1
|
Stoian M, Andone A, Bândilă SR, Onișor D, Laszlo SȘ, Lupu G, Danielescu A, Baba DF, Văsieșiu AM, Manea A, Stoian A. Mechanical Ventilator-Associated Pneumonia in the COVID-19 Pandemic Era: A Critical Challenge in the Intensive Care Units. Antibiotics (Basel) 2025; 14:28. [PMID: 39858314 PMCID: PMC11760855 DOI: 10.3390/antibiotics14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Ventilator-associated pneumonia (VAP) is the most common nosocomial infection encountered in the intensive care unit (ICU) and is associated with prolonged hospitalization and increased mortality. We evaluated the causative pathogens involved and their resistance to the major classes of antibiotics in patients with VAP and assessed the differences between patients with and without coronavirus disease 2019 (COVID-19). Materials and Methods: This study was a single-center, cross-sectional, retrospective analysis involving 122 patients who were hospitalized in the ICU of Târgu Mureș County Clinical Hospital from 1 April 2021, to 1 April 2023. This study compares patients with VAP in COVID-19 and non-COVID-19 groups, examining the clinical progression, duration of ventilation and hospitalization, mortality, pathogen distribution, and the emergence of multidrug-resistant strains. Results: A length of stay in the ICU exceeding 11.5 days was associated with the development of multidrug-resistant (MDR) infections (AUC: 0.708, p < 0.001). Similarly, a duration of MV exceeding 196 h was associated with MDR acquisition (AUC: 0.695, p = 0.002). Additionally, a Clinical Pulmonary Infection Score (CPIS) greater than 5 was associated with MDR development (AUC: 0.854, p < 0.001) in the whole group of patients. The most commonly isolated strains were Acinetobacter spp., Pseudomonas spp., Klebsiella spp., and Staphylococcus aureus. Among non-COVID-19 patients, there was a notably higher frequency of MDR Acinetobacter baumannii. A bacterial resistance to carbapenems was found in Acinetobacter spp. (51.6%), Klebsiella spp. (22.6%), and Pseudomonas spp. (25.8%). Conclusions: COVID-19 patients experienced longer ventilation, higher mortality, and an increased risk of developing MDR. Carbapenem resistance was universal in Acinetobacter spp. and Klebsiella pneumoniae, whereas resistance in Pseudomonas aeruginosa was more prevalent among non-COVID-19 patients. The Clinical Pulmonary Infection Score (CPIS) strongly correlates with developing MDR pathogens in both patient groups.
Collapse
Affiliation(s)
- Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Targu Mures, Romania;
- Intensive Care Unit, Mures Clinical County Hospital, Street Gheorghe Marinescu No 1, 540103 Targu Mures, Romania; (S.Ș.L.); (G.L.); (A.D.)
| | - Adina Andone
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Targu Mures, Romania; (A.A.); (D.O.)
| | - Sergiu Rareș Bândilă
- Orthopedic Surgery and Traumatology Service, Marina Baixa Hospital, Av. Alcade En Jaume Botella Mayor, 03570 Villajoyosa, Spain;
| | - Danusia Onișor
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Targu Mures, Romania; (A.A.); (D.O.)
| | - Sergiu Ștefan Laszlo
- Intensive Care Unit, Mures Clinical County Hospital, Street Gheorghe Marinescu No 1, 540103 Targu Mures, Romania; (S.Ș.L.); (G.L.); (A.D.)
| | - Gabriela Lupu
- Intensive Care Unit, Mures Clinical County Hospital, Street Gheorghe Marinescu No 1, 540103 Targu Mures, Romania; (S.Ș.L.); (G.L.); (A.D.)
| | - Alina Danielescu
- Intensive Care Unit, Mures Clinical County Hospital, Street Gheorghe Marinescu No 1, 540103 Targu Mures, Romania; (S.Ș.L.); (G.L.); (A.D.)
| | - Dragoș-Florin Baba
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Anca Meda Văsieșiu
- Infectious Disease, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540136 Targu Mures, Romania;
| | - Andrei Manea
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Radiology, Clinical Emergency County Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540136 Targu Mures, Romania;
| |
Collapse
|
2
|
Grotowska M, Skalec T, Wójtowicz I, Kędziora J, Goździk W, Duszyńska W. Early tracheostomy in ventilated COVID-19 patients reduces incidence of ventilator-associated pneumonia. Sci Rep 2024; 14:29472. [PMID: 39604564 PMCID: PMC11603353 DOI: 10.1038/s41598-024-81115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Tracheostomy can reduce mechanical ventilation (MV) duration, ICU and hospital length of stay (LOS), and ventilator-associated pneumonia (VAP) risk in critically ill patients. The timing of tracheostomy in COVID-19 patients has been studied, but its impact on VAP incidence has rarely been analyzed. This study investigated tracheostomy timing's impact on VAP incidence, ventilation time, ICU and hospital LOS, and mortality in critically ill COVID-19 patients. It was conducted at the University Hospital in Wroclaw, Poland, from October 1, 2020, to June 30, 2021. Of 60 tracheostomized patients, 21 (35%) developed VAP. Early tracheostomy (≤ 13 days) resulted in 8/42 (19%) VAP cases, while late tracheostomy (> 13 days) had 13/18 (72%) VAP cases, showing a significantly lower VAP risk in the early group (p < 0.05). VAP incidence rates were 7.9 and 22.8 per 1000 patient-days for early and late groups, respectively. Early tracheostomy patients had shorter median MV duration (18 vs. 33 days, p < 0.05), ICU LOS (20 vs. 31 days, p < 0.05) and hospital LOS (25 vs. 47 days, p < 0.05). Early tracheostomy in critically ill COVID-19 patients significantly reduced VAP risk, MV duration, ICU, and hospital LOS.
