1
|
Amr RM, Bishr AS, Saad BT, Alshahrani MY, Aboshanab KM, Hassouna NA. A novel thermostable lytic phage vB_EF_Enf3_CCASU-2024-3 against clinical Enterococcus faecium and Enterococcus faecalis. AMB Express 2025; 15:65. [PMID: 40285822 PMCID: PMC12033158 DOI: 10.1186/s13568-025-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Enterococci, Gram-positive bacteria, have become a major concern in healthcare settings due to their significant virulence and antibiotic resistance. This research focuses on isolating, phenotypic, and genotypic analysis of enterococci-specific lytic phages to be used as potential candidates in combating multidrug-resistant (MDR) Enterococcus clinical isolates. The virulence of Enterococcus isolates was analyzed by testing for gelatinase and biofilm formation. The phage(s) was isolated from a sewage sample, then purified, propagated, and physiochemically analyzed. The phage was examined using transmission electron microscopy, and the whole genome sequence (WGS) was performed. Sixety-five clinical enterococci including, 27 (41.5%), 33 (50.7%) 3 (4.6%), and 2 (3%) E. faecalis, E. faecium, E. avium, and E. durans, respectively were isolated. Linezolid, teicoplanin, chloramphenicol, and vancomycin exhibited the lowest resistance. Twenty-five (38.5%) isolates were both gelatinase- and biofilm-producers. A novel lytic vB_EF_Enf3 phage belonging to Caudoviricetes class, characterized by an icosahedral head with a diameter of 100 ± 5 nm and a tail measuring 70 ± 5 nm in length was isolated. The phage demonstrated good thermal stability, and viability across various pH levels and exhibited a broad- spectrum of activity against E. faecium and E. faecalis. The vB_EF_Enf3 phage (36,202 bp length) harbored 36 open reading frames (ORFs) with a GC content of 34.4% (GenBank accession, PP747318). In conclusion, a novel thermostable lytic bacteriophage vB_EF_Enf3, belonging to class Caudoviricetes, was isolated from sewage showing broad-spectrum potent lytic activity against E. faecium and E. faecalis and maintained stability under various extreme conditions, including temperature, and pH fluctuations.
Collapse
Affiliation(s)
- Rana M Amr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Amr S Bishr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co, Cairo, 11765, Egypt
| | - Mohammad Y Alshahrani
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Bebawy AS, Saad BT, Saad MT, Mosaad GS, Gomaa FAM, Alshahrani MY, Aboshanab KM. Evaluation of the taxonomic classification tools and visualizers for metagenomic analysis using the Oxford nanopore sequence database. J Appl Genet 2025:10.1007/s13353-025-00962-8. [PMID: 40155586 DOI: 10.1007/s13353-025-00962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/02/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
Microbial metagenomic identification is generally attributed to the specificity and type of the bioinformatic tools, including classifiers and visualizers. In this study, the performance of two major classifiers, Centrifuge and Kraken2, and two visualizers (Recentrifuge and Krona) has been thoroughly investigated for their efficiency in the identification of the microorganisms using the Whole-Genome Sequence (WGS) database and four targeted databases including NCBI, Silva, Greengenes, and Ribosomal Database Project (RDP). Two standard DNA metagenomic library replicates, Zymo and Zymo-1, were used as quality control. Results showed that Centrifuge gave a higher percentage of Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica identification than Kraken2. Compared to Recentrifuge, Kraken2 was more accurate in identifying Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, and Cryptococcus neoformans. The results of the rest of the detected microorganisms were generally consistent with the two classifiers. Regarding visualizers, both Recentrifuge and Krona provided similar results regarding the abundance of each microbial species regardless of the classifier used. The differences in results between the two mentioned classifiers may be attributed to the specific algorithms each method uses and the sequencing depth. Centrifuge uses a read mapping approach, while Kraken2 uses a k-mer-based system to classify the sequencing reads into taxonomic groups. In conclusion, both Centrifuge and Kraken2 are effective tools for microbial classification. However, the choice of classifier can influence the accuracy of microbial classification and, therefore, should be made carefully, depending on the desired application, even when the same reference database is used.
