1
|
Janezic EM, Doan A, Mai E, Bravo DD, Wang J, Kim HS, Spiess C, Bewley K, ElSohly A, Liang WC, Koerber JT, Richalet P, Vanhove M, Comps-Agrar L. A novel, label-free, pre-equilibrium assay to determine the association and dissociation rate constants of therapeutic antibodies on living cells. Br J Pharmacol 2024; 181:3836-3855. [PMID: 37783572 DOI: 10.1111/bph.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon, koff and KD) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon, koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff, but not KD, correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.
Collapse
Affiliation(s)
| | | | - Elaine Mai
- Genentech, Inc, South San Francisco, California, USA
| | | | - Jianyong Wang
- Genentech, Inc, South San Francisco, California, USA
| | - Hok Seon Kim
- Genentech, Inc, South San Francisco, California, USA
| | | | | | - Adel ElSohly
- Genentech, Inc, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
2
|
Vergara I, Herrera-Noreña JS, López-Pacheco C, Soldevila G, Ortega E. Flow cytometry: A powerful analytical technique for characterizing the biological function of biotherapeutics and biosimilars. J Pharm Biomed Anal 2023; 235:115680. [PMID: 37634360 DOI: 10.1016/j.jpba.2023.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Biotherapeutics are complex molecules with therapeutic activity produced through biotechnology and/or genetic engineering. These medicines have clinical applications in diagnostic procedures and therapies for many disorders, including cancer, autoimmunity, and chronic degenerative diseases. Most biotherapeutics are expensive and sometimes unaffordable for low-income patients suffering from cancer or chronic illness. Biosimilars emerged in the 2000 s after patents of many innovative biotherapeutic products expired. The Biosimilar market is growing fast and demands reliable technologies for analyzing the physicochemical properties and bioactivity of products. A big challenge for biosimilar development is to prove comparable bioactivity, safety, efficacy, and toxicity profile as the innovator product. Bioactivity assessment can utilize different analytical techniques such as ELISA, flow cytometry, and surface plasmon resonance. Flow cytometry is a versatile analytical tool that can be used for the development of quantitative, reproducible, and accurate protocols suitable for routine evaluation of bioactivity in-vitro. Nevertheless, flow cytometry has been very scarcely used in comparability evaluation between biosimilar versus an originator product. Here, we review potential applications of flow cytometry to carry out functional bioassays of biotherapeutics or biosimilars.
Collapse
Affiliation(s)
- Irene Vergara
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Juan Sebastian Herrera-Noreña
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cynthia López-Pacheco
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Gurel B, Berksoz M, Capkin E, Parlar A, Pala MC, Ozkan A, Capan Y, Daglikoca DE, Yuce M. Structural and Functional Analysis of CEX Fractions Collected from a Novel Avastin® Biosimilar Candidate and Its Innovator: A Comparative Study. Pharmaceutics 2022; 14:pharmaceutics14081571. [PMID: 36015197 PMCID: PMC9415858 DOI: 10.3390/pharmaceutics14081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Avastin® is a humanized recombinant monoclonal antibody used to treat cancer by targeting VEGF-A to inhibit angiogenesis. SIMAB054, an Avastin® biosimilar candidate developed in this study, showed a different charge variant profile than its innovator. Thus, it is fractionated into acidic, main, and basic isoforms and collected physically by Cation Exchange Chromatography (CEX) for a comprehensive structural and functional analysis. The innovator product, fractionated into the same species and collected by the same method, is used as a reference for comparative analysis. Ultra-Performance Liquid Chromatography (UPLC) ESI-QToF was used to analyze the modifications leading to charge heterogeneities at intact protein and peptide levels. The C-terminal lysine clipping and glycosylation profiles of the samples were monitored by intact mAb analysis. The post-translational modifications, including oxidation, deamidation, and N-terminal pyroglutamic acid formation, were determined by peptide mapping analysis in the selected signal peptides. The relative binding affinities of the fractionated charge isoforms against the antigen, VEGF-A, and the neonatal receptor, FcRn, were revealed by Surface Plasmon Resonance (SPR) studies. The results show that all CEX fractions from