanotechnology and phages might provide tools for the rapid and accurate detection of bacteria in biological samples (diagnosis and typing), and the development of antimicrobials that combine the selectivity of phages with the efficacy of targeted therapy, such as photothermal ablation or photodynamic therapies. In this review, we aim to provide an overview of how phage-based nanotechnology represents a step forward in the fight against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Marco Pardo-Freire
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| |
Collapse
|
6
|
Zhang B, Wang Y, Wang F, Zhang Y, Hao H, Lv X, Hao L, Shi Y. Microencapsulated phage composites with increased gastrointestinal stability for the oral treatment of Salmonella colonization in chicken. Front Vet Sci 2023; 9:1101872. [PMID: 36713855 PMCID: PMC9875011 DOI: 10.3389/fvets.2022.1101872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Salmonella infection, one of the common epidemics in the livestock and poultry breeding industry, causes great economic losses worldwide. At present, antibiotics are the most commonly used treatment for Salmonella infection, but the widespread use of antibiotics has increased drug resistance to Salmonella. Phage therapy has gradually become an alternative method to control Salmonella infection. However, phage, a specific virus that can infect bacteria, has poor stability and is prone to inactivation during treatment. Microencapsulated phage microspheres can effectively solve this problem. Accordingly, in this study, Salmonella phages were microencapsulated, using the xanthan gum/sodium alginate/CaCl2/chitooligosaccharides method, to improve their gastrointestinal stability. Furthermore, microencapsulated phages were evaluated for in vitro temperature and storage stability and in vivo therapeutic effect. Phage microspheres prepared with 1 g/100 mL xanthan gum, 2 g/100 mL sodium alginate, 2 g/100 mL CaCl2, and 0.6 g/100 mL chitooligosaccharides were regular in shape and stable in the temperature range of 10-30°C. Also, microencapsulated phages showed significantly improved stability in the simulated gastric juice environment than the free phages (p < 0.05). In the simulated intestinal fluid, microencapsulated phages were completely released after 4 h. Moreover, microencapsulated phages showed good storage stability at 4°C. In the in vivo experiments detecting Salmonella colonization in the intestinal tract of chicks, microencapsulated phages showed a better therapeutic effect than the free phages. In conclusion, microencapsulated phages exhibited significantly improved stability, gastric acid resistance, and thereby efficacy than the free phages. Microencapsulated phages can be potentially used as biological control agents against bacterial infections.
Collapse
Affiliation(s)
- Bo Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yongxia Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Fangfang Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yongying Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - He Hao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xingbang Lv
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Liuhang Hao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China,Engineering Research Center for Poultry Diseases of Hebei Province, Handan, Hebei, China,*Correspondence: Yuxiang Shi ✉
| |
Collapse
|
7
|
Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G, Frusciante S, Rodríguez JC, Ventero MP, Molina-Pardines C, Vega S, Marin C, Marco-Jiménez F. Examining the effects of Salmonella phage on the caecal microbiota and metabolome features in Salmonella-free broilers. Front Genet 2022; 13:1060713. [PMID: 36437955 PMCID: PMC9691336 DOI: 10.3389/fgene.2022.1060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages selectively infect and kill their target bacterial host, being a promising approach to controlling zoonotic bacteria in poultry production. To ensure confidence in its use, fundamental questions of safety and toxicity monitoring of phage therapy should be raised. Due to its high specificity, a minimal impact on the gut ecology is expected; however, more in-depth research into key parameters that influence the success of phage interventions has been needed to reach a consensus on the impact of bacteriophage therapy in the gut. In this context, this study aimed to investigate the interaction of phages with animals; more specifically, we compared the caecum microbiome and metabolome after a Salmonella phage challenge in Salmonella-free broilers, evaluating the role of the phage administration route. To this end, we employed 45 caecum content samples from a previous study where Salmonella phages were administered via drinking water or feed for 24 h from 4, 5 to 6-weeks-old broilers. High-throughput 16S rRNA gene sequencing showed a high level of similarity (beta diversity) but revealed a significant change in alpha diversity between broilers with Salmonella-phage administered in the drinking water and control. Our results showed that the phages affected only a few genera of the microbiota's structure, regardless of the administration route. Among these, we found a significant increase in Streptococcus and Sellimonas in the drinking water and Lactobacillus, Anaeroplasma and Clostridia_vadinBB60_group in the feed. Nevertheless, the LC-HRMS-based metabolomics analyses revealed that despite few genera were significantly affected, a substantial number of metabolites, especially in the phage administered in the drinking water were significantly altered (64 and 14 in the drinking water and feed groups, respectively). Overall, our study shows that preventive therapy with bacteriophages minimally alters the caecal microbiota but significantly impacts their metabolites, regardless of the route of administration.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Sarah Frusciante
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Juan Carlos Rodríguez
- Microbiology Department, Balmis General University Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Balmis General University Hospital, ISABIAL, Alicante, Spain
| | | | - Santiago Vega
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
8
|
Microencapsulated Bacteriophages Incorporated in Feed for Salmonella Control in Broilers. Vet Microbiol 2022; 274:109579. [DOI: 10.1016/j.vetmic.2022.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