Collapse
Affiliation(s)
- Abraam S Bebawy
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt.
| | - Mina T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Gamal S Mosaad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia.
| |
Collapse
|
3
|
Elshamy AA, Kamal SK, Mahmoud MT, Elhasany AM, Shady AA, Mohamed SA, Abd-Elmaaboud HA, El-Awady NE, Mohamed RA, El-Mirghany SA, El-Hady SW, Abd-ElRahman MM, Aboshanab KM. Recent insights on phage therapy against multidrug-resistant Acinetobacter baumannii. AMB Express 2025; 15:44. [PMID: 40072684 PMCID: PMC11904003 DOI: 10.1186/s13568-025-01837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Acinetobacter baumannii is a prevalent clinical pathogen commonly found to be multidrug-resistant (MDR), causing serious to life-threatening infections, particularly hospital-acquired infections with limited therapeutic options. The MDR phenotype developed against this critical pathogen is increasingly developed globally, reaching a pan-drug-resistant phenotype conferring non-susceptibility to all antimicrobials used in its treatment according to the standard guidelines. Therefore, it is critical to develop innovative treatment approaches, such as phage therapy, considering the rise in drug-resistant A. baumannii infections. In this review, we highlight and discuss the up-to-date antimicrobial resistance of A. baumannii, the use of phages, their limitations, and future perspectives in treating A. baumannii infections. In addition, the combination of phages with antimicrobials, preclinical and clinical studies including pharmacokinetics and pharmacodynamics properties have been discussed.
Collapse
Affiliation(s)
- Ann A Elshamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sandra K Kamal
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | - Aya M Elhasany
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Aya A Shady
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | | | - Nour E El-Awady
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Rana A Mohamed
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | | | | | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Salleh MZ, Nik Zuraina NMN, Deris ZZ, Mohamed Z. Current trends in the epidemiology of multidrug-resistant and beta-lactamase-producing Pseudomonas aeruginosa in Asia and Africa: a systematic review and meta-analysis. PeerJ 2025; 13:e18986. [PMID: 40017659 PMCID: PMC11867037 DOI: 10.7717/peerj.18986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Pseudomonas aeruginosa continues to be a significant contributor to high morbidity and mortality rates worldwide, particularly due to its role in severe infections such as hospital-acquired conditions, including ventilator-associated pneumonia and various sepsis syndromes. The global increase in antimicrobial-resistant (AMR) P. aeruginosa strains has made these infections more difficult to treat, by limiting the effective drug options available. This systematic review and meta-analysis aim to provide an updated summary of the prevalence of AMR P. aeruginosa over the past 5 years. A systematic search was performed across three major electronic databases-PubMed, ScienceDirect, and Web of Science-yielding 40 eligible studies published between 2018 and 2023. Using a random-effects model, our meta-analysis estimated that the overall prevalence of P. aeruginosa in Asia and Africa over the past 5 years was 22.9% (95% CI [14.4-31.4]). The prevalence rates for multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa strains were found to be 46.0% (95% CI [37.1-55.0]) and 19.6% (95% CI [4.3-34.9]), respectively. Furthermore, the prevalence rates of extended-spectrum β-lactamase- and metallo-β-lactamase-producing P. aeruginosa were 33.4% (95% CI [23.6-43.2]) and 16.0% (95% CI [9.8-22.3]), respectively. Notably, resistance rates to β-lactams used for treating pseudomonal infections were alarmingly high, with rates between 84.4% and 100.0% for cephalosporins, and over 40% of P. aeruginosa isolates showed resistance to penicillins. Our analysis identified the lowest resistance rates for last-resort antimicrobials, with 0.3% (95% CI [0.0-1.3]) resistance to polymyxin B and 5.8% (95% CI [1.5-10.2]) to colistin/polymyxin E. The low resistance rates to polymyxins suggest that these antibiotics remain effective against MDR P. aeruginosa. However, the findings also highlight the critical public health threat posed by antimicrobial-resistant P. aeruginosa, particularly concerning β-lactam antibiotics. This underscores the need for effective and carefully planned intervention strategies, including the development of new antibiotics to address the growing challenge of resistance. Developing robust antibiotic treatment protocols is essential for better management and control of pseudomonal infections globally. Therefore, continued research and international collaboration is vital to tackle this escalating public health challenge. This study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO), under registration number CRD42023412839.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Nik Mohd Noor Nik Zuraina
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
5
|
Amer AA, Soliman AAF, Alshareef WA, Mandour YM, Abdelrahman MT. Biochemical and biological studies of irradiated and non-irradiated extracts of Solanum aculeastrum Dunal fruit. Sci Rep 2024; 14:24829. [PMID: 39438506 PMCID: PMC11496676 DOI: 10.1038/s41598-024-73531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This study explores the impact of γ-irradiation on ethanolic extracts of Solanum aculeastrum Dunal. The anti-cancer and antimicrobial properties were investigated. The obtained results revealed that total phenol (TP) and total flavonoid (TF) of total ethanol extract (100%) (FTE) were higher than 70% ethanol extract (SE), and these contents increased after gamma radiation with 5 kGy. The results of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Solanum aculeastrum extracts suggested that FTE and 5 kGy-irradiated FTE can be used to control and prevent skin infections caused by MRSA and endocarditis, urinary tract infections, and prostatitis caused by Enterococcus faecalis. The FTE sample irradiated at 5 kGy showed cytotoxicity for A431 and Hct-116 cell lines similar to the control sample and higher than the toxicity revealed by the samples irradiated at 10 kGy. In normal cells (Bj-1), the toxicity was decreased after irradiation (IC50 = 31 μg/ml) compared to the non-irradiated extract (IC50 = 26.1 μg/ml). Molecular docking suggested Sortase A to play a role in chlorogenic acid antibacterial activity towards Staphylococcus aureus. In conclusion, γ-irradiation can be used to enhance the phytoconstituents of Solanum aculeastrum fruit extracts and, consequently, its biological properties.
