1
|
Zhao M, Han X, Fan H, Liang C, Wang H, Zhang X, Zhao S, Guo C, Liu Z, Zhang T. Metabolic Dysfunction-Associated Steatotic Liver Disease Increases the Risk of Severe Infection: A Population-Based Cohort Study. Liver Int 2025; 45:e16136. [PMID: 39422294 DOI: 10.1111/liv.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to various intrahepatic and extrahepatic diseases, but its association with severe infectious disease remains to be investigated. METHODS We analysed data from the Shanghai Suburban Adult Cohort and Biobank, encompassing participants enrolled in 2016 and 2017 with available abdominal ultrasonography data, and followed them up until December 2022 (median follow-up = 5.71 years). We categorised the participants into the MASLD group and those without steatotic liver disease (non-SLD). Multivariable-adjusted Cox regression was used to estimate hazard ratios (HR) for severe infections in patients with MASLD compared to the non-SLD group. Cumulative incidences were calculated while accounting for competing risks (non-infection-related deaths). Mediation analyses were performed to explore the roles of cardiometabolic risk factors in the association between MASLD and severe infections. RESULTS Among the 33 072 eligible participants (mean age 56.37 years; 38.20% male), 11 908 (36.01%) were diagnosed with MASLD at baseline. Severe infections occurred in 912 (7.66%) MASLD patients and 1258 (5.94%) non-SLD. The rate of severe infections per 1000 person-years was higher in MASLD patients (13.58) than in comparators (10.48) (fully adjusted HR 1.18, 95% CI 1.07-1.30). The most frequent infections in MASLD were respiratory (7.25/1000 person-years) and urinary tract infections (2.61/1000 person-years). The 5-year cumulative incidence of severe infections was 6.79% (95% CI 6.36-7.26) in MASLD and 5.08% (95% CI 4.79-5.38) in comparators. Cardiometabolic risk factors, including waist circumference, triglycerides and HbA1C, partially mediate the association between MASLD and severe infections. CONCLUSIONS Patients with MASLD were at significantly higher risk of incident severe infections compared to the non-SLD group. Future studies are needed to elucidate the mechanisms linking MASLD to severe infections.
Collapse
Affiliation(s)
- Ming Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Xinyu Han
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Chenyu Liang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Chengnan Guo
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
2
|
Vrsaljko N, Radmanic Matotek L, Zidovec-Lepej S, Vince A, Papic N. The Impact of Steatotic Liver Disease on Cytokine and Chemokine Kinetics During Sepsis. Int J Mol Sci 2025; 26:2226. [PMID: 40076848 PMCID: PMC11900930 DOI: 10.3390/ijms26052226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been linked with sepsis outcomes. However, the immune mechanisms by which MASLD aggravates sepsis severity are unknown. This prospective cohort study aimed to analyze serum cytokine and chemokine kinetics in patients with MASLD and community-acquired sepsis. Out of the 124 patients, 68 (55%) were diagnosed with MASLD. There were no differences in age, sex, comorbidities, baseline sepsis severity, or etiology between the groups. Serum concentrations of 27 cytokines and chemokines on admission and day 5 of hospitalization were analyzed using a multiplex bead-based assay. Patients with MASLD had significantly higher serum concentrations of IL17A, IL-23, IL-33, CXCL10 and TGF-β1. Different cytokine kinetics were observed; patients with MASLD had a decrease in IL-10, IL-23, CXCL10 and TGF-β1, and an increase in IL-33, CXCL5 and CXCL1 on day 5. In the non-MASLD group, there was a decrease in IFN-γ, IL-6, IL-23 and CCL20, and an increase in CCL11 and CXCL5. While TGF-β1 significantly increased in non-MASLD, in MASLD, it decreased on day 5. Kinetics of TGF- β1 and CCL11 were associated with mortality in patients with MASLD. In conclusion, MASLD is linked with distinct cytokine and chemokine profiles during sepsis.
