1
|
Dorado J, Ortiz I. Cryopreservation of Dog Semen. Methods Mol Biol 2025; 2897:147-157. [PMID: 40202633 DOI: 10.1007/978-1-0716-4406-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cryopreservation of dog semen is an assisted reproductive technology of the utmost importance for increasing the genetic pool and developing the dog breeding industry. This technique is not unharmful for the sperm, and factors such as extender, cryoprotectant, and cooling-warming rates have been shown to affect the after-thawing quality of canine sperm.This chapter aims to describe the current range of methodologies available that are key to ensure successful freezing and thawing of dog sperm.
Collapse
Affiliation(s)
- Jesús Dorado
- Department of Animal Medicine and Surgery, University of Córdoba, Córdoba, Spain
| | - Isabel Ortiz
- Department of Animal Medicine and Surgery, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
2
|
Shamsi RR, Jozani RJ, Asadpour R, Rahbar M, Taravat M. Seminal Plasma-Derived Exosome Preserves the Quality Parameters of the Post-Thaw Semen of Bulls with Low Freezeability. Biopreserv Biobank 2024. [PMID: 39723439 DOI: 10.1089/bio.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Introduction: Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. Objective: The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm. Methods: Five Holstein bulls were chosen based on their samples having less than 30% progressive motility. After exosome extraction, semen samples from bulls (n = 5) with progressive sperm motility ≤30% were collected, diluted with different exosome concentrations (0, 25, 50, and 100 μg/mL), and aspirated into 0.5 mL straws. After the freeze-thaw process, sperm total and progressive motility, viability, morphology, plasma membrane integrity, mitochondrial activity, and apoptosis status were assessed. Furthermore, the expression levels of annexin (ANX1), dystrophy-associated Fer-1-like protein (DYSF), fibronectin 1 (FN1), and reactive oxygen species modulator 1 (ROMO1) were evaluated via real-time polymerase chain reaction (PCR). Results: Adding different concentrations of exosomes (25, 50, and 150 μg/mL) significantly increased the progressive motility, viability, and membrane integrity of sperm compared with the control group (p < 0.05). For the apoptosis index, treatment with 100 μg/mL exosomes significantly increased the percentage of live cells (p < 0.05), while the percentage of necrotic cells decreased significantly (p < 0.05) compared with 25 μg/mL exosome. The results of quantitative PCR showed that the expression levels of ANX1 were significantly (p < 0.05) upregulated at 50 μg/mL exosome, and the expression of ROMO1, FN1, and DYSF were downregulated upon treatment with different exosome concentrations. Conclusions: In conclusion, supplementing the freezing diluent with exosome-derived seminal plasma could preserve the quality parameters of the post-thaw semen of the bull with low freezeability and could be used as a helpful method for reproductive programs.
Collapse
Affiliation(s)
- Rahele Ranjbar Shamsi
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi Jafari Jozani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Morteza Taravat
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
3
|
Esin B, Kaya C, Akar M, Çevik M. Investigation of the protective effects of different forms of selenium in freezing dog semen: Comparison of nanoparticle selenium and sodium selenite. Reprod Domest Anim 2024; 59:e14652. [PMID: 38923052 DOI: 10.1111/rda.