Collapse
Affiliation(s)
- Asmaa A Amer
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Ahmed A F Soliman
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Walaa A Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mohamad T Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
6
|
Kabir A, Lamichhane B, Habib T, Adams A, El-Sheikh Ali H, Slovis NM, Troedsson MHT, Helmy YA. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond-A Comprehensive Review. Antibiotics (Basel) 2024; 13:713. [PMID: 39200013 PMCID: PMC11350719 DOI: 10.3390/antibiotics13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The equine industry holds substantial economic importance not only in the USA but worldwide. The occurrence of various infectious bacterial diseases in horses can lead to severe health issues, economic losses, and restrictions on horse movement and trade. Effective management and control of these diseases are therefore crucial for the growth and sustainability of the equine industry. While antibiotics constitute the primary treatment strategy for any bacterial infections in horses, developing resistance to clinically important antibiotics poses significant challenges to equine health and welfare. The adverse effects of antimicrobial overuse and the escalating threat of resistance underscore the critical importance of antimicrobial stewardship within the equine industry. There is limited information on the epidemiology of antimicrobial-resistant bacterial infections in horses. In this comprehensive review, we focus on the history and types of antimicrobials used in horses and provide recommendations for combating drug-resistant bacterial infections in horses. This review also highlights the epidemiology of antimicrobial resistance (AMR) in horses, emphasizing the public health significance and transmission dynamics between horses and other animals within a One Health framework. By fostering responsible practices and innovative control measures, we can better help the equine industry combat the pressing threat of AMR and thus safeguard equine as well as public health.
Collapse
Affiliation(s)
- Ajran Kabir
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Bibek Lamichhane
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Tasmia Habib
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Alexis Adams
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Nathan M. Slovis
- McGee Medical Center, Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40511, USA;
| | - Mats H. T. Troedsson
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Yosra A. Helmy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| |
Collapse
|
7
|
Bai Y, Xie C, Zhang Y, Zhang Z, Liu J, Cheng G, Li Y, Wang D, Cui B, Liu Y, Qin X. sRNA expression profile of KPC-2-producing carbapenem-resistant Klebsiella pneumoniae: Functional role of sRNA51. PLoS Pathog 2024; 20:e1012187. [PMID: 38718038 PMCID: PMC11078416 DOI: 10.1371/journal.ppat.1012187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.
Collapse
Affiliation(s)
- Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Guixue Cheng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yan Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Di Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Bing Cui
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Afify FA, Shata AH, Aboelnaga N, Osama D, Elsayed SW, Saif NA, Mouftah SF, Shawky SM, Mohamed AA, Loay O, Elhadidy M. Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. J Genet Eng Biotechnol 2024; 22:100351. [PMID: 38494251 PMCID: PMC10980871 DOI: 10.1016/j.jgeb.2024.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/19/2024]
Abstract
The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, blaNDM and blaOXA-48-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR.
