1
|
Chang X, Leung JYS, Wang T, Hu M, Wang Y. Ocean acidification disrupts the energy balance and impairs the health of mussels (Mytilus coruscus) by weakening their trophic interactions with microalgae and intestinal microbiome. ENVIRONMENTAL RESEARCH 2025; 276:121493. [PMID: 40157417 DOI: 10.1016/j.envres.2025.121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Despite extensive research in the last two decades, exploring the potential mechanisms underlying the sensitivity and resistance of marine organisms to ocean acidification is still imperative. Species interactions can play a role in these mechanisms, but the extent to which they modulate organismal responses to ocean acidification remains largely unknown. Here, we investigated how ocean acidification (pH 7.7) affects energy homeostasis and fitness of mussels (Mytilus coruscus) by assessing their physiological responses, intestinal microbiome and nutritional quality of their food (microalgae). Under ocean acidification, the mussels had reduced feeding rates by 34 % and reduced activities of digestive enzymes (pepsin by 39 %, trypsin by 28 % and lipase by 53 %) due to direct exposure to acidified seawater and increased phenol content of microalgae. Richness and diversity of intestinal microbiome (OTU, Chao1 index and Shannon index) were also lowered by ocean acidification, which can undermine nutrient absorption. On the other hand, energy expenditure of mussels increased by 53 % under ocean acidification, which was associated with the upregulation of antioxidant defence (SOD, CAT and GPx activities). Consequently, energy reserves in mussels decreased by 28 %, which were underpinned by the reduction in protein, carbohydrate and lipid contents. Overall, we demonstrate that ocean acidification could disrupt herbivore-algae and host-microbe interactions, thereby lowering the energy balance and impairing the health of marine organisms. This can have ramifications on the population and energy dynamics of marine communities in the acidifying ocean.
Collapse
Affiliation(s)
- Xueqing Chang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Ting Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; University of Geneva, Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, Bvd Carl-Vogt 66, Geneva, 1211, Switzerland
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Weber MA, Wainger LA, Testa JM, Waldbusser GG, Li M. Climate resilience and profitability thresholds in Chesapeake Bay oyster aquaculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123202. [PMID: 39577197 DOI: 10.1016/j.jenvman.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Shellfish aquaculture producers in coastal systems are facing uncertain future growing conditions as climate change alters weather patterns and raises sea level. We examined expected mid-century (2059-2068) changes in aquaculture profitability from recent conditions by integrating models of climate change, estuarine hydrodynamics and biogeochemistry, oyster growth, oyster mortality, and economics, using the Chesapeake Bay, USA as a case study. We developed an economic stochastic dynamic programming (SDP) approach that generates optimal grower behavior to maximize profits under uncertainty by dynamically choosing planting density, replanting and mitigation use, in response to changing oyster stock status and water quality conditions. Separate models were developed for bottom culture largely serving the cannery market, and container culture largely serving the half-shell market, to reflect different production costs, market prices, and oyster growth and survival. The coupled hydrodynamic-biogeochemical and oyster ecology models projected high spatial variability in oyster growth and mortality with the most favorable growing conditions in the lower north and upper mid bay, where mortality is lowest, and the upper south bay, where growth is highest. Climate change by late mid-century generated modest water quality changes and virtually no mortality rate changes. Nonetheless, our modeling revealed that even if growers made optimal management choices under uncertainty, the majority of modeled sites would see a decline in profitability under climate change, primarily due to potential reductions in food availability. Bottom culture was more resilient to the future climate at most sites, being less sensitive to small changes in growth than container culture. Information on how aquaculture conditions currently vary in space was more important for profitability than future climate forecasts. Our stochastic dynamic programming approach tailored grower behavior to each site and unfolding annual conditions, including highly targeted and cost-effective mitigation adjustments to boost oyster survival or growth.
Collapse
Affiliation(s)
- Matt A Weber
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, MD, USA.
| | - Lisa A Wainger
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, MD, USA
| | - Jeremy M Testa
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, MD, USA
| | - George G Waldbusser
- Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR, USA
| | - Ming Li
- University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, MD, USA
| |
Collapse
|
3
|
Khalil M, Stuhr M, Kunzmann A, Westphal H. Simultaneous ocean acidification and warming do not alter the lipid-associated biochemistry but induce enzyme activities in an asterinid starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173000. [PMID: 38719050 DOI: 10.1016/j.scitotenv.2024.173000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Ocean acidification and warming affect marine ecosystems from the molecular scale in organismal physiology to broad alterations of ecosystem functions. However, knowledge of their combined effects on tropical-subtropical intertidal species remains limited. Pushing the environmental range of marine species away from the optimum initiates stress impacting biochemical metabolic characteristics, with consequences on lipid-associated and enzyme biochemistry. This study investigates lipid-associated fatty acids (FAs) and enzyme activities involved in biomineralization of the tropical-subtropical starfish Aquilonastra yairi in response to projected near-future global change. The starfish were acclimatized to two temperature levels (27 °C, 32 °C) crossed with three pCO2 concentrations (455 μatm, 1052 μatm, 2066 μatm). Total lipid (ΣLC) and FAs composition were unaffected by combined elevated temperature and pCO2, but at elevated temperature, there was an increase in ΣLC, SFAs (saturated FAs) and PUFAs (polyunsaturated FAs), and a decrease in MUFAs (monounsaturated FAs). However, temperature was the sole factor to significantly alter SFAs composition. Positive parabolic responses of Ca-ATPase and Mg-ATPase enzyme activities were detected at 27 °C with elevated pCO2, while stable enzyme activities were observed at 32 °C with elevated pCO2. Our results indicate that the lipid-associated biochemistry of A. yairi is resilient and capable of coping with near-future ocean acidification and warming. However, the calcification-related enzymes Ca-ATPase and Mg-ATPase activity appear to be more sensitive to pCO2/pH changes, leading to vulnerability concerning the skeletal structure.
