1
|
Higgins KW, Itoigawa A, Toda Y, Bellott DW, Anderson R, Márquez R, Weng JK. Rapid expansion and specialization of the TAS2R bitter taste receptor family in amphibians. PLoS Genet 2025; 21:e1011533. [PMID: 39888968 PMCID: PMC11798467 DOI: 10.1371/journal.pgen.1011533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/05/2025] [Accepted: 12/09/2024] [Indexed: 02/02/2025] Open
Abstract
TAS2Rs are a family of G protein-coupled receptors that function as bitter taste receptors in vertebrates. Mammalian TAS2Rs have historically garnered the most attention, leading to our understanding of their roles in taste perception relevant to human physiology and behaviors. However, the evolution and functional implications of TAS2Rs in other vertebrate lineages remain less explored. Here, we identify 9,291 TAS2Rs from 661 vertebrate genomes. Large-scale phylogenomic analyses reveal that frogs and salamanders contain unusually high TAS2R gene content, in stark contrast to other vertebrate lineages. In most species, TAS2R genes are found in clusters; compared to other vertebrates, amphibians have additional clusters and more genes per cluster. We find that vertebrate TAS2Rs have few one-to-one orthologs between closely related species, although total TAS2R count is stable in most lineages. Interestingly, TAS2R count is proportional to the receptors expressed solely in extra-oral tissues. In vitro receptor activity assays uncover that many amphibian TAS2Rs function as tissue-specific chemosensors to detect ecologically important xenobiotics.
Collapse
Affiliation(s)
- Kathleen W. Higgins
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, United States of America
| | - Akihiro Itoigawa
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo, Japan
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Yasuka Toda
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo, Japan
| | - Daniel Winston Bellott
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Rachel Anderson
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jing-Ke Weng
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Itoigawa A, Nakagita T, Toda Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. Int J Mol Sci 2024; 25:12654. [PMID: 39684366 PMCID: PMC11641376 DOI: 10.3390/ijms252312654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds. Given their vital roles, T2Rs have undergone significant selective pressures throughout vertebrate evolution, leading to frequent gene duplications and deletions, functional changes, and intrapopulation differentiation across various lineages. Recent advancements in genomic and functional research have uncovered the repertoires and functions of bitter taste receptors in a wide range of vertebrate species, shedding light on their evolution in relation to dietary habits and other ecological factors. This review summarizes recent research on bitter taste receptors and explores the mechanisms driving the diversity of these receptors from the perspective of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 102-0083, Tokyo, Japan
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
3
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
4
|
Pan W, Zhao Z, Wu J, Fan Q, Huang H, He R, Shen H, Zhao Z, Feng S, Gan G, Chen Z, Ma M, Sun C, Zhang L. LACpG10-HL Functions Effectively in Antibiotic-Free and Healthy Husbandry by Improving the Innate Immunity. Int J Mol Sci 2022; 23:ijms231911466. [PMID: 36232768 PMCID: PMC9569488 DOI: 10.3390/ijms231911466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotics are broadly restricted in modern husbandry farming, necessitating the need for efficient and low-cost immunomodulatory preparations in antibiotic-free and healthful farming. As is known to all, CpG oligonucleotides (CpG-ODNs, an effective innate immunostimulatory agent) recognized by TLR9 in mammals (while TLR21 in avians) could collaborate with some united agent to induce stronger immune responses, but the cost is prohibitively expensive for farmers. Here, considering the coordination between TLR2 and TLR9/TLR21, we firstly proposed the idea that the well-fermented Lactococcus lactis could be utilized as a CpG-plasmid carrier (LACpG10) to enhance the host’s innate immunity against pathogenic invasion. In the present study, after obtaining LACpG10-HL from homogenized and lyophilized recombinant strain LACpG10, we treated primary chicken lymphocytes, two cell lines (HD11 and IPEC-J2), and chickens with LACpG10-HL, CpG plasmids (pNZ8148-CpG10), and other stimulants, and respectively confirmed the effects by conducting qRT-PCR, bacterial infection assays, and a zoological experiment. Our data showed that LACpG10-HL could induce excellent innate immunity by regulating autophagy reactions, cytokine expression, and motivating PRRs. Interestingly, despite having no direct antiseptic effect, LACpG10-HL improved the antibacterial capacities of lymphocytes and enterocytes at the first line of defense. Most importantly, water-supplied LACpG10-HL treatment reduced the average adverse event rates, demonstrating that LACpG10-HL maintained its excellent immunostimulatory and protective properties under farming conditions. Our research not only contributes to revealing the satisfactory effects of LACpG10-HL but also sheds new light on a cost-effective solution with optimal immune effects in green, antibiotic-free, and healthful husbandry farming.