Collapse
Affiliation(s)
- Małgorzata Grotowska
- Faculty of Medicine, Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, 50-556, Poland.
| | - Tomasz Skalec
- Faculty of Medicine, Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| | - Iga Wójtowicz
- Clinic of Anesthesiology and Intensive Therapy, University Hospital in Wroclaw, Wroclaw, 50-556, Poland
| | - Jarosław Kędziora
- Faculty of Medicine, Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| | - Waldemar Goździk
- Faculty of Medicine, Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| | - Wiesława Duszyńska
- Faculty of Medicine, Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| |
Collapse
|
3
|
Sciurti A, Baccolini V, Ceparano M, Isonne C, Migliara G, Iera J, Alessandri F, Ceccarelli G, Marzuillo C, Tellan G, De Giusti M, Pugliese F, Villari P, The Collaborating Group. Incidence and Predictors of Healthcare-Associated Infections in Patients Admitted to a Temporary Intensive Care Unit during the COVID-19 Pandemic Waves: A Two-Year (2021-2023) Retrospective Cohort Study in Rome, Italy. Antibiotics (Basel) 2024; 13:842. [PMID: 39335015 PMCID: PMC11428387 DOI: 10.3390/antibiotics13090842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
To manage the number of critical COVID-19 patients, Umberto I Teaching Hospital in Rome established a temporary ICU on March 1, 2021. This study investigated the incidence and risk factors of healthcare-associated infections (HAIs) among these patients during various COVID-19 waves. Patients were grouped by admission date according to the dominant SARS-CoV-2 variant prevalent at the time (Alpha, Delta, Omicron BA.1, Omicron BA.2, Omicron BA.5, and Omicron XBB). First-HAI and mortality rates were calculated per 1000 patient-days. Predictors of first-HAI occurrence were investigated using a multivariable Fine-Gray regression model considering death as a competing event. Among 355 admitted patients, 27.3% experienced at least one HAI, and 49.6% died. Patient characteristics varied over time, with older and more complex cases in the later phases, while HAI and mortality rates were higher in the first year. Pathogens responsible for HAIs varied over time, with first Acinetobacter baumannii and then Klebsiella pneumoniae being progressively predominant. Multivariable analysis confirmed that, compared to Alpha, admission during the Omicron BA.1, BA.2, BA.5, and XBB periods was associated with lower hazards of HAI. Despite worsening COVID-19 patient conditions, late-phase HAI rates decreased, likely due to evolving pathogen characteristics, improved immunity, but also better clinical management, and adherence to infection prevention practices. Enhanced HAI prevention in emergency situations is crucial.
Collapse
Affiliation(s)
- Antonio Sciurti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariateresa Ceparano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Isonne
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Migliara
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Jessica Iera
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Management and Health Laboratory, Institute of Management, Department EMbeDS, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Francesco Alessandri
- Department of Anaesthesia and Intensive Care Medicine, Umberto I Teaching Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Guglielmo Tellan
- Department of Anaesthesia and Intensive Care Medicine, Umberto I Teaching Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria De Giusti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Pugliese
- Department of Anaesthesia and Intensive Care Medicine, Umberto I Teaching Hospital, Sapienza University of Rome, 00185 Rome, Italy
- Department of General and Specialist Surgery "P. Stefanini", Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - The Collaborating Group
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Rangel K, De-Simone SG. Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event. Infect Drug Resist 2024; 17:507-529. [PMID: 38348231 PMCID: PMC10860873 DOI: 10.2147/idr.s431525] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Acinetobacter pneumonia is a significant healthcare-associated infection that poses a considerable challenge to clinicians due to its multidrug-resistant nature. Recent world events, such as the COVID-19 pandemic, have highlighted the need for effective treatment and management strategies for Acinetobacter pneumonia. In this review, we discuss lessons learned from recent world events, particularly the COVID-19 pandemic, in the context of the treatment and management of Acinetobacter pneumonia. We performed an extensive literature review to uncover studies and information pertinent to the topic. The COVID-19 pandemic underscored the importance of infection control measures in healthcare settings, including proper hand hygiene, isolation protocols, and personal protective equipment use, to prevent the spread of multidrug-resistant pathogens like Acinetobacter. Additionally, the pandemic highlighted the crucial role of antimicrobial stewardship programs in optimizing antibiotic use and curbing the emergence of resistance. Advances in diagnostic techniques, such as rapid molecular testing, have also proven valuable in identifying Acinetobacter infections promptly. Furthermore, due to the limited availability of antibiotics for treating infections caused A. baumannii, alternative strategies are needed like the use of antimicrobial peptides, bacteriophages and their enzymes, nanoparticles, photodynamic and chelate therapy. Recent world events, particularly the COVID-19 pandemic, have provided valuable insights into the treatment and management of Acinetobacter pneumonia. These lessons emphasize the significance of infection control, antimicrobial stewardship, and early diagnostics in combating this challenging infection.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói, RJ, 22040-036, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