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to investigate the protective effects of nanoparticle selenium (SeNP) and sodium selenite (SS) on preventing oxidative stress during the freezing process of dog semen. A total of six dogs were used in the study. The ejaculate was collected from dogs three times at different times by massage method. A total of 18 ejaculates were used and each ejaculate was divided in five experimental groups. The experimental groups were designed to tris extender containing no antioxidants control, 1 μg/mL SeNP1, 2 μg/mL SeNP2, and 1 μg/mL SS1 and 2 μg/mL SS2. Extended semen were equilibrated for 1 h at 4°C, then frozen in liquid nitrogen vapour and stored in liquid nitrogen (~-196°C). After thawing, semen samples were evaluated in terms of CASA motility and kinematic parameters, spermatozoa plasma membrane integrity and viability (HE Test), spermatozoa morphology (SpermBlue) and DNA fragmentation (GoldCyto). Antioxidant enzyme activity (glutathione peroxidase; GPX, superoxide dismutase; SOD, catalase; CAT) and lipid peroxidation (malondialdehyde; MDA) were evaluated in frozen-thawed dog sperm. When the results were evaluated statistically, the progressive motility, VCL, and VAP kinematic parameters in the SeNP1 group were significantly higher than the control group after thawing (p < .05). The highest ratio of plasma membrane integrity and viable spermatozoa was observed in the SeNP1 group, but there was no statistical difference found between the groups (p > .05). Although the ratio of total morphological abnormality was observed to be lower in all groups to which different selenium forms were added, compared to the control group, no statistical difference was found. Spermatozoa tail abnormality was significantly lower in the SeNP1 group than in the control and SS2 group (p < .05). The lowest ratio of fragmented DNA was observed in the SeNP1 group, but there was no statistical difference was found between the groups (p > .05). Although there was no statistical difference between the groups in the evaluation of sperm antioxidant profile, the highest GPX, SOD and CAT values and the lowest lipid peroxidation values were obtained in the SeNP1 group. As a result, it was determined that 1 μg/mL dose of SeNP added to the tris-based extender in dog semen was beneficial on spermatological parameters, especially sperm kinematic properties and sperm morphology, and therefore nanoparticle selenium, a nanotechnology product, made a significant contribution to the freezing of dog semen.
Collapse
Affiliation(s)
- Burcu Esin
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| | - Cumali Kaya
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| | - Melih Akar
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mesut Çevik
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
4
|
Osman R, Lee S, Almubarak A, Han JI, Yu IJ, Jeon Y. Antioxidant Effects of Myo-Inositol Improve the Function and Fertility of Cryopreserved Boar Semen. Antioxidants (Basel) 2023; 12:1673. [PMID: 37759976 PMCID: PMC10525680 DOI: 10.3390/antiox12091673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
During cryopreservation, sperm undergoes structural and molecular changes such as ice crystal formation, DNA fragmentation, and reactive oxygen species (ROS) production, leading to decreased sperm quality after thawing. Antioxidants play a crucial role in preventing these damages, both in vivo and in vitro. One potent antioxidant is myo-inositol, known for its protective effects on sperm against ROS. This study aimed to investigate the protective effect of myo-inositol on cryopreserved boar semen. The semen was diluted, cooled, and cryopreserved using a BF5 extender. It was then divided into five groups: control and different concentrations of myo-inositol (0.5, 1, 1.5, and 2 mg/mL). The post-thaw evaluation included assessments of motility, viability, acrosome integrity, mitochondrial membrane potential (MMP), caspase activity, gene expression, ROS levels, apoptosis, and IVF with treated semen. Results showed that myo-inositol at 0.5 mg/mL improved motility, acrosome integrity, and fertilization ability. It also reduced the expression of pro-apoptotic genes and increased SMCP expression. Lower concentrations also demonstrated improved viability and reduced apoptosis and ROS levels. In conclusion, myo-inositol treatment during cryopreservation improved sperm quality, reduced apoptosis and ROS levels, and enhanced fertility rates in boar semen.
