1
|
Ma Y, Liu T, Chen S, Shen H, Wang J. Dietary supplementation with L-citrulline improves amino acid composition and broiler performance, and modulates gut microbiota. Front Microbiol 2025; 16:1551012. [PMID: 40018669 PMCID: PMC11865065 DOI: 10.3389/fmicb.2025.1551012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
Poultry lacks carbamoyl phosphate synthetase, which is a key enzyme in the endogenous synthesis of arginine, thus poultry must obtain arginine from their diet. Citrulline (L-Cit), as a precursor of arginine, produces the same biological effects as arginine, and may even be more effective. In these experiments, we discovered that the addition of L-Cit significantly increased production performance, antioxidant and immune properties, and modulated the intestinal microbiota. The study involved 240 1-day-old male yellow-feathered broilers randomly assigned to one of four treatment groups: control (CON), 0.5% L-Cit, 1% L-Cit, and 1.5% L-Cit, with 10 replicates per group and six birds per replicate. The feeding trial lasted for 63 days. The body weight at 42 days and 63 days, as well as the average daily weight gain from day 1 to 63, increased linearly and quadratically with the addition of L-citrulline. The plasma concentrations of citrulline, ornithine, and arginine increased linearly with the dose of L-Cit. L-citrulline increased total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels and decreased interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). Dietary addition of 1% L-Cit also significantly altered the overall composition of the broiler intestinal microbiota, increasing the relative abundance of Prevotellaceae_UCG-001 while reducing the relative abundance of Synergistota and Campylobacterota. This indicates that L-Cit can enhance the production performance of broilers, and improve antioxidant activity and immune functions, thereby protecting intestinal health. The optimum dietary amount of L-Cit is 1 to 1.5%.
Collapse
Affiliation(s)
- Yan Ma
- Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tingting Liu
- Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuaihu Chen
- Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hong Shen
- Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jungang Wang
- College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
3
|
Shanmugasundaram R, Kappari L, Pilewar M, Jones MK, Olukosi OA, Pokoo-Aikins A, Applegate TJ, Glenn AE. Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins (Basel) 2025; 17:16. [PMID: 39852969 PMCID: PMC11769399 DOI: 10.3390/toxins17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to evaluate the least toxic effects of combined mycotoxins fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA) on the production performance, immune response, intestinal morphology, and nutrient digestibility of broiler chickens. A total of 960 one-day-old broilers were distributed into eight dietary treatments: T1 (Control); T2: 33.0 FUM + 3.0 DON + 0.8 ZEA; T3: 14.0 FUM + 3.5 DON + 0.7 ZEA; T4: 26.0 FUM + 1.0 DON + 0.2 ZEA; T5: 7.7 FUM + 0.4 DON + 0.1 ZEA; T6: 3.6 FUM + 2.5 DON + 0.9 ZEA; T7: 0.8 FUM + 1.0 DON + 0.3 ZEA; T8: 1.0 FUM + 0.5 DON + 0.1 ZEA, all in mg/kg diet. The results showed that exposure to higher mycotoxin concentrations, T2 and T3, had significantly reduced body weight gain (BWG) by 17% on d35 (p < 0.05). The T2, T3, and T4 groups had a significant decrease in villi length in the jejunum and ileum (p < 0.05) and disruption of tight junction proteins, occludin, and claudin-4 (p < 0.05). Higher mycotoxin groups T2 to T6 had a reduction in the digestibility of amino acids methionine (p < 0.05), aspartate (p < 0.05), and serine (p < 0.05); a reduction in CD4+, CD8+ T-cell populations (p < 0.05) and an increase in T regulatory cell percentages in the spleen (p < 0.05); a decrease in splenic macrophage nitric oxide production and total IgA production (p < 0.05); and upregulated cytochrome P450-1A1 and 1A4 gene expression (p < 0.05). Birds fed the lower mycotoxin concentration groups, T7 and T8, did not have a significant effect on performance, intestinal health, and immune responses, suggesting that these concentrations pose the least negative effects in broiler chickens. These findings are essential for developing acceptable thresholds for combined mycotoxin exposure and efficient feed management strategies to improve broiler performance.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Laharika Kappari