Collapse
Affiliation(s)
- Fatma A Afify
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed H Shata
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Nirmeen Aboelnaga
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Dina Osama
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Salma W Elsayed
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal A Saif
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Shaimaa F Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Sherine M Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed A Mohamed
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Omar Loay
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Pandey S, Doo H, Keum GB, Kim ES, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Lee NR, Oh KK, Lee JH, Kim HB. Antibiotic resistance in livestock, environment and humans: One Health perspective. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:266-278. [PMID: 38628683 PMCID: PMC11016740 DOI: 10.5187/jast.2023.e129] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024]
Abstract
Antibiotic resistance (AR) is a complex, multifaceted global health issue that poses a serious threat to livestock, humans, and the surrounding environment. It entails several elements and numerous potential transmission routes and vehicles that contribute to its development and spread, making it a challenging issue to address. AR is regarded as an One Health issue, as it has been found that livestock, human, and environmental components, all three domains are interconnected, opening up channels for transmission of antibiotic resistant bacteria (ARB). AR has turned out to be a critical problem mainly because of the overuse and misuse of antibiotics, with the anticipation of 10 million annual AR-associated deaths by 2050. The fact that infectious diseases induced by ARB are no longer treatable with antibiotics foreshadows an uncertain future in the context of health care. Hence, the One Health approach should be emphasized to reduce the impact of AR on livestock, humans, and the environment, ensuring the longevity of the efficacy of both current and prospective antibiotics.
Collapse
Affiliation(s)
- Sriniwas Pandey
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Sumin Ryu
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Na Rae Lee
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National
Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| | - Ju-Hoon Lee
- Department of Food Animal Biotechnology,
Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology,
Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul
National University, Seoul 08826, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
10
|
Alkompoz AK, Hamed SM, Zaid ASA, Almangour TA, Al-Agamy MH, Aboshanab KM. Correlation of CRISPR/Cas and Antimicrobial Resistance in Klebsiella pneumoniae Clinical Isolates Recovered from Patients in Egypt Compared to Global Strains. Microorganisms 2023; 11:1948. [PMID: 37630508 PMCID: PMC10459600 DOI: 10.3390/microorganisms11081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The CRISPR/Cas system has been long known to interfere with the acquisition of foreign genetic elements and was recommended as a tool for fighting antimicrobial resistance. The current study aimed to explore the prevalence of the CRISPR/Cas system in Klebsiella pneumoniae isolates recovered from patients in Egypt in comparison to global strains and correlate the CRISPR/Cas to susceptibility to antimicrobial agents. A total of 181 clinical isolates were PCR-screened for cas and selected antimicrobial resistance genes (ARGs). In parallel, 888 complete genome sequences were retrieved from the NCBI database for in silico analysis. CRISPR/Cas was found in 46 (25.4%) isolates, comprising 18.8% type I-E and 6.6% type I-E*. Multidrug resistance (MDR) and extensive drug resistance (XDR) were found in 73.5% and 25.4% of the isolates, respectively. More than 95% of the CRISPR/Cas-bearing isolates were MDR (65.2%) or XDR (32.6%). No significant difference was found in the susceptibility to the tested antimicrobial agents among the CRISPR/Cas-positive and -negative isolates. The same finding was obtained for the majority of the screened ARGs. Among the published genomes, 23.2% carried CRISPR/Cas, with a higher share of I-E* (12.8%). They were confined to specific sequence types (STs), most commonly ST147, ST23, ST15, and ST14. More plasmids and ARGs were carried by the CRISPR/Cas-negative group than others, but their distribution in the two groups was not significantly different. The prevalence of some ARGs, such as blaKPC, blaTEM, and rmtB, was significantly higher among the genomes of the CRISPR/Cas-negative strains. A weak, nonsignificant positive correlation was found between the number of spacers and the number of resistance plasmids and ARGs. In conclusion, the correlation between CRISPR/Cas and susceptibility to antimicrobial agents or bearing resistance plasmids and ARGs was found to be nonsignificant. Plasmid-targeting spacers might not be naturally captured by CRISPR/Cas. Spacer match analysis is recommended to provide a clearer image of the exact behavior of CRISPR/Cas towards resistance plasmids.
Collapse
Affiliation(s)
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12451, Egypt;
| | - Ahmed S. Abu Zaid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
11
|
Dopelt K, Amar A, Yonatan N, Davidovitch N. Knowledge, Attitudes, and Practices Regarding Antibiotic Use and Resistance: A Cross-Sectional Study among Students in Israel. Antibiotics (Basel) 2023; 12:1028. [PMID: 37370347 DOI: 10.3390/antibiotics12061028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is one of the biggest threats to human health, food security, and development. This study aimed to examine the level of knowledge and awareness regarding antibiotic resistance while comparing students from health sciences to students in other disciplines. A cross-sectional study was conducted based on the "antibiotic resistance" questionnaire developed by the World Health Organization. A total of 371 students participated in the study. All respondents had taken antibiotics in the past. A tenth had taken them on their own without a prescription, and 14% had not received an explanation regarding the use of antibiotics. The average for the knowledge questions was 15.49 ± 5.35 (out of 27). Many students mistakenly associated antibiotics with viral diseases. Despite these misconceptions, there was a high level of awareness and understanding regarding the ways to treat antibiotic resistance. Still, the awareness of the severity of antibiotic resistance was not high. Differences were found between the disciplines in general knowledge and the level of awareness and understanding about the ways to treat antibiotic resistance, where health science students had the highest scores, followed by social science students and finally, computer and management students. No differences were found in the perception of the severity of the phenomenon. This information is essential to developing educational interventions to improve knowledge, attitudes, and practices regarding antibiotic use among students, especially those unrelated to the health sciences.