Collapse
Affiliation(s)
- Rana Osman
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Seongju Lee
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North 11111, Sudan
| | - Jae-Ik Han
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| |
Collapse
|
5
|
Jawad A, Oh D, Choi H, Kim M, Cai L, Lee J, Hyun SH. Myo-inositol improves the viability of boar sperm during liquid storage. Front Vet Sci 2023; 10:1150984. [PMID: 37565079 PMCID: PMC10411888 DOI: 10.3389/fvets.2023.1150984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Liquid preservation of boar semen is a highly preferred method for semen preservation in pig production. However, oxidative stress is the main challenge during the liquid preservation of boar semen in a time dependent manner. Therefore, supplementation of sperm with antioxidants during storage to protect them from oxidative stress has been the focus of recent research. Myo-inositol (Myo-Ins), the most active form of inositol, which belongs to the vitamin (Vit.) (B1 group has been shown to improve semen quality) (1). This study aimed to investigate whether Myo-Ins supplementation protects boar sperm in liquid preservation against oxidative stress and determine the appropriate concentration of Myo-Ins to be used in this regard. Methods Boar sperm was diluted with a semen extender with different concentrations of Myo-Ins (2, 4, 6, and 8 mg/mL) depending on the previous studies (1, 24). Sperm motility and viability, plasma membrane and acrosome integrity, mitochondrial membrane potential (MMP), semen time survival, and gene expression were measured and analyzed on days 0, 1, 3, 5, and 7 for the different samples. Results Different concentrations of Myo-Ins exerted different protective effects on the boar sperm quality. The addition of 2 mg/mL Myo-Ins resulted in higher sperm motility and viability, plasma membrane and acrosome integrity, MMP, and effective survival time. Investigation of mRNA expression patterns via qRT-PCR suggested that the 2 mg/mL Myo-Ins sample had increased expression of antioxidative genes. Conclusion The addition of Myo-Ins to semen extender improved the boar semen quality by decreasing the effects of oxidative stress during liquid preservation at 17°C. Additionally, 2 mg/mL is the optimum inclusion concentration of Myo-Ins for semen preservation.
Collapse
Affiliation(s)
- Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
6
|
Qamar AY, Naveed MI, Raza S, Fang X, Roy PK, Bang S, Tanga BM, Saadeldin IM, Lee S, Cho J. Role of antioxidants in fertility preservation of sperm - A narrative review. Anim Biosci 2023; 36:385-403. [PMID: 36397685 PMCID: PMC9996255 DOI: 10.5713/ab.22.0325] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Male fertility is affected by multiple endogenous stressors, including reactive oxygen species (ROS), which greatly deteriorate the fertility. However, physiological levels of ROS are required by sperm for the proper accomplishment of different cellular functions including proliferation, maturation, capacitation, acrosomal reaction, and fertilization. Excessive ROS production creates an imbalance between ROS production and neutralization resulting in oxidative stress (OS). OS causes male infertility by impairing sperm functions including reduced motility, deoxyribonucleic acid damage, morphological defects, and enhanced apoptosis. Several in-vivo and in-vitro studies have reported improvement in quality-related parameters of sperm following the use of different natural and synthetic antioxidants. In this review, we focus on the causes of OS, ROS production sources, mechanisms responsible for sperm damage, and the role of antioxidants in preserving sperm fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ilyas Naveed
- College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sanan Raza
- College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Pantu Kumar Roy
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Daejeon Wildlife Rescue Center, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
7
|
Divar MR, Mogheiseh A, Mohammadi F, Mavalizadeh L. Effects of extender filtration and egg yolk concentration on canine semen cryopreservation. Reprod Domest Anim 2023; 58:272-287. [PMID: 36264284 DOI: 10.1111/rda.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
Abstract
The semen cooling and freezing extenders commonly contain the chicken egg yolk (EY) as the main sperm cryoprotectant. Besides its advantages, the EY has large lipoprotein granules that cause several physical and biological interferences. The previous studies have proposed several methods to resolve the problems with the EY-based semen extenders, including mechanical agitation, EY fractionation, replacing the EY with purified EY LDL, and ultrasonication. In the current research, we aimed to evaluate the syringe filtration (220 nm) of an EY-based canine semen freezing extender as a simple and cheap method to remove the EY granules. We also studied the possibility of re-aggregation of EY granules after cooling, freeze/thawing, and lyophilization/rehydration of the filtered extenders. Additionally, we compared the effects of the filtration on lipid profile, turbidity, EY particle size distribution, and osmolality of the EY-based extenders. Next, we examined the effects of filtered extenders containing different levels of EY (5%, 10%, 15%, 20%, and 25%) versus the control extender (20% EY, unfiltered) on post-thaw sperm quality traits. We collected the semen samples from seven clinically healthy mixed-breed adult dogs and pooled them for sperm freezing procedures. Samplings were repeated at least five times, independently. Our results indicated that the syringe filtration could remove the large EY particles and reduce the extender turbidity without affecting the lipid profile of the whole extender solution. The filtered extender supplemented with 25% (v/v) EY led to the best post-thaw canine spermatozoa quality markers. The frozen-thawed spermatozoa evaluations included motility parameters (computer-assisted semen analysis system), membrane and acrosome integrity (hypo-osmotic swelling test, chlortetracycline binding assay), DNA fragmentation (sperm chromatin dispersion assay), membrane lipid peroxidation (MDA levels), apoptosis (Annexin V/propidium iodide assay), and fertility-associated sperm mRNA transcript abundance (protamine 2 and 3). In conclusion, the syringe filtration of the EY-based semen extenders was a simple and cheap method that could effectively remove large EY lipoprotein granules and possibly prevent EY-origin bacterial contamination of the final extender solution. The EY at 25% (v/v) concentration in the filtered extenders resulted in the highest canine spermatozoa cryo-tolerance.