Collapse
Affiliation(s)
- Nina Vrsaljko
- Emergency Infectious Diseases Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Leona Radmanic Matotek
- Department for Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (L.R.M.); (S.Z.-L.)
| | - Snjezana Zidovec-Lepej
- Department for Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (L.R.M.); (S.Z.-L.)
| | - Adriana Vince
- Department for Viral Hepatitis, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Neven Papic
- Department for Viral Hepatitis, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Zhang H, Lin Y, Li S, Bi J, Zeng J, Mo C, Xu S, Jia B, Lu Y, Liu C, Liu Z. Effects of bacterial extracellular vesicles derived from oral and gastrointestinal pathogens on systemic diseases. Microbiol Res 2024; 285:127788. [PMID: 38833831 DOI: 10.1016/j.micres.2024.127788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Oral microbiota and gastrointestinal microbiota, the two largest microbiomes in the human body, are closely correlated and frequently interact through the oral-gut axis. Recent research has focused on the roles of these microbiomes in human health and diseases. Under normal conditions, probiotics and commensal bacteria can positively impact health. However, altered physiological states may induce dysbiosis, increasing the risk of pathogen colonization. Studies suggest that oral and gastrointestinal pathogens contribute not only to localized diseases at their respective colonized sites but also to the progression of systemic diseases. However, the mechanisms by which bacteria at these local sites are involved in systemic diseases remain elusive. In response to this gap, the focus has shifted to bacterial extracellular vesicles (BEVs), which act as mediators of communication between the microbiota and the host. Numerous studies have reported the targeted delivery of bacterial pathogenic substances from the oral cavity and the gastrointestinal tract to distant organs via BEVs. These pathogenic components subsequently elicit specific cellular responses in target organs, thereby mediating the progression of systemic diseases. This review aims to elucidate the extensive microbial communication via the oral-gut axis, summarize the types and biogenesis mechanisms of BEVs, and highlight the translocation pathways of oral and gastrointestinal BEVs in vivo, as well as the impacts of pathogens-derived BEVs on systemic diseases.
Collapse
Affiliation(s)
- Han Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chengxia Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Krznaric J, Papic N, Vrsaljko N, Gjurasin B, Kutlesa M, Vince A. Steatotic Liver Disease and Sepsis Outcomes-A Prospective Cohort Study (SepsisFAT). J Clin Med 2024; 13:798. [PMID: 38337491 PMCID: PMC10856507 DOI: 10.3390/jcm13030798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Background: While it has been shown that steatotic liver disease (SLD) is associated with systemic changes in immune response, the impact of SLD on sepsis outcomes has not yet been established. The aim of this study was to investigate the association between SLD and sepsis severity and outcomes. Methods: A prospective observational study included consecutively hospitalized adult patients with community-acquired sepsis during a 16-month period. Results: Of the 378 included patients (49.5% male, median age of 69, IQR 57-78 years), 174 (46%) were diagnosed with SLD. Patients with SLD were older and more frequently fulfilled the criteria for metabolic syndrome. There were no differences in the source and etiology of sepsis between the groups. Patients with SLD exhibited a higher incidence of acute kidney injury (29.3% vs. 17.6%), the need for renal replacement therapy (16.1% vs. 8.8%), and more frequent use of invasive mechanical ventilation (29.3% vs. 18.1%). In-hospital mortality was significantly higher in the SLD group (18.39% vs. 9.8%). The multivariable analysis indicated that SLD was associated with mortality (HR 2.82, 95% CI 1.40-5.71) irrespective of the other elements within metabolic syndrome. Conclusions: SLD might be associated with higher sepsis in-hospital mortality, and more frequent development of acute kidney and respiratory insufficiency requiring more critical care support.
Collapse
Affiliation(s)
- Juraj Krznaric
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Neven Papic
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| | - Nina Vrsaljko
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Branimir Gjurasin
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Marko Kutlesa
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Adriana Vince
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Patel J, Sohal A, Bains K, Chaudhry H, Kohli I, Khanna T, Dukovic D, Roytman M. Association of metabolic dysfunction-associated fatty liver disease with gastrointestinal infections: insights from National Inpatient Sample Database. BMJ Open Gastroenterol 2024; 11:e001224. [PMID: 38237944 PMCID: PMC10870785 DOI: 10.1136/bmjgast-2023-001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVES The study aimed to compare the risk of gastrointestinal infections among patients with and without metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS This was a population-based, retrospective, observational study using data from the National Inpatient Sample (NIS), the largest all-payer US inpatient care database. SETTING Hospitalisation of adults aged ≥18 years old admitted in 2020 was identified using the NIS. Patients were stratified by the presence and absence of MAFLD. PARTICIPANTS 26.4 million adults aged ≥18 years old were included in the study. Patients younger than 18 and those with missing demographic or mortality data were excluded. PRIMARY AND SECONDARY OUTCOMES Primary outcome was to assess the overall risk of gastrointestinal infections in patients with and without MAFLD. Secondary outcomes were demographics and comorbidities stratified by the presence or absence of gastrointestinal infection, and the risk of specific gastrointestinal pathogens. RESULTS Of 26.4 million patients admitted in 2020, 755 910 (2.85%) had the presence of MAFLD. There was a higher prevalence of bacterial gastrointestinal infections in patients with MAFLD than those without (1.6% vs 0.9%, p<0.001). The incidence of Clostridioides difficile (1.3% vs 0.8%, p<0.001), Escherichia coli (0.3% vs 0.01%, p<0.001), and Salmonella (0.07% vs 0.03%, p<0.001) was higher in patients with MAFLD. The presence of MAFLD was associated with higher odds of developing gastrointestinal infections (adjusted OR (aOR) -1.75, 95% CI -1.68 to 1.83, p<0.001). After adjusting for confounders, results remained statistically significant (aOR -1.36, 95% CI - 1.30-1.42, p<0.001). CONCLUSION Even after adjusting for confounding factors, our study demonstrates an increased risk of gastrointestinal infections in patients with MAFLD, specifically of C. difficile, E. coli, and Salmonella. The immune and microbiota changes seen within MAFLD potentially contribute to the increased risk of gastrointestinal infections.