Collapse
|
5
|
Naseri E, Xiangyu K, Hu C, Ayaz A, Rahmani MM, Nasim M, Hamdard E, Zahir A, Zhou Q, Wang J, Hou X. Bok-choy promotes growth performance, lipid metabolism and related gene expression in Syrian golden hamsters fed with a high-fat diet. Food Funct 2020; 11:2693-2703. [PMID: 32182310 DOI: 10.1039/c9fo02975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Broadly, bok-choy is known for its potential benefits as part of a human diet. However, the effects and deeper investigations of bok-choy on human health are still insufficient. This study aimed to investigate the beneficial effects of two cultivars of bok-choy, 'Suzhouqing' (green cultivar) and 'Ziluolan' (purple cultivar), on growth performance, lipid metabolism and related gene expressions in Syrian golden hamsters. Fifty six male Syrian golden hamsters (6-months-old) were randomly assigned into 6 groups: normal diet (A), high-fat diet (B), high-fat diet + 5% 'Suzhouqing' (C), high-fat diet + 7% 'Suzhouqing' (D), high-fat diet + 5% 'Ziluolan' (E), and high-fat diet + 7% 'Ziluolan' (F), fed for 56 consecutive days. On day 0, 28 and 56, blood and liver samples were collected to examine the lipid profile, liver enzymes, histomorphology and related gene expressions. The results showed that group B had significantly increased levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, while (P < 0.05) showed impaired levels of high-density lipoprotein cholesterol compared with group A. Group D, E and F had significantly reduced levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, while the level of high-density lipoprotein cholesterol was significantly increased compared with group B. Remarkably, the mRNA expressions of CEBP-α, DGAT1, lipoprotein lipase (LPL), FASN and 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA) were significantly up-regulated and carnitine palmitoyl transferase 2 (CPT2), Cyp27A1 and proliferator activated receptor alpha (PPAR-α) were significantly down-regulated in group B compared with group A. However, in group D, E and F, the mRNA expression levels of CCAAT enhancer binding protein alpha, DGAT1, LPL, FASN and HMG-CoA were significantly down-regulated and CPT2, Cyp27A1 and PPAR-α were significantly up-regulated compared with group B. In conclusion, different amounts of bok-choy added to the diets incredibly improved the lipid-profile, enhanced liver enzyme activities and related gene expression. The hamsters supplemented with 7% 'Ziluolan' exhibited the best performance among all the other high-fat groups, which shows that Ziluolan could be a great alternative for the reduction of fat accumulation and conserving health.