Collapse
Affiliation(s)
- Mohammad Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | |
Collapse
|
8
|
Azizi M, Cheraghi E, Soleimani Mehranjani M. Effect of Myo-inositol on sperm quality and biochemical factors in cryopreserved semen of patients with Asthenospermia. Andrologia 2022; 54:e14528. [PMID: 35841196 DOI: 10.1111/and.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, the influence of myoinositol (MYO) as an antioxidant on the inhibition of the negative impacts of cryopreservation on sperm quality in men with Asthenospermia was investigated. In this prospective study, each semen sample from 25 cases was separated into three groups: Fresh, Control (with freezing medium), Myoinositol (2 mg/ml). According to the World Health Organization criteria (WHO) (2010), total motility, progressive sperm motility, viability, normal morphology, and DNA integrity were assessed. In addition, the hypo-osmotic swelling (HOS) test and mitochondrial membrane potential (MMP) were used. Total antioxidant capacity (TAC), malondialdehyde (MDA), and antioxidant enzyme activity were determined by the ELISA method. In contrast to the fresh samples, lipid peroxidation, DNA integrity damage, DNA fragmentation, HOST, and MMP had significant enhancement in the control samples. Sperm quality was significantly decreased (p < 0.05). Mean percentage viability, normal morphology, total motility, progressive motility, and DNA integrity were significantly enhanced in the MYO group in comparison to the control group (p < 0.05). The MDA and TAC levels and DNA damage in the MYO group were significantly lower compared to the control group (p < 0.05). The findings confirm that sperm quality in patients with Asthenospermia is improved by the administration of 2 mg/ml of myoinositol together with the freezing medium after sperm cryopreservation.
Collapse
Affiliation(s)
- Maryam Azizi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran
| | | |
Collapse
|
9
|
Tanhaei Vash N, Nadri P, Karimi A. Synergistic effects of myo‐inositol and melatonin on cryopreservation of goat spermatozoa. Reprod Domest Anim 2022; 57:876-885. [DOI: 10.1111/rda.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Nima Tanhaei Vash
- Department of Biology, Cellular and Developmental Biology Payame Noor University Isfahan Iran
- Department of Animal Biotechnology Reproductive Biomedicine Research Center Royan Institute for Biotechnology ACECR Isfahan Iran
| | - Parisa Nadri
- Department of Animal Science College of Agriculture Isfahan University of Technology Isfahan 84156‐83111 Iran
| | - Akbar Karimi
- Department of Biology, Cellular and Developmental Biology Payame Noor University Isfahan Iran
- Department of Biology Payame Noor University Tehran Iran
| |
Collapse
|
10
|
Pardede BP, Maulana T, Kaiin EM, Agil M, Karja NWK, Sumantri C, Supriatna I. The potential of sperm bovine protamine as a protein marker of semen production and quality at the National Artificial Insemination Center of Indonesia. Vet World 2021; 14:2473-2481. [PMID: 34840468 PMCID: PMC8613797 DOI: 10.14202/vetworld.2021.2473-2481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Protamine (PRM) is the major protein in the sperm nucleus and plays an essential role in its normal function. Moreover, PRM has great potential as a protein marker of semen production and quality. This study aimed to assess the potential of sperm bovine PRM as a protein marker of semen production and quality in bulls at the National Artificial Insemination (AI) Center of Indonesia. Materials and Methods: The semen production capacity of each bull was collected from frozen semen production data at the Singosari AI Center for 6 months, and was then divided into two groups (high and low). A total of 440 frozen semen straws from six Limousin (LIM), six Friesian Holstein (FH), six Peranakan Ongole (PO), and four Aceh bulls aged 4-5 years were used in the study. The frozen semen was used to measure the concentration of PRM1, PRM2, and PRM3 using the enzyme immunoassay method. The frozen semen