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Mohammad Pilewar
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Matthew K. Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677, USA
| | | | - Anthony Pokoo-Aikins
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Anthony E. Glenn
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
4
|
Lee N, Sharma MK, Paneru D, Ward ED, Kim WK, Suh JH. Metabolomic analysis reveals altered amino acid metabolism and mechanisms underlying Eimeria infection in laying hens. Poult Sci 2024; 103:104244. [PMID: 39250847 PMCID: PMC11407053 DOI: 10.1016/j.psj.2024.104244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 09/11/2024] Open
Abstract
Avian coccidiosis, caused by Eimeria spp, is a devastating disease in laying hens. Previous studies have suggested that amino acids may be involved in Eimeria infection of broiler chickens. However, their metabolic features in laying hens, as well as the effect of multiple Eimeria species challenges on poultry hosts have not been elucidated yet. Here, a targeted metabolomics approach was employed to identify altered amino acid metabolism and mechanisms in laying hens with multiple Eimeria species challenges. Laying hens, Hy-Line W-36 aged 25 wk, were randomly assigned to a control group and groups inoculated with varying levels of mixed Eimeria species (E. maxima, E. tenella, and E. acervulina). Serum samples from each group were collected at 6 d and 14 d of postinoculation (6 and 14 DPI) for metabolite profiling. Metabolomic analysis revealed notable metabolic variations between control and infected groups, especially at 6 DPI stage. Varying levels of Eimeria dosages did not show a significant metabolic difference, and metabolites were sensitive to low-level infection. With statistical analysis, differentially expressed compounds (3-methylhistidine, alanine, aspartate, lysine, asparagine, methionine, ornithine, and tryptophan) were selected, and their metabolic network was identified by pathway enrichment analysis. In the network, the lysine biosynthesis pathway was upregulated, while the arginine and proline metabolic pathway was downregulated under infection. Other pathways showed complex patterns of metabolic relationships. Based on the results, biological implications of metabolic changes were elucidated and discussed. Last, the results were further confirmed with our previous study (phenotype and gene expression results) using the same set of samples. Our finding provides in-depth information on altered amino acid metabolism and mechanisms in laying hens upon multiple Eimeria species infection.
Collapse
Affiliation(s)
- Namhee Lee
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Deependra Paneru
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Delane Ward
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Joon Hyuk Suh
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Chen Z, Zheng X, Shu X, Hua G, Zhu R, Sun L, Chen J. Supplemental L-arginine promotes hepatocyte proliferation and alters liver fatty acid metabolism in the late embryonic phase: an RNA-seq analysis. Poult Sci 2024; 103:104175. [PMID: 39216267 PMCID: PMC11402549 DOI: 10.1016/j.psj.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The in ovo feeding (IOF) of L-arginine (L-Arg) to chick embryos is a viable method for improving early intestinal development, subsequently leading to an acceleration in growth rate during the posthatch stage. However, the liver, being the pivotal organ for energy metabolism in poultry, the precise effects and mechanisms of L-Arg on the liver development and metabolism remain unclear. To elucidate these, the present study injected 2 doses of L-Arg (10 mg/egg and 15 mg/egg) into the embryos of Hongyao chickens at 17.5 d of incubation, subsequently incubating them until d 19 for further analysis. IOF of 15 mg L-Arg/egg significantly increased the organ indices of liver and small intestine, as well as the duodenal villus height/crypt depth. RNA-Seq analysis of liver tissues showed that the metabolism of xenobiotics, amino acid metabolism, and the fatty acid metabolism were significantly enriched in L-Arg injection group. The core differentially expressed genes (DEGs) were primarily involved in cell proliferation and fatty acid metabolism. The CCK8 assays revealed that supplemental L-Arg significantly