the innovator product and the SIMAB054 shared the same structural variants, albeit in different ratios. Common glycoforms and post-translational modifications were the same, but at different percentages for some samples. The dissimilarities were mostly originating from the presence of extra C-term Lysin residues, which are prone to enzymatic degradation in the body, and thus they were previously assessed as clinically irrelevant. Another critical finding was the presence of different glyco proteoforms in different charge species, such as increased galactosylation in the acidic and afucosylation in the basic species. SPR characterization of the isolated charge variants further confirmed that basic species found in the CEX analyses of the biosimilar candidate were also present in the innovator product, although at lower amounts. The charge variants’ in vitro antigen- and neonatal receptor-binding activities varied amongst the samples, which could be further investigated in vivo with a larger sample set to reveal the impact on the pharmacokinetics of drug candidates. Minor structural differences may explain antigen-binding differences in the isolated charge variants, which is a key parameter in a comparability exercise. Consequently, such a biosimilar candidate may not comply with high regulatory standards unless the binding differences observed are justified and demonstrated not to have any clinical impact.
Collapse
Affiliation(s)
- Busra Gurel
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
| | - Melike Berksoz
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Eda Capkin
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Meltem Corbacioglu Pala
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Aylin Ozkan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Yılmaz Capan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Duygu Emine Daglikoca
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Correspondence: (D.E.D.); (M.Y.)
| | - Meral Yuce
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (D.E.D.); (M.Y.)
| |
Collapse
|
4
|
Optimized Methods for Analytical and Functional Comparison of Biosimilar mAb Drugs: A Case Study for Avastin, Mvasi, and Zirabev. Sci Pharm 2022. [DOI: 10.3390/scipharm90020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bevacizumab is a humanized therapeutic monoclonal antibody used to reduce angiogenesis, a hallmark of cancer, by binding to VEGF-A. Many pharmaceutical companies have developed biosimilars of Bevacizumab in the last decade. The official reports provided by the FDA and EMA summarize the analytical performance of biosimilars as compared to the originators without giving detailed analytical procedures. In the current study, several key methods were optimized and reported for analytical and functional comparison of bevacizumab originators (Avastin, Altuzan) and approved commercial biosimilars (Zirabev and Mvasi). This case study presents a comparative analysis of a set of biosimilars under optimized analytical conditions for the first time in the literature. The chemical structure of all products was analyzed at intact protein and peptide levels by high-resolution mass spectrometry; the major glycoforms and posttranslational modifications, including oxidation, deamidation, N-terminal PyroGlu addition, and C-terminal Lys clipping, were compared. The SPR technique was used to reveal antigen and some receptor binding kinetics of all products, and the ELISA technique was used for C1q binding affinity analysis. Finally, the inhibition performance of the samples was evaluated by an MTS-based proliferation assay in vitro. Major glycoforms were similar, with minor differences among the samples. Posttranslational modifications, except C-terminal Lys, were determined similarly, while unclipped Lys percentage was higher in Zirabev. The binding kinetics for VEGF, FcRn, FcγRIa, and C1q were similar or in the value range of originators. The anti-proliferative effect of Zirabev was slightly higher than the originators and Mvasi. The analysis of biosimilars under the same conditions could provide a new aspect to the literature in terms of the applied analytical techniques. Further studies in this field would be helpful to better understand the inter-comparability of the biosimilars.
Collapse
|
5
|
Wang X, Phan MM, Sun Y, Koerber JT, Ho H, Chen Y, Yang J. Development of an SPR-based binding assay for characterization of anti-CD20 antibodies to CD20 expressed on extracellular vesicles. Anal Biochem 2022; 646:114635. [DOI: 10.1016/j.ab.2022.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/01/2022]
|