Collapse
Affiliation(s)
- Jay Patel
- Department of Gastroenterology, Hepatology, Nutrition, Digestive Diseases Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aalam Sohal
- Liver Institute Northwest, Seattle, Washington, USA
| | | | - Hunza Chaudhry
- UCSF Fresno Center for Medical Education and Research, Fresno, California, USA
| | - Isha Kohli
- Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Dino Dukovic
- Ross University School of Medicine, Miramar, California, USA
| | - Marina Roytman
- Department of Gastroenterology & Hepatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Awan RU, Gangu K, Nguyen A, Chourasia P, Borja Montes OF, Butt MA, Muzammil TS, Afzal RM, Nabeel A, Shekhar R, Sheikh AB. COVID-19 and Clostridioides difficile Coinfection Outcomes among Hospitalized Patients in the United States: An Insight from National Inpatient Database. Infect Dis Rep 2023; 15:279-291. [PMID: 37218819 DOI: 10.3390/idr15030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
The incidence of Clostridioides difficile infection (CDI) has been increasing compared to pre-COVID-19 pandemic levels. The COVID-19 infection and CDI relationship can be affected by gut dysbiosis and poor antibiotic stewardship. As the COVID-19 pandemic transitions into an endemic stage, it has become increasingly important to further characterize how concurrent infection with both conditions can impact patient outcomes. We performed a retrospective cohort study utilizing the 2020 NIS Healthcare Cost Utilization Project (HCUP) database with a total of 1,659,040 patients, with 10,710 (0.6%) of those patients with concurrent CDI. We found that patients with concurrent COVID-19 and CDI had worse outcomes compared to patients without CDI including higher in-hospital mortality (23% vs. 13.4%, aOR: 1.3, 95% CI: 1.12-1.5, p = 0.01), rates of in-hospital complications such as ileus (2.7% vs. 0.8%, p < 0.001), septic shock (21.0% vs. 7.2%, aOR: 2.3, 95% CI: 2.1-2.6, p < 0.001), length of stay (15.1 days vs. 8 days, p < 0.001) and overall cost of hospitalization (USD 196,012 vs. USD 91,162, p < 0.001). Patients with concurrent COVID-19 and CDI had increased morbidity and mortality, and added significant preventable burden on the healthcare system. Optimizing hand hygiene and antibiotic stewardship during in-hospital admissions can help to reduce worse outcomes in this population, and more efforts should be directly made to reduce CDI in hospitalized patients with COVID-19 infection.