Collapse
Affiliation(s)
- Keren Dopelt
- School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel
| | - Almog Amar
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel
| | - Nickol Yonatan
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel
| | - Nadav Davidovitch
- School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| |
Collapse
|
12
|
Chosidow S, Fantin B, Nicolas I, Mascary JB, Chau F, Bordeau V, Verdier MC, Rocheteau P, Guérin F, Cattoir V, de Lastours V. Synergistic Activity of Pep16, a Promising New Antibacterial Pseudopeptide against Multidrug-Resistant Organisms, in Combination with Colistin against Multidrug-Resistant Escherichia coli, In Vitro and in a Murine Peritonitis Model. Antibiotics (Basel) 2023; 12:antibiotics12010081. [PMID: 36671282 PMCID: PMC9854584 DOI: 10.3390/antibiotics12010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Colistin is a drug of last resort to treat extreme drug-resistant Enterobacterales, but is limited by dose-dependent toxicity and the emergence of resistance. A recently developed antimicrobial pseudopeptide, Pep16, which acts on the cell membrane, may be synergistic with colistin and limit the emergence of resistance. We investigated Pep16 activity against Escherichia coli with varying susceptibility to colistin, in vitro and in a murine peritonitis model. Two isogenic derivatives of E. coli CFT073 (susceptible and resistant to colistin) and 2 clinical isolates (susceptible (B119) and resistant to colistin (Af31)) were used. Pep16 activity, alone and in combination with colistin, was determined in vitro (checkerboard experiments, time-kill curves, and flow cytometry to investigate membrane permeability). Toxicity and pharmacokinetic analyses of subcutaneous Pep16 were performed in mice, followed by the investigation of 10 mg/kg Pep16 + 10 mg/kg colistin (mimicking human concentrations) in a murine peritonitis model. Pep16 alone was inactive (MICs = 32-64 mg/L; no bactericidal effect). A concentration-dependent bactericidal synergy of Pep16 with colistin was evidenced on all strains, confirmed by flow cytometry. In vivo, Pep16 alone was ineffective. When Pep16 and colistin were combined, a significant decrease in bacterial counts in the spleen was evidenced, and the combination prevented the emergence of colistin-resistant mutants, compared to colistin alone. Pep16 synergizes with colistin in vitro, and the combination is more effective than colistin alone in a murine peritonitis by reducing bacterial counts and the emergence of resistance. Pep16 may optimize colistin use, by decreasing the doses needed, while limiting the emergence of colistin-resistant mutants.
Collapse
Affiliation(s)
- Samuel Chosidow
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
| | - Bruno Fantin
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92210 Clichy, France
| | | | - Jean-Baptiste Mascary
- SAS. Olgram, F-56580 Bréhan, France
- Unité Inserm U1230 BRM, Université de Rennes 1, F-35043 Rennes, France
- Laboratoire de Pharmacologie Biologique, CHU Pontchaillou, F-35033 Rennes, France
| | - Françoise Chau
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
| | - Valérie Bordeau
- Unité Inserm U1230 BRM, Université de Rennes 1, F-35043 Rennes, France
| | | | | | - Francois Guérin
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (Laboratoire Associé "Entérocoques"), CHU Pontchaillou, F-35033 Rennes, France
| | - Vincent Cattoir
- Unité Inserm U1230 BRM, Université de Rennes 1, F-35043 Rennes, France
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (Laboratoire Associé "Entérocoques"), CHU Pontchaillou, F-35033 Rennes, France
| | - Victoire de Lastours
- IAME UMR-1137, INSERM, Université de Paris, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92210 Clichy, France
| |
Collapse
|
13
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
14
|
Characterization of Carbapenem-Resistant K. Pneumoniae Isolated from Intensive Care Units of Zagazig University Hospitals. Antibiotics (Basel) 2022; 11:antibiotics11081108. [PMID: 36009977 PMCID: PMC9405146 DOI: 10.3390/antibiotics11081108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/15/2022] Open
Abstract
The advent of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant challenge to public health, as carbapenems are typically employed as a last resort to treat nosocomial infections caused by such organisms, especially in intensive care units (ICUs). This study aims to characterize the CRKP isolated from patients admitted to the Zagazig University Hospitals (ZUHs) ICU in Egypt. About 56.2%, 41.0%, and 32.4% of the isolates indicated the presence of blaNDM, blaOXA-48, and blaKPC, respectively. Carbapenemase-encoding genes were found in many isolates, and blaNDM was the most predominant gene. Nevertheless, this situation has become a heavy burden in developing countries, including Egypt, and is associated with substantial morbidity, mortality, and increased healthcare expenses.