was also used to assess the quality of the semen, including progressive motility (PM) through computer-assisted semen analysis, sperm viability through eosin–nigrosin analysis, and the DNA fragmentation index through Acridine Orange staining. Results: PRM1 was significantly higher in all bull breeds included in the study (p<0.00), followed by PRM2 (p<0.00) and PRM3 (p<0.00). PRM1 significantly affected semen production in LIM, FH, PO, and Aceh bulls (p<0.05). Moreover, PRM2 significantly affected semen production only in FH and Aceh bulls (p<0.05), whereas PRM3 affected this parameter in PO and Aceh bulls exclusively (p<0.05). Consistently and significantly, PRM1 was positively correlated with the PM and viability of sperm and negatively associated with its DNA fragmentation in LIM, FH, PO, and Aceh bulls (p<0.05; p<0.01). The correlation analysis between PRM2 and PRM3 and semen quality parameters varied across all bull breeds; some were positively and negatively correlated (p<0.05; p<0.01), and some were not correlated at all. Conclusion: PRM1 has excellent potential as a protein marker of semen production and quality in bulls at the National AI Center of Indonesia.
Collapse
Affiliation(s)
- Berlin Pandapotan Pardede
- Reproductive Biology Study Program, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Tulus Maulana
- Animal Reproduction Biotechnology Research Group, Research Center for Biotechnology, Indonesian Institute of Sciences, West Java, Indonesia
| | - Ekayanti Mulyawati Kaiin
- Animal Reproduction Biotechnology Research Group, Research Center for Biotechnology, Indonesian Institute of Sciences, West Java, Indonesia
| | - Muhammad Agil
- Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Ni Wayan Kurniani Karja
- Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Iman Supriatna
- Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| |
Collapse
|
11
|
Keyser S, van der Horst G, Maree L. Progesterone, Myo-Inositol, Dopamine and Prolactin Present in Follicular Fluid Have Differential Effects on Sperm Motility Subpopulations. Life (Basel) 2021; 11:1250. [PMID: 34833125 PMCID: PMC8617736 DOI: 10.3390/life11111250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Considering the challenges surrounding causative factors in male infertility, rather than relying on standard semen analysis, the assessment of sperm subpopulations and functional characteristics essential for fertilization is paramount. Furthermore, the diagnostic value of sperm interactions with biological components in the female reproductive tract may improve our understanding of subfertility and provide applications in assisted reproductive techniques. We investigated the response of two sperm motility subpopulations (mimicking the functionality of potentially fertile and sub-fertile semen samples) to biological substances present in the female reproductive tract. Donor semen was separated via double density gradient centrifugation, isolated into high (HM) and low motile (LM) sperm subpopulations and incubated in human tubal fluid (HTF), capacitating HTF, HD-C medium, progesterone, myo-inositol, dopamine and prolactin. Treated subpopulations were evaluated for vitality, motility percentages and kinematic parameters, hyperactivation, positive reactive oxygen species (ROS), intact mitochondrial membrane potential (MMP) and acrosome reaction (AR). While all media had a significantly positive effect on the LM subpopulation, dopamine appeared to significantly improve both subpopulations' functional characteristics. HD-C, progesterone and myo-inositol resulted in increased motility, kinematic and hyperactivation parameters, whereas prolactin and myo-inositol improved the LM subpopulations' MMP intactness and reduced ROS. Furthermore, progesterone, myo-inositol and dopamine improved the HM subpopulations' motility parameters and AR. Our results suggest that treatment of sub-fertile semen samples with biological substances present in follicular fluid might assist the development of new strategies for IVF treatment.