enhanced the proliferation of primary embryo hepatocytes and leghorn male hepatoma (LMH) cells. Upregulation of core DEGs, including HBEGF, HES4, NEK3, EGR1, and USP2, significantly promoted the proliferation of liver cells. Additionally, analysis of triglyceride and total cholesterol content, as well as oil red O staining, indicated that supplemental L-Arg effectively reduced lipid accumulation. Overall, L-Arg supplementation in late chick embryos may promote early liver and small intestine development by reducing liver lipid deposition and enhancing energy efficiency, necessitating further experimental validation. This study provides profound insights into the molecular regulatory network of L-Arg in promoting the development of chicken embryos. The identified DEGs that promote cell proliferation and lipid metabolism can serve as novel targets for further developing methods to enhance early development of chicken embryos.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liumei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
6
|
Liu G, Choppa VSR, Sharma MK, Ko H, Choi J, Kim WK. Effects of methionine supplementation in a reduced protein diet on growth performance, oxidative status, intestinal health, oocyst shedding, and methionine and folate metabolism in broilers under Eimeria challenge. J Anim Sci Biotechnol 2024; 15:84. [PMID: 38853257 PMCID: PMC11163814 DOI: 10.1186/s40104-024-01041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/28/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND This study investigated effects of different methionine (Met) supplementation levels in a reduced protein diet on growth performance, intestinal health, and different physiological parameters in broilers under Eimeria challenge. A total of 600 fourteen-day-old Cobb500 male broilers were challenged with E. maxima, E. tenella, and E. acervulina, and randomly allocated in a 2 × 5 factorial arrangement. Birds received normal protein diets (20% crude protein, NCP) or reduced protein diets (17% crude protein, LCP), containing 2.8, 4.4, 6.0, 7.6, and 9.2 g/kg of Met. RESULTS On 6 and 9 days post inoculation (DPI), increasing Met level linearly improved the growth performance (P < 0.05). Total oocyst shedding linearly increased as Met level increased (P < 0.05). Duodenal villus height (VH):crypt depth (CD) in the LCP groups were higher on 6 DPI (P < 0.01) while lower on 9 DPI (P < 0.05) compared to the NCP groups. Jejunal CD and duodenal VH:CD changed quadratically as Met level increased (P < 0.05). On 6 DPI, liver glutathione (GSH) and glutathione disulfide (GSSG) linearly increased as Met level increased (P < 0.05). On 9 DPI, GSSG quadratically increased, whereas GSH:GSSG quadratically decreased as Met levels increased (P < 0.05). The expression of amino acid transporters linearly decreased as Met level increased (P < 0.05). The expression of zonula occludens 2 and claudin-1 linearly increased on 6 DPI whereas decreased on 9 DPI as Met level increased (P < 0.05). The expressions of cytokines were lower in the LCP groups than the NCP groups (P < 0.05). Interaction effects were found for the expression of IL-10 and TNFα on 6 DPI (P < 0.05), where it only changed quadratically in the NCP group as Met level increased. The expression of Met and folate metabolism genes were lower in the LCP groups than the NCP groups on 9 DPI (P < 0.05). The expression of these genes linearly or quadratically decreased as Met level increased (P < 0.05). CONCLUSION These results revealed the regulatory roles of Met in different physiological parameters including oxidative status, intestinal health, and nutrient metabolism in birds fed reduced protein diet and challenged with Eimeria.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Taylor J, Mercier Y, Olukosi OA, Kim WK, Selvaraj R, Applegate TJ, Shanmugasundaram R, Ball MEE, Kyriazakis I. Supplementing low protein diets with methionine or threonine during mixed Eimeria challenge. Poult Sci 2024; 103:103714. [PMID: 38636202 PMCID: PMC11031750 DOI: 10.1016/j.psj.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