Collapse
Affiliation(s)
- Rehmat Ullah Awan
- Department of Internal Medicine, Ochsner Rush Medical Center, Meridian, MS 39301, USA
| | - Karthik Gangu
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anthony Nguyen
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Prabal Chourasia
- Department of Hospital Medicine, Mary Washington Hospital, Fredericksburg, VA 22401, USA
| | - Oscar F Borja Montes
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Muhammad Ali Butt
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | | | - Rao Mujtaba Afzal
- Department of Internal Medicine, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA
| | - Ambreen Nabeel
- Department of Internal Medicine, Ochsner Rush Medical Center, Meridian, MS 39301, USA
| | - Rahul Shekhar
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Abu Baker Sheikh
- Division of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| |
Collapse
|
7
|
Caballano-Infantes E, Ho-Plágaro A, López-Gómez C, Martín-Reyes F, Rodríguez-Pacheco F, Taminiau B, Daube G, Garrido-Sánchez L, Alcaín-Martínez G, Andrade RJ, García-Cortés M, Lucena MI, García-Fuentes E, Rodríguez-Díaz C. Membrane Vesicles of Toxigenic Clostridioides difficile Affect the Metabolism of Liver HepG2 Cells. Antioxidants (Basel) 2023; 12:antiox12040818. [PMID: 37107193 PMCID: PMC10135135 DOI: 10.3390/antiox12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Clostridioides difficile infection (CDI) appears to be associated with different liver diseases. C. difficile secretes membrane vesicles (MVs), which may be involved in the development of nonalcoholic fatty liver disease (NALFD) and drug-induced liver injury (DILI). In this study, we investigated the presence of C. difficile-derived MVs in patients with and without CDI, and analyzed their effects on pathways related to NAFLD and DILI in HepG2 cells. Fecal extracellular vesicles from CDI patients showed an increase of Clostridioides MVs. C. difficile-derived MVs that were internalized by HepG2 cells. Toxigenic C. difficile-derived MVs decreased mitochondrial membrane potential and increased intracellular ROS compared to non-toxigenic C. difficile-derived MVs. In addition, toxigenic C. difficile-derived MVs upregulated the expression of genes related to mitochondrial fission (FIS1 and DRP1), antioxidant status (GPX1), apoptosis (CASP3), glycolysis (HK2, PDK1, LDHA and PKM2) and β-oxidation (CPT1A), as well as anti- and pro-inflammatory genes (IL-6 and IL-10). However, non-toxigenic C. difficile-derived MVs did not produce changes in the expression of these genes, except for CPT1A, which was also increased. In conclusion, the metabolic and mitochondrial changes produced by MVs obtained from toxigenic C. difficile present in CDI feces are common pathophysiological features observed in the NAFLD spectrum and DILI.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Ailec Ho-Plágaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Lourdes Garrido-Sánchez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Raúl J. Andrade
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miren García-Cortés
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M. Isabel Lucena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|
8
|
Kiseleva YV, Maslennikov RV, Gadzhiakhmedova AN, Zharikova TS, Kalinin DV, Zharikov YO. Clostridioides difficile infection in patients with nonalcoholic fatty liver disease-current status. World J Hepatol 2023; 15:208-215. [PMID: 36926243 PMCID: PMC10011916 DOI: 10.4254/wjh.v15.i2.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/26/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, leading to fibrosis, cirrhosis and hepatocellular carcinoma and also associated with increased cardiovascular disease mortality. The pathogenesis of NAFLD is not fully understood, although NAFLD is thought to be a hepatic form of metabolic syndrome. There is an increasing understanding of the role of microbiota disturbances in NAFLD pathogenesis, and as with many other conditions affecting the microbiota, NAFLD may be a novel risk factor for Clostridioides difficile (C. difficile) colonization (CDC) and C. difficile infection (CDI). CDI is an emerging nosocomial disease, and community-acquired cases of infection are growing, probably due to an increase in CDC rates. The association of NAFLD with CDI has been shown in only 4 studies to date, three of which included less than 1000 patients, although the frequency of NAFLD in these studies was observed in almost 20% of the total patient cohort. These data revealed that NAFLD is a risk factor for CDI development and, moreover, is a risk factor for intestinal complications of CDI. More studies are needed to investigate this association and move forward CDC and CDI screening efforts for this group of patients.
Collapse
Affiliation(s)
- Yana V Kiseleva
- International School "Medicine of the Future", I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Roman V Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Department of Internal Medicine, Сonsultative and Diagnostic Center No. 2, Moscow City Health Department, Moscow 107564, Russia
| | - Aida N Gadzhiakhmedova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Dmitry V Kalinin
- Department of Pathology, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow 115093, Russia
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia.