Collapse
Affiliation(s)
- Munawar Khalil
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany; Department of Marine Science, Faculty of Agriculture, Universitas Malikussaleh, Reuleut Main Campus, 24355 North Aceh, Indonesia.
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany
| |
Collapse
|
4
|
Saavedra LM, Bastías M, Mendoza P, Lagos NA, García-Herrera C, Ponce V, Alvarez F, Llanos-Rivera A. Environmental correlates of oyster farming in an upwelling system: Implication upon growth, biomass production, shell strength and organic composition. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106489. [PMID: 38640688 DOI: 10.1016/j.marenvres.2024.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Comprehending the potential effects of environmental variability on bivalves aquaculture becomes crucial for its sustainability under climate change scenarios, specially in the Humboldt Current System (HCS) where upwelling intensification leading to frequent hypoxia and acidification is expected. In a year-long study, Pacific oysters (Magallana gigas) were monitored at two depths (1.5m, 6.5m) in a bay affected by coastal upwelling. Surface waters exhibited warmer, well-oxygenated conditions and higher chlorophyll-a concentrations, while at depth greater hypoxia and acidification events occur, especially during upwelling. Surface cultured oysters exhibited 60 % larger size and 35% greater weight due to faster growth rate during the initial month of cultivation. The condition index (CI) increases in surface oysters after 10 months, whereas those at the bottom maintain a lower index. Food availability, temperature, and oxygen, correlates with higher growth rates, while pH associates with morphometric variables, indicating that larger oysters tend to develop under higher pH. Increased upwelling generally raises CI, but bottom oysters face stressful conditions such as hypoxia and acidification, resulting in lower performance. However, they acclimate by changing the organic composition of their shells and making them stronger. This study suggests that under intensified upwelling scenario, oysters would grow slowly, resulting in smaller sizes and lower performance, but the challenges may be confronted through complex compensation mechanisms among biomass production and maintenance of the shell structure and function. This poses a significant challenge for the sustainability of the aquaculture industry, emphasizing the need for adaptive strategies to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Luisa M Saavedra
- Department of Aquatic Systems and EULA Environmental Science Center, Faculty of Environmental Sciences, University of Concepción, Chile.
| | - Manuel Bastías
- Oceanography department, Faculty of Natural and Oceanographic Science, University of Concepción, Chile
| | - Paula Mendoza
- Department of Aquatic Systems and EULA Environmental Science Center, Faculty of Environmental Sciences, University of Concepción, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Claudio García-Herrera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Vania Ponce
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Fabian Alvarez
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Alejandra Llanos-Rivera
- Oceanography department, Faculty of Natural and Oceanographic Science, University of Concepción, Chile
| |
Collapse
|
5
|
Wanjeri VWO, Okuku E, Ngila JC, Ndungu PG. Effect of seawater acidification on physiological and energy metabolism responses of the common Cockle (Anadara antiquata) of Gazi Bay, Kenya. MARINE POLLUTION BULLETIN 2023; 195:115500. [PMID: 37690410 DOI: 10.1016/j.marpolbul.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Ocean acidification (OA) is becoming a potential threat to marine organisms, especially in calcifying marine invertebrates. So far, along the Kenya Coast, there has been little research on the impact of OA on cockle (Anadara antiquata), particularly on their physiological impacts induced by exposure to acidified seawater. Hence, this study aimed to investigate the physiological and biochemical responses of Anadara antiquata under present and future predicted seawater pH. In this study, the Anadara antiquata was exposed to three pH treatments (pH 7.90, 7.60, and 7.30) for 8 weeks to mimic future OA and to understand the physiological and biochemical effects on the organisms. Condition index, energy reserves (glycogen and protein), and cellular damage (e.g., lipid peroxidation level) were measured. Condition index (CI) showed no significant difference at different pH treatments (pH 7.90, 7.60, and 7.30), whereas the survival Anadara antiquata was slightly reduced after 8 weeks of exposure to pH 7.30. Glycogen and protein content were not affected at reduced pH (7.60 and 7.30). However, after 8 weeks of exposure to pH 7.60 and 7.30, Anadara antiquata showed a slight decrease in lipid peroxidation, an indication of cellular damage. The physiological and biochemical parameters analyzed (glycogen and protein content; lipid peroxidation levels) showed useful biomarkers to assess ocean acidification impacts in cockle.
Collapse
Affiliation(s)
- Veronica Wayayi Ogolla Wanjeri
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Eric Okuku
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - Jane Catherine Ngila
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|