1
|
Leitão AMF, Silva BR, Barbalho EC, Paulino LRM, Costa FDC, Martins FS, Silva JRV. The role of L-carnitine in the control of oxidative stress and lipid β-oxidation during in vitro follicle growth, oocyte maturation, embryonic development and cryopreservation: a review. ZYGOTE 2024; 32:335-340. [PMID: 39506889 DOI: 10.1017/s096719942400039x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
L-carnitine has an important role in the control of oxidative stress and lipid β-oxidation during in vitro culture and cryopreservation of ovarian follicles, oocytes and embryos. This substance balances the acetyl-CoA/CoA ratio, maintains glucose metabolism and increases energy production in mitochondria. It also plays a key role in reducing endoplasmic reticulum stress, by transferring palmitate to mitochondria or eliminating it to avoid toxicity. By eliminating reactive oxygen species, L-carnitine increases the percentages of mature oocytes with uniform mitochondrial distribution and improves embryo post-thaw cryotolerance. Therefore, L-carnitine controls lipid β-oxidation and oxidative stress during in vitro culture of ovarian follicles, oocyte maturation, embryonic development and cryopreservation.
Collapse
Affiliation(s)
- Allana Maria Freire Leitão
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Bianca Regia Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Efigênia C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Lais R M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Fabricio Sousa Martins
- State University of Acaraú Valley, Center of Agricultural and Biological Sciences, postal code 62040370, Sobral, CE, Brazil
| | - Jose Roberto V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| |
Collapse
|
2
|
Sakaguchi K. In Vitro Growth of Mammalian Follicles and Oocytes. Animals (Basel) 2024; 14:1355. [PMID: 38731360 PMCID: PMC11083657 DOI: 10.3390/ani14091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Mammalian ovaries contain a large number of immature follicles, most of which are destined to degenerate before ovulation [...].
Collapse
Affiliation(s)
- Kenichiro Sakaguchi
- Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagito 1-1, Gifu 501-1193, Japan;
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Yanagito 1-1, Gifu 501-1193, Japan
| |
Collapse
|
3
|
Padalhin A, Abueva C, Ryu HS, Yoo SH, Seo HH, Park SY, Chung PS, Woo SH. Impact of Thermo-Responsive N-Acetylcysteine Hydrogel on Dermal Wound Healing and Oral Ulcer Regeneration. Int J Mol Sci 2024; 25:4835. [PMID: 38732054 PMCID: PMC11084650 DOI: 10.3390/ijms25094835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates the efficacy of a thermo-responsive N-acetylcysteine (NAC) hydrogel on wound healing and oral ulcer recovery. Formulated by combining NAC with methylcellulose, the hydrogel's properties were assessed for temperature-induced gelation and cell viability using human fibroblast cells. In vivo experiments on Sprague Dawley rats compared the hydrogel's effects against saline, NAC solution, and a commercial NAC product. Results show that a 5% NAC and 1% methylcellulose solution exhibited optimal outcomes. While modest improvements in wound healing were observed, significant enhancements were noted in oral ulcer recovery, with histological analyses indicating fully regenerated mucosal tissue. The study concludes that modifying viscosity enhances NAC retention, facilitating tissue regeneration. These findings support previous research on the beneficial effects of antioxidant application on damaged tissues, suggesting the potential of NAC hydrogels in improving wound care and oral ulcer treatment.
Collapse
Affiliation(s)
- Andrew Padalhin
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Celine Abueva
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyun Seok Ryu
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Seung Hyeon Yoo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - Hwee Hyon Seo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - So Young Park
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Silva BR, Nascimento DR, Costa FC, Azevedo AV, Paulino LRFM, Aguiar FLN, Batista ALPS, Donato MAM, Silva JRV. Melatonin improves the viability and ultrastructure of bovine oocyte-granulosa complexes of in vitro cultured early antral follicles. Reprod Domest Anim 2024; 59:e14543. [PMID: 38459831 DOI: 10.1111/rda.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
This study aims to investigate the effects of melatonin on follicular growth, viability and ultrastructure, as well as on the levels of mRNA for antioxidant enzymes, reactive oxygen species (ROS) and meiotic progression in oocytes from in vitro cultured bovine early antral follicles. To this end, isolated early antral follicles (500-600 μm) were cultured in TCM-199+ alone or supplemented with 10-6 , 10-7 or 10-8 M melatonin at 38.5°C with 5% CO2 for 8 days. Follicle diameters were evaluated at days 0, 4 and 8 of culture. At the end of culture, ultrastructure, chromatin configuration, viability (calcein-AM and ethidium homodimer-1 staining), and the levels of ROS and mRNA for catalase (CAT), superoxide dismutase (SOD) and peroxiredoxin 6 (PRDX6) and glutathione peroxidase (GPx) were investigated in oocyte-granulosa cell complexes (OGCs). The results showed that early antral follicles cultured with 10-6 and 10-8 M melatonin had a progressive and significant increase in their diameters throughout the culture period (p < .05). Additionally, oocytes from follicles cultured with 10-7 or 10-8 M melatonin had increased fluorescence for calcein-AM, while those cultured with 10-6 or 10-7 M had reduced fluorescence for ethidium homodimer-1. Different from follicles cultured in other treatments, those cultured with 10-8 M melatonin had well-preserved ultrastructure of oocyte and granulosa cells. Melatonin, however, did not influence the levels of ROS, the mitochondrial activity, oocyte meiotic resumption and expression mRNA for SOD, CAT, GPX1 and PRDX6. In conclusion, the presence of 10-8 M melatonin in culture medium improves viability and preserves the ultrastructure of oocyte and granulosa cells of early antral follicles cultured in vitro.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Danisvânia R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Antônia V Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Ana L P S Batista
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Mariana A M Donato
- Laboratory of Ultrastructure, CNPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, PE, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| |
Collapse
|
5
|
Lucia Dos Santos Silva R, de Sousa Barberino R, Tavares de Matos MH. Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: A review. Theriogenology 2023; 207:110-122. [PMID: 37290274 DOI: 10.1016/j.theriogenology.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The in vitro culture systems of ovarian preantral follicles have been developed for studying follicular and oocyte growth, for future use of immature oocytes as sources of fertilizable oocytes and for screening ovarian toxic substances. One of the key limitations of the in vitro culture of preantral follicles is the oxidative stress by accumulation of reactive oxygen species (ROS), which can impair follicular development and oocyte quality. Several factors are associated with oxidative stress in vitro, which implies the need for a rigorous control of the conditions as well as addition of antioxidant agents to the culture medium. Antioxidant supplementation can minimize or eliminate the damage caused by ROS, supporting follicular survival and development and producing mature oocytes competent for fertilization. This review focuses on the use of antioxidants and their role in preventing follicular damage caused by oxidative stress in the in vitro culture of preantral follicles.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil.
| |
Collapse
|