Collapse
Affiliation(s)
| | | | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (S.K.); (G.v.d.H.)
| |
Collapse
|
12
|
Effects of Inositol Supplementation in Sperm Extender on the Quality of Cryopreserved Mesopotamian Catfish ( Silurus triostegus, H. 1843) Sperm. Animals (Basel) 2021; 11:ani11113029. [PMID: 34827763 PMCID: PMC8614312 DOI: 10.3390/ani11113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, the effects of supplemented inositol on sperm extenders were examined on the spermatozoa motility rate and duration, total antioxidant and oxidant status, apoptotic spermatozoa and DNA damage, during the sperm post-thaw process of Mesopotamian Catfish (Silurus triostegus, H. 1843). The semen was frozen in diluents containing different inositol concentrations (5, 10, 20 and 40 mg). Increasing levels of inositol linearly improved the spermatozoa motility rate and duration significantly (p < 0.05). MDA and TOS were linearly decreased, however, TAS and GSH linearly increased (p < 0.05). The increasing inositol levels resulted in a linear and quadratic decrease in DNA damage in the comet assay, 8-hydroxydeoxyguanosine and the determined percentage of apoptotic spermatozoa (p < 0.05). These results suggest that there are many positive effects of the use of supplemental inositol on enhancing sperm cryopreservation efficiency in Silurus triostegus.
Collapse
|
13
|
Amstislavsky SY, Mokrousova VI, Okotrub SV, Brusentsev EY, Naprimerov VA. Application of the Cryobank Concept to Wild and Endangered Carnivora Species. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Mohammadi A, Asadpour R, Tayefi-Nasrabadi H, Rahbar M, Joozani RJ. Evaluation of Microscopic, Flow Cytometric, and Oxidative Parameters of the Frozen-Thawed Bull Sperm in a Freezing Extender Containing Myo-Inositol. Biopreserv Biobank 2021; 20:176-184. [PMID: 34388025 DOI: 10.1089/bio.2021.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: This research was conducted to assess the effect of myo-inositol (MYO) in the freezing extender on the semen quality and oxidative stress parameters of frozen-thawed bull sperm. Materials and Methods: Semen samples were obtained from four bulls (n = 24, six ejaculates per bull), twice a week, and diluted into four equal aliquots in freezing extenders containing different concentrations of MYO (0, 2, 3, and 4 mg/mL). After a freezing/thawing process, velocity parameters, plasma membrane integrity, apoptosis status, malondialdehyde level, and oxidative stress parameters were assessed. Results: Supplementation of freezing extender with 3 mg/mL MYO resulted in higher rapid motility (62.22% ± 2.63%), progressive motility (77.45% ± 2.65%), viability (78% ± 0.91%), plasma membrane integrity (86 ± 0.85), catalase (20.03 ± 0.39 U/mL) activity, and lower significance of lipid peroxidation (3.60 ± 0.15 nmol/dL) than those of the control group (p < 0.05). A significantly lower percentage of normal morphology and intact acrosomes were observed for frozen-thawed semen in the extender supplemented with 4 mg/mL MYO than those of the control group (p < 0.05). Freezing of the sperm in the extender containing 3 mg/mL of MYO leads to a higher percentage of live cells (38.3 ± 2.76). Beat-cross-frequency, amplitude of lateral head displacement, linearity, total antioxidant capacity, total peroxidase activity, early apoptotic status, and superoxide dismutase activities were not affected by MYO levels in the extenders (p > 0.05). Conclusion: The findings of this study suggest that the supplementation of the freezing extender with 3 mg/mL MYO resulted in a higher quality of frozen-thawed bull sperm.