Collapse
|
15
|
Mohamed NM, Zakaria AS, Edward EA. Genomic Characterization of International High-Risk Clone ST410 Escherichia coli Co-Harboring ESBL-Encoding Genes and blaNDM-5 on IncFIA/IncFIB/IncFII/IncQ1 Multireplicon Plasmid and Carrying a Chromosome-Borne blaCMY-2 from Egypt. Antibiotics (Basel) 2022; 11:antibiotics11081031. [PMID: 36009900 PMCID: PMC9405272 DOI: 10.3390/antibiotics11081031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The accelerated dispersion of multidrug-resistant (MDR) Escherichia coli due to the production of extended-spectrum β-lactamases (ESBLs) or AmpC enzymes has been noted in Egypt, presenting a serious treatment challenge. In this study, we investigate the prevalence of ESBLs and AmpC enzymes among 48 E. coli isolates collected from patients with urinary tract infections admitted to a teaching hospital in Alexandria. Phenotypic and genotypic methods of detection are conducted. Isolates producing both enzymes are tested for the mobilization of their genes by a broth mating experiment. Whole genome sequencing (WGS) is performed for isolate EC13655. The results indicate that 80% of the isolates are MDR, among which 52% and 13% were ESBL and AmpC producers, respectively. Conjugation experiments fail to show the mobilization of blaCMY-2 in EC13655, which was chosen for WGS. In silico analysis reveals that the isolate belongs to a ST410-H24Rx high-risk clone. It coharbors the ESBL-encoding genes blaCTX-M-15, blaTEM-1, and blaOXA-1 on an IncFIA/IncFIB/IncFII/IncQ1 multireplicon plasmid. The chromosomal location of blaCMY-2 is detected with a flanking upstream copy of ISEcp1. This chromosomal integration of blaCMY-2 establishes the stable maintenance of the gene and thus, necessitates an imperative local surveillance to reduce further spread of such strains in different clinical settings.
Collapse
|
16
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10. [PMID: 34684258 DOI: 10.3390/pathogens10101310/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 05/20/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
17
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10:pathogens10101310. [PMID: 34684258 PMCID: PMC8541462 DOI: 10.3390/pathogens10101310] [Citation(s) in RCA: 512] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
- Correspondence: ; Tel.: +39-090-221-33-22
| |
Collapse
|
18
|
Co-Existence of Certain ESBLs, MBLs and Plasmid Mediated Quinolone Resistance Genes among MDR E. coli Isolated from Different Clinical Specimens in Egypt. Antibiotics (Basel) 2021; 10:antibiotics10070835. [PMID: 34356756 PMCID: PMC8300665 DOI: 10.3390/antibiotics10070835] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) strains and even pan drug resistant (PDR) strains is alarming. In this study, we studied the resistance pattern of E. coli pathogens recovered from patients with different infections in different hospitals in Minia, Egypt and the co-existence of different resistance determinants. E. coli was the most prevalent among patients suffering from urinary tract infections (62%), while they were the least isolated from eye infections (10%). High prevalence of MDR isolates was found (73%) associated with high ESBLs and MBLs production (89.4% and 64.8%, respectively). blaTEM (80%) and blaNDM (43%) were the most frequent ESBL and MBL, respectively. None of the isolates harbored blaKPC and blaOXA-48 carbapenemase like genes. Also, the fluoroquinolone modifying enzyme gene aac-(6′)-Ib-cr was detected in 25.2% of the isolates. More than one gene was found in 81% of the isolates. Azithromycin was one of the most effective antibiotics against MDR E. coli pathogens. The high MAR index of the isolates and the high prevalence of resistance genes, indicates an important public health concern and high-risk communities where antibiotics are abused.
Collapse
|