1
|
Xue Q, Ren X, Xu T, Yang T, Sun L, Luo X, Huang S, Shi D, Li X. Comparative proteomics and phosphoproteomics analysis reveals differential sperm motility in Mediterranean buffalo semen. J Proteomics 2025; 315:105401. [PMID: 39961484 DOI: 10.1016/j.jprot.2025.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
High motility spermatozoa are good for cryopreservation and artificial insemination (AI) of mammalian semen. In this study, normal motility (NM) and low motility (LM) Mediterranean buffalo spermatozoa were compared using quantitative proteomics and phosphoproteomics techniques to screen for important proteins and phosphorylated proteins related to the motility of spermatozoa and to identify candidate protein molecular markers related to the quality of Mediterranean buffalo semen. Proteomics results identified 2550 proteins, with 119 proteins upregulated and 146 proteins downregulated in the LM spermatozoa versus the NM spermatozoa. The differentially abundant proteins were mainly involved in carbohydrate metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid cycles. The phosphoproteomics analysis revealed 412 proteins, 1228 phosphorylated peptides, and 1465 phosphorylation modification sites. Compared to the NM group, 119 peptides were downregulated in the LM group, corresponding to 98 proteins, and 84 phosphorylated peptides were upregulated in the white matter, corresponding to 61 proteins. Differentially phosphorylated proteins were primarily involved in spermatogenesis, flagellate sperm motility, and glycolysis/gluconeogenesis. The combined proteomics and phosphoproteomics results identified the common proteins HMGB4, POC1B, PKM, LDHA, TBC1D21, and CBY2, whose main roles were related to spermatogenesis, sperm flagellar structure, and energy metabolism, which can be used as potential markers of Mediterranean buffalo sperm quality.
Collapse
Affiliation(s)
- Qingsong Xue
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xuan Ren
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tairan Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ting Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Le Sun
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xi Luo
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiangping Li
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
2
|
Khan MZ, Chen W, Naz S, Liu X, Liang H, Chen Y, Kou X, Liu Y, Ashraf I, Han Y, Peng Y, Wang C, Zahoor M. Determinant genetic markers of semen quality in livestock. Front Endocrinol (Lausanne) 2024; 15:1456305. [PMID: 39429738 PMCID: PMC11489916 DOI: 10.3389/fendo.2024.1456305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
The reproductive efficiency of livestock is crucial for agricultural productivity and economic sustainability. One critical factor in successful fertilization and the viability of offspring is the quality of semen. Poor semen quality, especially in frozen-thawed semen used in artificial insemination (AI) have been shown to influence conception outcomes, resulting a negative impact on livestock production. Recent advancements in genetic research have identified specific markers linked to semen quality traits in various livestock species, such as cattle, sheep, goats, pigs, buffalo, and equines. These genetic markers are essential in screening males for breeding suitability, which in turn enhances selective breeding programs. Understanding these markers is crucial for improving reproductive performance and increasing productivity in livestock populations. This review offers a comprehensive overview of the genetic markers associated with semen quality in key livestock. It explores the underlying genetic mechanisms and their practical implications in animal breeding and management. The review underscores the importance of integrating genetic insights into breeding strategies to optimize reproductive efficiency and ensure the sustainable development of livestock industries.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Saima Naz
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yihong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Iqra Ashraf
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Ying Han
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Mamuris Z. Elucidating the Role of OXPHOS Variants in Asthenozoospermia: Insights from Whole Genome Sequencing and an In Silico Analysis. Int J Mol Sci 2024; 25:4121. [PMID: 38612930 PMCID: PMC11012272 DOI: 10.3390/ijms25074121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Infertility is a global health challenge that affects an estimated 72.4 million people worldwide. Between 30 and 50% of these cases involve male factors, showcasing the complex nature of male infertility, which can be attributed to both environmental and genetic determinants. Asthenozoospermia, a condition characterized by reduced sperm motility, stands out as a significant contributor to male infertility. This study explores the involvement of the mitochondrial oxidative phosphorylation (OXPHOS) system, crucial for ATP production and sperm motility, in asthenozoospermia. Through whole-genome sequencing and in silico analysis, our aim was to identify and characterize OXPHOS gene variants specific to individuals with asthenozoospermia. Our analysis identified 680,099 unique variants, with 309 located within OXPHOS genes. Nine of these variants were prioritized due to their significant implications, such as potential associations with diseases, effects on gene expression, protein function, etc. Interestingly, none of these variants had been previously associated with male infertility, opening up new avenues for research. Thus, through our comprehensive approach, we provide valuable insights into the genetic factors that influence sperm motility, laying the foundation for future research in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|