Collapse
Affiliation(s)
- Armin Mohammadi
- Graduated from Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science and Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Tayefi-Nasrabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science and Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi-Jafari Joozani
- Department of Clinical Science and Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Mahiddine FY, Kim MJ. Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals (Basel) 2021; 11:1930. [PMID: 34203537 PMCID: PMC8300182 DOI: 10.3390/ani11071930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Sperm cryopreservation is a widely used assisted reproductive technology for canine species. The long-term storage of dog sperm is effective for the breeding of dogs living far apart, scheduling the time of artificial insemination that suits the female, and preventing diseases of the reproductive tract. However, spermatozoa functions are impaired during the freeze-thaw processes, which may decrease reproductive performance. Numerous attempts have been made to restore such impairments, including the use of cryoprotectants to prevent the damage caused by ice crystal formation, and supplementation of antioxidants to reduce reactive oxygen species generation due to osmotic stress during the procedure. Egg yolk derivatives, antioxidants, and, more recently, mesenchymal stem cells (MSCs) and their derivatives have been proposed in this research field. This review article will summarize the current literature available on the topic.
Collapse
Affiliation(s)
| | - Min-Jung Kim
- Department of Research and Development, Mjbiogen Corp., Gwangnaru-ro 144, Seoul 14788, Korea;
| |
Collapse
|
16
|
Tanga BM, Qamar AY, Raza S, Bang S, Fang X, Yoon K, Cho J. Semen evaluation: methodological advancements in sperm quality-specific fertility assessment - A review. Anim Biosci 2021; 34:1253-1270. [PMID: 33902175 PMCID: PMC8255896 DOI: 10.5713/ab.21.0072] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 11/27/2022] Open
Abstract
Assessment of male fertility is based on the evaluation of sperm. Semen evaluation measures various sperm quality parameters as fertility indicators. However, semen evaluation has limitations, and it requires the advancement and application of strict quality control methods to interpret the results. This article reviews the recent advances in evaluating various sperm-specific quality characteristics and methodologies, with the help of different assays to assess sperm-fertility status. Sperm evaluation methods that include conventional microscopic methods, computer-assisted sperm analyzers (CASA), and flow cytometric analysis, provide precise information related to sperm morphology and function. Moreover, profiling fertility-related biomarkers in sperm or seminal plasma can be helpful in predicting fertility. Identification of different sperm proteins and diagnosis of DNA damage has positively contributed to the existing pool of knowledge about sperm physiology and molecular anomalies associated with different infertility issues in males. Advances in methods and sperm-specific evaluation has subsequently resulted in a better understanding of sperm biology that has improved the diagnosis and clinical management of male factor infertility. Accurate sperm evaluation is of paramount importance in the application of artificial insemination and assisted reproductive technology. However, no single test can precisely determine fertility; the selection of an appropriate test or a set of tests and parameters is required to accurately determine the fertility of specific animal species. Therefore, a need to further calibrate the CASA and advance the gene expression tests is recommended for faster and field-level applications.
Collapse
Affiliation(s)
- Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Faculty of Veterinary Medicine, Hawassa University, 05, Hawassa, Ethiopia
| | - Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sanan Raza
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, PakistanDepartment of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09016, Turkey
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Kiyoung Yoon
- Department of Companion Animal, Shingu College, Seongnam 13174, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
17
|
Ciani F, Maruccio L, Cocchia N, d’Angelo D, Carotenuto D, Avallone L, Namagerdi AA, Tafuri S. Antioxidants in assisted reproductive technologies: An overview on dog, cat, and horse. J Adv Vet Anim Res 2021; 8:173-184. [PMID: 33860028 PMCID: PMC8043350 DOI: 10.5455/javar.2021.h500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023] Open
Abstract
Assisted reproductive technologies (ARTs) are widely used as a tool to improve reproductive performance in both humans and animals. In particular, in the veterinary field, ARTs are used to improve animal genetics, recover endangered animals, and produce offspring in the event of subfertility or infertility in males or females. However, the use of ARTs did not improve the fertilization rate in some animals due to various factors such as the difficulty in reproducing an anatomical and humoral substrate typical of the natural condition or due to the increase in catabolites and their difficult elimination. The in vitro environment allows the production and increase in the concentration of substances, including reactive oxygen species (ROS), which could be harmful to gametes. If produced in high concentration, the ROS becomes deleterious, both in vitro and in vivo systems. It has been seen that the use of antioxidants can help neutralize or counteract the production of ROS. The present study aims to report the latest findings regarding the use of antioxidants in ARTs of some domestic species, such as dogs, cats, and horses, compared to other animal species, such as cattle, in which ARTs have instead developed more widely.
