1
|
Kschonek J, Twele L, Deters K, Miller M, Reinmold J, Emmerich I, Hennig-Pauka I, Kemper N, Kreienbrock L, Wendt M, Kästner S, Grosse Beilage E. Part I: understanding pain in pigs-basic knowledge about pain assessment, measures and therapy. Porcine Health Manag 2025; 11:12. [PMID: 40069905 PMCID: PMC11895375 DOI: 10.1186/s40813-025-00421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Pigs can suffer from pain due to spontaneously occurring diseases, wounds, injuries, trauma, and physiological conditions such as the farrowing process; however, this pain is often neglected. To increase knowledge and awareness about this phenomenon, the current article presents a scoping review of basic and new approaches for identifying, evaluating, and treating pain in pigs. METHODS A scoping review was conducted with results from a search of the electronic database VetSearch and CABI. With regard to eligibility criteria, 49 out of 725 publications between 2015 and the end of March 2023 were included. The findings are narratively synthesized and reported orienting on the PRISMA ScR guideline. RESULTS The results of this review showed that practitioners need to consider pain not only as a sign of a disease but also as a critical aspect of welfare. If both the symptoms of pain and the underlying reasons remain unassessed, the longevity and prosperity of pigs may be at risk. In this respect, veterinarians are obliged to know about intricacies of pain and pain mechanisms and to provide adequate treatment for their patients. CONCLUSION It is pivotal to increase knowledge about pain mechanisms, the reasons for heterogeneity in behavioural signs of pain, and methods for evaluating whether a pig is experiencing pain. This article will help practitioners update their knowledge of this topic and discuss the implications for everyday practice.
Collapse
Affiliation(s)
- Julia Kschonek
- Institute for Biometry, Epidemiology and Information Processing (IBEI), University of Veterinary Medicine, Foundation, Hannover, Bünteweg 2, 30559, Hannover, Germany.
| | - Lara Twele
- Clinic for Horses, University of Veterinary Medicine, Foundation, Hannover, Bünteweg 9, 30559, Hannover, Germany
| | - Kathrin Deters
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| | - Moana Miller
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, Foundation, Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Jennifer Reinmold
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| | - Ilka Emmerich
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 39, 04103, Leipzig, Germany
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, Foundation, Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Lothar Kreienbrock
- Institute for Biometry, Epidemiology and Information Processing (IBEI), University of Veterinary Medicine, Foundation, Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Sabine Kästner
- Clinic for Small Animals, University of Veterinary Medicine, Foundation, Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| |
Collapse
|
2
|
Dreismickenbecker E, Zinn S, Romero-Richter M, Kohlhaas M, Fricker LR, Petzel-Witt S, Walter C, Kreuzer M, Toennes SW, Anders M. Electroencephalography-Based Effects of Acute Alcohol Intake on the Pain Matrix. Brain Sci 2023; 13:1659. [PMID: 38137107 PMCID: PMC10741681 DOI: 10.3390/brainsci13121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The effects of acute and chronic intakes of high doses of alcohol on pain perception are well known, ranging from short-term analgesic effects to long-term sensitization and polyneuropathies. The short-term analgesic effects of ethanol consumption on subjective pain perception have been well studied in the literature. Recent advances in neuroimaging allow for an insight into pain-related structures in the brain, fostering the mechanistic understanding of the processing of nociceptive input and pain. We aimed to utilize EEG, combined with standardized noxious mechanical/thermal stimulation and subjective pain testing, to research the effects of acute alcohol intake on nociceptive processing and pain perception. We recruited 12 healthy subjects in an unblinded cross-over study design and aimed at achieving a blood alcohol level of 0.1%. Our data revealed a significant reduction in subjective pain ratings to noxious thermal and mechanical stimuli after alcohol ingestion. Our EEG data revealed suppressing effects on the cortical structures responsible for processing pain, the "pain matrix". We conclude that in addition to its analgesic effects, as expressed by the reduction in subjective pain, alcohol has a further impact on the "pain matrix" and directly affects the salience to a nociceptive stimulus.
Collapse
Affiliation(s)
- Elias Dreismickenbecker
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center Mainz, 55131 Mainz, Germany
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Sebastian Zinn
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Mara Romero-Richter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Madeline Kohlhaas
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Lukas R. Fricker
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Silvana Petzel-Witt
- Institute of Legal Medicine, University Hospital, Goethe University, 60590 Frankfurt, Germany
| | - Carmen Walter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
| | - Stefan W. Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, 60590 Frankfurt, Germany
| | - Malte Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| |
Collapse
|
3
|
Anders M, Dreismickenbecker E, Fleckenstein J, Walter C, Enax-Krumova EK, Fischer MJM, Kreuzer M, Zinn S. EEG-based sensory testing reveals altered nociceptive processing in elite endurance athletes. Exp Brain Res 2023; 241:341-354. [PMID: 36520191 PMCID: PMC9894977 DOI: 10.1007/s00221-022-06522-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022]
Abstract
Increased exercise loads, as observed in elite athletes, seem to modulate the subjective pain perception in healthy subjects. The combination of electroencephalography (EEG) and standardized noxious stimulation can contribute to an objective assessment of the somatosensory stimulus processing. We assessed the subjective pain ratings and the electroencephalogram (EEG)-based response after standardized noxious mechanical and thermal stimuli as well as during conditioned pain modulation (CPM) in 26 elite endurance athletes and compared them to 26 recreationally active controls. Elite endurance athletes had consistently stronger somatosensory responses in the EEG to both mechanical and thermal noxious stimuli than the control group. We observed no significant group differences in the subjective pain ratings, which may have been influenced by our statistics and choice of stimuli. The CPM testing revealed that our conditioning stimulus modulated the subjective pain perception only in the control group, whereas the EEG indicated a modulatory effect of the conditioning stimulus on the spectral response only in the athletes group. We conclude that a higher activation in the cortical regions that process nociceptive information may either be an indicator for central sensitization or an altered stimulus salience in the elite endurance athletes' group. Our findings from our CPM testing were limited by our methodology. Further longitudinal studies are needed to examine if exercise-induced changes in the somatosensory system might have a critical impact on the long-term health of athletes.
Collapse
Affiliation(s)
- Malte Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany.
| | - Elias Dreismickenbecker
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
- Center for Pediatric and Adolescent Medicine, Childhood Cancer Center, University Medical Center Mainz, 55131, Mainz, Germany
| | - Johannes Fleckenstein
- Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University, 60596, Frankfurt, Germany
| | - Carmen Walter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH Bochum, Ruhr University Bochum, 44789, Bochum, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Sebastian Zinn
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University, University Hospital Frankfurt, 60590, Frankfurt, Germany
| |
Collapse
|