We investigated the effects of supplementing low protein diets with methionine (Met) or threonine (Thr) during a mixed Eimeria (consisting of E. acervulina, E. maxima and E. tenella) challenge in broilers. All birds were fed the same starter diet (d1-9) and finisher diet (d28-35) which met Cobb 500 nutrient specifications. Birds were allocated to 1 of 4 dietary treatments from d9 to 28: a standard protein diet (19% CP); a low protein diet (16% CP); or the low protein diet supplemented with Met or Thr at 50% above recommendations. On d14, half of the birds were challenged, and half of the birds were unchallenged. From d14 to 28, feed intake was recorded daily and BW every 3 or 4 d. Oocyst excretion was measured daily from d18 to 27. On d21 and 28, 3 birds per pen were euthanized to assess nutrient digestibility, cytokine expression and intestinal histology. During the acute stage of the challenge, challenged birds reduced ADFI and ADG (P < 0.05). In the pre-patent and recovery stages, birds given the 16% CP diets increased ADFI (P < 0.05), meanwhile there were no differences in ADG in these stages (P > 0.05). Nutrient digestibility was reduced in challenged birds in the acute stage (P < 0.05) but tended to be greater than in unchallenged birds during the recovery stage. There was no significant effect of diet on oocyst excretion or intestinal histology (P > 0.05). Interactions were observed between diet and challenge on IL-10 and IL-21 expression in the cecal tonsils during the acute stage of the challenge (P < 0.05), due to reduced IL-10 expression in challenged Thr birds and greater IL-21 expression in challenged Met birds. Supplementation with Thr or Met had limited effects on the outcomes of a mixed Eimeria challenge but provides benefits to the host by enhancing their immune response.
Collapse
Affiliation(s)
- James Taylor
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom; Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom.
| | | | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, USDA-ARS, US National Poultry Research Centre, Athens, GA 30605, USA
| | - M Elizabeth E Ball
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom
| | - Ilias Kyriazakis
- Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| |
Collapse
|
8
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Different methionine to cysteine supplementation ratios altered bone quality of broilers with or without Eimeria challenge assessed by dual energy X-ray absorptiometry and microtomography. Poult Sci 2024; 103:103580. [PMID: 38428354 PMCID: PMC10912940 DOI: 10.1016/j.psj.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
Despite the acknowledged significance of nutrition in bone development, effects of methionine (Met) and cysteine (Cys) on bone quality remain under-researched, particularly during Eimeria challenge. We investigated the effects of different supplemental Met to Cys ratios (MCR) on bone quality of broilers under Eimeria challenge. A total of 720 fourteen-day old Cobb500 broilers were allocated into a 5 × 2 factorial arrangement. Five diets with Met and Cys supplemented at MCR of 100:0, 75:25, 50:50, 25:75, and 0:100 were fed to the birds with or without Eimeria challenge. Body composition was measured by dual energy x-ray absorptiometry, and the femur bone characteristics were assessed by microtomography. Data were analyzed by two-way ANOVA and orthogonal polynomial contrast. The results reaffirmed the detrimental effects of Eimeria challenge on bone quality. On 9 d post inoculation (DPI), significant interaction effects were found for whole body bone mineral content (BMC), lean tissue weight, and body weight (P < 0.05); in the nonchallenged group (NCG), these parameters linearly decreased as MCR decreased (P < 0.05). In the challenged group (CG), body weight and lean tissue weight were unaffected by MCR, and BMC linearly increased as MCR decreased (P < 0.05). For the cortical bone of femoral metaphysis on 6 DPI, bone mineral density (BMD) linearly increased as MCR decreased (P < 0.05). Bone volume to tissue volume ratio (BV/TV) in the CG linearly increased as MCR decreased (P < 0.05). On 9 DPI, BMC and TV linearly increased as MCR decreased (P < 0.05) in the NCG. BMD and BV/TV changed quadratically as MCR decreased (P < 0.05). For the trabecular bone of femoral metaphysis on 9 DPI, BV/TV, and trabecular number linearly increased as MCR decreased (P < 0.05) in the NCG. For the femoral diaphysis, BV, TV, BMC on 6 DPI, and BMD on 9 DPI linearly increased as MCR decreased (P < 0.05). In conclusion, this study showed that both Eimeria challenge and varying supplemental MCR could influence bone quality of broilers.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Sharma MK, Kim WK. Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals (Basel) 2024; 14:1015. [PMID: 38612254 PMCID: PMC11010854 DOI: 10.3390/ani14071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian coccidiosis, despite advancements in management, nutrition, genetics, and immunology, still remains the most impactful disease, imposing substantial economic losses to the poultry industry. Coccidiosis may strike any avian species, and it may be mild to severe, depending on the pathogenicity of Eimeria spp. and the number of oocysts ingested by the bird. Unlike broilers, low emphasis has been given to laying hens. Coccidiosis in laying hens damages the gastrointestinal tract and causes physiological changes, including oxidative stress, immunosuppression, and inflammatory changes, leading to reduced feed intake and a drastic drop in egg production. Several countries around the world have large numbers of hens raised in cage-free/free-range facilities, and coccidiosis has already become one of the many problems that producers have to face in the future. However, limited research has been conducted on egg-laying hens, and our understanding of the physiological changes following coccidiosis in hens relies heavily on studies conducted on broilers. The aim of this review is to summarize the effect of coccidiosis in laying hens to an extent and correlate it with the physiological changes that occur in broilers following coccidiosis. Additionally, this review tries to explore the nutritional strategies successfully used in broilers to mitigate the negative effects of coccidiosis in improving the gut health and performance of broilers and if they can be used in laying hens.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
10
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Impacts of varying methionine to cysteine supplementation ratios on growth performance, oxidative status, intestinal health, and gene expression of immune response and methionine metabolism in broilers under Eimeria spp. challenge. Poult Sci 2024; 103:103300. [PMID: 38100947 PMCID: PMC10762478 DOI: 10.1016/j.psj.2023.103300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
A study was conducted to investigate effects of different methionine (Met) to cysteine (Cys) supplementation ratios (MCR) on growth performance, oxidative status, intestinal health, immune responses, and methionine metabolism in broilers under Eimeria challenge. A total of 720 male Cobb500 broilers (14-day-old) were allocated in a 2 × 5 factorial arrangement (5 diets, with or without challenge) with 6 replicates per treatment. The total sulfur amino acid concentrations were consistent across treatments meeting the breeder's recommendation, only MCR varied. The diets were labeled as MET100; MET75; MET50; MET25; and MET0, representing MCR of 100:0; 75:25; 50:50; 25:75; and 0:100, respectively. Data were analyzed by 2-way ANOVA and orthogonal polynomial contrast. Growth performance declined linearly or quadratically as MCR decreased (P < 0.01). On 6-day postinoculation (DPI), interaction effects (P < 0.01) were found; BW and body weight gain were lower in MET0 compared to the other treatments in the nonchallenged groups, whereas not in the challenged groups. On 6 and 9 DPI, serum total antioxidant capacity linearly decreased as MCR decreased (P < 0.05). Hepatic activities of glutathione peroxidase on 6 DPI and superoxide dismutase on 9 DPI changed quadratically as MCR decreased (P < 0.05). The digestibility of Met linearly decreased whereas the digestibility of Cys linearly increased as MCR decreased. The ileal crypt depth linearly decreased as MCR decreased (P < 0.01) on 6 DPI. The expression of transforming growth factor beta on 6 and 9 DPI, tumor necrotic factor alpha and interleukin 10 on 9 DPI changed quadratically as MCR decreased (P < 0.05). Eimeria challenge increased expression of Met adenosyltransferase and cystathionine gamma-lyase, whereas decreasing the expression of other Met metabolism genes (P < 0.01) on 6 DPI. Expression of Met metabolism genes linearly increased as MCR decreased (P < 0.05). In conclusion, different Met to Cys supplementation ratios exerted linearly or quadratically effects on the growth performance, oxidative status, intestinal health, and metabolism of Met in broiler chickens under Eimeria infection.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|