|
9
|
Mhone AL, Makumi A, Odaba J, Guantai L, Gunathilake KMD, Loignon S, Ngugi CW, Akhwale JK, Moineau S, Svitek N. Salmonella Enteritidis Bacteriophages Isolated from Kenyan Poultry Farms Demonstrate Time-Dependent Stability in Environments Mimicking the Chicken Gastrointestinal Tract. Viruses 2022; 14:v14081788. [PMID: 36016410 PMCID: PMC9416366 DOI: 10.3390/v14081788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Multi-drug resistant (MDR) Salmonella enterica Enteritidis is one of the major causes of foodborne illnesses worldwide. This non-typhoidal Salmonella (NTS) serovar is mainly transmitted to humans through poultry products. Bacteriophages (phages) offer an alternative to antibiotics for reducing the incidence of MDR NTS in poultry farms. Phages that survive the harsh environment of the chicken gastrointestinal tract (cGIT), which have low pH, high temperatures, and several enzymes, may have a higher therapeutic or prophylactic potential. In this study, we analysed the stability of 10 different S. Enteritidis phages isolated from Kenyan poultry farms in different pH-adjusted media, incubation temperatures, as well as simulated gastric and intestinal fluids (SGF and SIF, respectively). Furthermore, their ability to persist in water sources available in Kenya, including river, borehole, rain and tap water, was assessed. All phages were relatively stable for 12 h at pHs ranging from 5 to 9 and at temperatures ranging from 25 °C to 42 °C. At pH 3, a loss in viral titre of up to three logs was observed after 3 h of incubation. In SGF, phages were stable for 20 min, after which they started losing infectivity. Phages were relatively stable in SIF for up to 2 h. The efficacy of phages to control Salmonella growth was highly reduced in pH 2- and pH 3-adjusted media and in SGF at pH 2.5, but less affected in SIF at pH 8. River water had the most significant detrimental effect on phages, while the other tested waters had a limited impact on the phages. Our data suggest that these phages may be administered to chickens through drinking water and may survive cGIT to prevent salmonellosis in poultry.
Collapse
Affiliation(s)
- Amos Lucky Mhone
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Department of Zoology, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Angela Makumi
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Josiah Odaba
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Linda Guantai
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - K. M. Damitha Gunathilake
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphanie Loignon
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Wangari Ngugi
- Department of Zoology, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Juliah Khayeli Akhwale
- Department of Zoology, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicholas Svitek
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Correspondence:
| |
Collapse
|
10
|
Kosznik-Kwaśnicka K, Podlacha M, Grabowski Ł, Stasiłojć M, Nowak-Zaleska A, Ciemińska K, Cyske Z, Dydecka A, Gaffke L, Mantej J, Myślińska D, Necel A, Pierzynowska K, Piotrowska E, Radzanowska-Alenowicz E, Rintz E, Sitko K, Topka-Bielecka G, Węgrzyn G, Węgrzyn A. Biological aspects of phage therapy versus antibiotics against Salmonella enterica serovar Typhimurium infection of chickens. Front Cell Infect Microbiol 2022; 12:941867. [PMID: 35992162 PMCID: PMC9385949 DOI: 10.3389/fcimb.2022.941867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Phage therapy is a promising alternative treatment of bacterial infections in human and animals. Nevertheless, despite the appearance of many bacterial strains resistant to antibiotics, these drugs still remain important therapeutics used in human and veterinary medicine. Although experimental phage therapy of infections caused by Salmonella enterica was described previously by many groups, those studies focused solely on effects caused by bacteriophages. Here, we compared the use of phage therapy (employing a cocktail composed of two previously isolated and characterized bacteriophages, vB_SenM-2 and vB_Sen-TO17) and antibiotics (enrofloxacin and colistin) in chickens infected experimentally with S. enterica serovar Typhimurium. We found that the efficacies of both types of therapies (i.e. the use of antibiotics and phage cocktail) were high and very similar to one another when the treatment was applied shortly (one day) after the infection. Under these conditions, S. Typhimurium was quickly eliminated from the gastrointestinal tract (GIT), to the amount not detectable by the used methods. However, later treatment (2 or 4 days after detection of S. Typhimurium in chicken feces) with the phage cocktail was significantly less effective. Bacteriophages remained in the GIT for up to 2-3 weeks, and then were absent in feces and cloaca swabs. Interestingly, both phages could be found in various organs of chickens though with a relatively low abundance. No development of resistance of S. Typhimurium to phages or antibiotics was detected during the experiment. Importantly, although antibiotics significantly changed the GIT microbiome of chickens in a long-term manner, analogous changes caused by phages were transient, and the microbiome normalized a few weeks after the treatment. In conclusion, phage therapy against S. Typhimurium infection in chickens appeared as effective as antibiotic therapy (with either enrofloxacin or colistin), and less invasive than the use the antibiotics as fewer changes in the microbiome were observed.
Collapse
Affiliation(s)
- Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Alicja Nowak-Zaleska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Institute of Physical Culture, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Karolina Ciemińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Gracja Topka-Bielecka
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
- *Correspondence: Alicja Węgrzyn,
| |
Collapse
|
11
|
Kosznik-Kwaśnicka K, Stasiłojć M, Grabowski Ł, Zdrojewska K, Węgrzyn G, Węgrzyn A. Efficacy and safety of phage therapy against Salmonella enterica serovars Typhimurium and Enteritidis estimated by using a battery of in vitro tests and the Galleria mellonella animal model. Microbiol Res 2022; 261:127052. [DOI: 10.1016/j.micres.2022.127052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
|