Collapse
Affiliation(s)
- Emal Naseri
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kong Xiangyu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China. and New Rural Research Institute in Lianyungang, Nanjing Agricultural University, Lianyungang 222002, China
| | - Aliya Ayaz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mohammad Malyar Rahmani
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Maazullah Nasim
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Enayatullah Hamdard
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ahmadullah Zahir
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qian Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China. and New Rural Research Institute in Lianyungang, Nanjing Agricultural University, Lianyungang 222002, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Shi Z, Lv Z, Hu C, Zhang Q, Wang Z, Hamdard E, Dai H, Mustafa S, Shi F. Oral Exposure to Genistein during Conception and Lactation Period Affects the Testicular Development of Male Offspring Mice. Animals (Basel) 2020; 10:ani10030377. [PMID: 32111017 PMCID: PMC7143625 DOI: 10.3390/ani10030377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Spermatogenesis and hormones secretions are important life-threating and complicated process, which can be affected by environmental estrogens. Genistein, a type of isoflavones, widely exists in the soybean products diet, which exerts a controversial role in reproductive regulation for its special structures or functions. The results of the study revealed that low-dose genistein treatment increased the level of testosterone in the mice serum, and positively regulated expression of spermatogenesis-related genes, which enhanced spermatogenesis and testicular development. However, High-dose genistein treatment induced apoptosis of germ cells and inhibited proliferation of germ cells during spermatogenesis. Reproductive alterations in the structures and functions of testis were dose-dependent in different genistein treatments. Abstract Sexual hormones are essential for the process of spermatogenesis in the testis. However, the effect of maternal genistein (GEN) on the pups’ testicular development remain-unclear. Our present study evaluated the effects of supplementing GEN for parental and offspring mice on the reproductive function and growth performance of the male pups. Mothers during gestation and lactation period were assigned to a control diet (CON group), low dose GEN (LGE group) diet (control diet +40 mg/kg GEN), and high dose of GEN (HGE group) diet (control diet +800 mg/kg GEN). Their male offspring underwent the same treatment of GEN after weaning. LGE treatment (40 mg/kg GEN) significantly increased body weights (p < 0.001), testes weights (p < 0.05), diameters of seminiferous tubule (p < 0.001) and heights of seminiferous epithelium (p < 0.05) of offspring mice. LGE treatment also increased serum testosterone (T) levels and spermatogenesis scoring (p < 0.05). However, HGE treatment (800mg/kg GEN) significantly decreased body weights (p < 0.001), testes weights (p < 0.05) and testis sizes (p < 0.001). Furthermore, mRNA expressions of ESR2 (p < 0.05), CYP19A1 (p < 0.001), SOX9 (p < 0.001) and BRD7 (p < 0.001) in testis of mice were increased in the LGE group. Similarly, HGE treatment increased mRNA expressions of ESR2 (p < 0.05) and CYP19A1 (p < 0.001). However, mRNA expressions of SOX9 and BRD7 were decreased significantly in the HGE group (p < 0.001). Meanwhile, higher ratio apoptotic germ cells and abnormal sperms were detected in the HGE group (p < 0.001). In conclusion, exposure to a low dose of GEN during fetal and neonatal life could improve testicular development of offspring mice, whereas, unfavorable adverse effects were induced by a high dose of GEN.
Collapse
|
7
|
Su Y, Jie H, Zhu Q, Zhao X, Wang Y, Yin H, Kumar Mishra S, Li D. Effect of Bitter Compounds on the Expression of Bitter Taste Receptor T2R7 Downstream Signaling Effectors in cT2R7/pDisplay-G α16/gust44/pcDNA3.1 (+) Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6301915. [PMID: 31781630 PMCID: PMC6875361 DOI: 10.1155/2019/6301915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
Abstract
Bitterness is an important taste sensation for chickens, which provides useful sensory information for acquisition and selection of diet, and warns them against ingestion of potentially harmful and noxious substances in nature. Bitter taste receptors (T2Rs) mediate the recognition of bitter compounds belonging to a family of proteins known as G-protein coupled receptors. The aim of this study was to identify and evaluate the expression of T2R7 in chicken tongue tissue and construct cT2R7-1 and cT2R7-2-expressing HEK-293T cells to access the expression of PLCβ2 and ITPR3 after exposure with different concentrations of the bitter compounds. Using real-time PCR, we show that the relative expression level of T2R7 mRNA in 5, 1, 0.1, and 10-3 mM of camphor and erythromycin solutions and 5 mM of chlorpheniramine maleate solutions was significantly higher than that in 50 mM KCL solutions. We confirmed that the bitter taste receptor T2R7 and downstream signaling effectors are sensitive to different concentrations of bitter compounds. Moreover, T2R7-1 (corresponding to the unique haplotype of the Tibetan chicken) had higher sensitivity to bitter compounds compared with that of T2R7-2 (corresponding to the unique haplotype of the Jiuyuan black-chicken). These results provide great significance of taste response on dietary intake to improve chicken feeding efficiency in poultry production and have certain reference value for future taste research in other bird species.
Collapse
Affiliation(s)
- Yuan Su
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Jie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing 404100, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shailendra Kumar Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|