| |
Collapse
|
9
|
Gjurašin B, Jeličić M, Kutleša M, Papić N. The Impact of Nonalcoholic Fatty Liver Disease on Severe Community-Acquired Pneumonia Outcomes. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010036. [PMID: 36675985 PMCID: PMC9866388 DOI: 10.3390/life13010036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Community-acquired pneumonia (CAP) is one of the leading causes of morbidity and mortality, while nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD is associated with systemic changes in immune response, possibly linked to CAP severity. However, the impact of NAFLD on CAP outcomes has not been determined. The aim of this study was to evaluate clinical course, complications and outcomes of severe CAP requiring ICU treatment in patients with NAFLD in the pre-COVID-19 era. A retrospective cohort study included 138 consecutively hospitalized adult patients with severe CAP admitted to the ICU during a 4-year period: 80 patients with NAFLD and 58 controls. Patients with NAFLD more frequently presented with ARDS (68.7% vs. 43.1%), and required invasive mechanical ventilation (86.2% vs. 63.8%), respiratory ECMO (50% vs. 24.1%), and continuous renal replacement therapy (62.5% vs. 29.3%). Mortality was significantly higher in the NAFLD group (50% vs. 20.7%), and the time from hospital admission to death was significantly shorter. In survival analysis, NAFLD (HR 2.21, 95%CI 1.03-5.06) was associated with mortality independently of other components of metabolic syndrome. In conclusion, our study identified NAFLD as an independent predictor of mortality in patients with severe CAP.
Collapse
Affiliation(s)
- Branimir Gjurašin
- University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| | - Mia Jeličić
- University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| | - Marko Kutleša
- University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neven Papić
- University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
10
|
Krznarić J, Vince A. The Role of Non-Alcoholic Fatty Liver Disease in Infections. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122052. [PMID: 36556417 PMCID: PMC9788238 DOI: 10.3390/life12122052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, affecting one third of the Western population. The hallmark of the disease is excessive storage of fat in the liver. Most commonly, it is caused by metabolic syndrome (or one of its components). Even though the development of NAFLD has multiple effects on the human organism resulting in systemic chronic low-grade inflammation, this review is focused on NAFLD as a risk factor for the onset, progression, and outcomes of infectious diseases. The correlation between NAFLD and infections is still unclear. Multiple factors (obesity, chronic inflammation, altered immune system function, insulin resistance, altered intestinal microbiota, etc.) have been proposed to play a role in the development and progression of infections in people with NAFLD, although the exact mechanism and the interplay of mentioned factors is still mostly hypothesized. In this article we review only the selection of well-researched topics on NAFLD and infectious diseases (bacterial pneumonia, COVID, H. pylori, urinary tract infections, C. difficile, bacteremia, hepatitis B, hepatitis C, HIV, and periodontitis).
Collapse
Affiliation(s)
- Juraj Krznarić
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Adriana Vince
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
11
|
Wu Y, Chen Z, Fuda H, Tsukui T, Wu X, Shen N, Saito N, Chiba H, Hui SP. Oxidative Stress Linked Organ Lipid Hydroperoxidation and Dysregulation in Mouse Model of Nonalcoholic Steatohepatitis: Revealed by Lipidomic Profiling of Liver and Kidney. Antioxidants (Basel) 2021; 10:1602. [PMID: 34679736 PMCID: PMC8533338 DOI: 10.3390/antiox10101602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a prevalent disease related to lipid metabolism disorder and oxidative stress. Lipid hydroperoxidation is known to be a critical driving force of various disorders and diseases. However, the combination of both intact and hydroperoxidized lipids in NASH has not yet been studied. In this work, the liver and kidney samples from NASH-model mice were comprehensively investigated by using the LC/MS-based lipidomic analysis. As a result, triglycerides showed the amount accumulation and the profile alteration for the intact lipids in the NASH group, while phosphatidylethanolamines, lysophosphatidylethanolamines, plasmalogens, and cardiolipins largely depleted, suggesting biomembrane damage and mitochondria dysfunction. Notably, the lipid hydroperoxide species of triglyceride and phosphatidylcholine exhibited a significant elevation in both the liver and the kidney of the NASH group and showed considerable diagnostic ability. Furthermore, the relationship was revealed between the lipid metabolism disturbance and the lipid hydroperoxide accumulation, which played a key role in the vicious circle of NASH. The present study suggested that the omics approach to the lipid hydroperoxide profile might be the potential diagnostic marker of NASH and other oxidative stress-related diseases, as well as the evaluative treatment index of antioxidants.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Takayuki Tsukui
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Xunzhi Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Nianqiu Shen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Natsuki Saito
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| |
Collapse
|
12
|
Introduction to the Special Issue on Clostridioides difficile. Antibiotics (Basel) 2021; 10:antibiotics10101233. [PMID: 34680813 PMCID: PMC8532899 DOI: 10.3390/antibiotics10101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
|