Collapse
Affiliation(s)
- Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Qamar AY, Fang X, Bang S, Shin ST, Cho J. The effect of astaxanthin supplementation on the post-thaw quality of dog semen. Reprod Domest Anim 2020; 55:1163-1171. [PMID: 32602977 DOI: 10.1111/rda.13758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 01/21/2023]
Abstract
Astaxanthin is a member of the carotenoid family well known for its anti-cancer, anti-diabetic, anti-inflammatory and antioxidant nature. This study was designed to investigate the effects of astaxanthin supplementation of the extender (buffer 2) on post-thaw dog semen quality. Semen from four healthy dogs was collected by digital manipulation twice a week. The ejaculates were pooled, washed, divided into four equal aliquots, diluted with the extender supplemented with different concentrations of astaxanthin (0, 0.5, 1 and 2 µM) and cryopreserved. The results showed that 1 µM astaxanthin was the optimum concentration that led to significantly higher (p < .05) post-thaw motility, kinematic parameters and viability than the other groups. In comparison with the control group, sperm samples supplemented with 1 µM astaxanthin showed significantly higher (p < .05) sperm counts with intact membranes (55.7 ± 0.6% vs. 51.3 ± 0.9%), intact acrosome (58.4 ± 0.7% vs. 53.5 ± 0.6%), active mitochondria (54.9 ± 0.5% vs. 42.6 ± 0.6%) and normal chromatin (67.6 ± 0.9% vs. 61.7 ± 0.6%). Furthermore, astaxanthin-supplemented samples showed significantly lower expression levels (p < .05) of pro-apoptotic (BAX), oxidative induced DNA damage repair (OGG1), oxidative stress-related (ROMO1) genes and higher expression levels of anti-apoptotic (BCL2), and sperm acrosome-associated (SPACA3) genes compared to the control. Thus, supplementation of 1 µM astaxanthin in semen extender results in improved freeze-thaw sperm quality of the dog.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-campus University of Veterinary and Animal Sciences, Lahore, Jhang, Pakistan
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Sang Tae Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
19
|
Qamar AY, Fang X, Bang S, Kim MJ, Cho J. Effects of kinetin supplementation on the post-thaw motility, viability, and structural integrity of dog sperm. Cryobiology 2020; 95:90-96. [PMID: 32504620 DOI: 10.1016/j.cryobiol.2020.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 01/22/2023]
Abstract
Oxidative stress is one of the major issues associated with cryopreservation because it causes a marked reduction in the post-thaw quality of semen. This study investigated the ability of kinetin to preserve the structural and functional integrity of dog sperm during cryopreservation. Pooled ejaculates were divided into 5 equal aliquots, diluted with buffer 2 supplemented with different concentrations of kinetin (0, 25, 50, 100, and 200 μM), and finally cryopreserved. The optimal concentration of kinetin was 50 μM based on the significantly improved (P < 0.05) motion characteristics and viability of post-thaw sperm samples. Moreover, kinetin-supplemented samples exhibited significantly higher (P < 0.05) sperm counts with the intact plasma membrane, normal acrosomes, mitochondria, and chromatin than control. The beneficial effects of kinetin were also reflected by the significant increase in the expression levels of anti-apoptotic (B-cell lymphoma, BCL2) and protamine-related genes (protamine 2, PRM2; protamine 3, PRM3), and decrease in the expression of pro-apoptotic (BCL2-associated X, BAX) and mitochondrial reactive oxygen species-modulating genes (ROS modulator 1, ROMO1) in kinetin-supplemented sperm samples than in control. The results demonstrated that supplementation of buffer 2 with 50 μM kinetin is ideal for reducing the magnitude of oxidative damage during semen cryoprocessing and improving the post-thaw quality of dog semen.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|