5
|
Gaudet A, Kreitmann L, Nseir S. ICU-Acquired Colonization and Infection Related to Multidrug-Resistant Bacteria in COVID-19 Patients: A Narrative Review. Antibiotics (Basel) 2023; 12:1464. [PMID: 37760760 PMCID: PMC10525572 DOI: 10.3390/antibiotics12091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
A large proportion of ICU-acquired infections are related to multidrug-resistant bacteria (MDR). Infections caused by these bacteria are associated with increased mortality, and prolonged duration of mechanical ventilation and ICU stay. The aim of this narrative review is to report on the association between COVID-19 and ICU-acquired colonization or infection related to MDR bacteria. Although a huge amount of literature is available on COVID-19 and MDR bacteria, only a few clinical trials have properly evaluated the association between them using a non-COVID-19 control group and accurate design and statistical methods. The results of these studies suggest that COVID-19 patients are at a similar risk of ICU-acquired MDR colonization compared to non-COVID-19 controls. However, a higher risk of ICU-acquired infection related to MDR bacteria has been reported in several studies, mainly ventilator-associated pneumonia and bloodstream infection. Several potential explanations could be provided for the high incidence of ICU-acquired infections related to MDR. Immunomodulatory treatments, such as corticosteroids, JAK2 inhibitors, and IL-6 receptor antagonist, might play a role in the pathogenesis of these infections. Additionally, a longer stay in the ICU was reported in COVID-19 patients, resulting in higher exposure to well-known risk factors for ICU-acquired MDR infections, such as invasive procedures and antimicrobial treatment. Another possible explanation is the surge during successive COVID-19 waves, with excessive workload and low compliance with preventive measures. Further studies should evaluate the evolution of the incidence of ICU-acquired infections related to MDR bacteria, given the change in COVID-19 patient profiles. A better understanding of the immune status of critically ill COVID-19 patients is required to move to personalized treatment and reduce the risk of ICU-acquired infections. The role of specific preventive measures, such as targeted immunomodulation, should be investigated.
Collapse
Affiliation(s)
- Alexandre Gaudet
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- CNRS, Inserm U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK;
- Department of Intensive Care Medicine, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Saad Nseir
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
| |
Collapse
|
6
|
van Duijnhoven M, Fleuren-Janssen M, van Osch F, LeNoble JLML. A Predominant Cause of Recurrence of Ventilator-Associated Pneumonia in Patients with COVID-19 Are Relapses. J Clin Med 2023; 12:5821. [PMID: 37762761 PMCID: PMC10531898 DOI: 10.3390/jcm12185821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The diagnosis of ventilator-associated pneumonia (VAP) recurrence in patients with coronavirus disease 2019 (COVID-19) pneumonia is challenging, and the incidence of recurrence is high. This study aimed to investigate the incidence and recurrence of VAP. Furthermore, we investigated the causative microorganisms of VAP and recurrent VAPs in patients with COVID-19. This retrospective, single-centre case series study was conducted during the COVID-19 pandemic from October 2020 to June 2021 at VieCuri MC Venlo. VAP and recurrent VAP were defined based on three criteria (clinical, radiological, and microbiological). During the study period, 128 mechanically ventilated patients with COVID-19 were included. The incidence ranged from 9.2 to 14 VAP/1000 ventilator days, which was higher than that in the non-COVID-19 controls. The most commonly cultured microorganisms in VAP were Pseudomonas (9/28; 32%), Klebsiella (8/28; 29%), Escherichia coli (5/28; 18%), and Staphylococcus aureus (5/28; 18%). VAP recurred often (5/19, 26%). The overall VAP rate confirmed previous findings of an increased incidence of VAP in critically ill patients with severe COVID-19 requiring mechanical ventilation. VAP recurrences occur often and are mainly relapses. A duration of antibiotic therapy longer than 7 days and therapeutic drug monitoring should be considered for VAP caused by Gram-negative microorganisms.
Collapse
Affiliation(s)
- Mirella van Duijnhoven
- Department of Intensive Care, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, The Netherlands; (M.F.-J.); (J.L.M.L.L.)
| | - Manon Fleuren-Janssen
- Department of Intensive Care, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, The Netherlands; (M.F.-J.); (J.L.M.L.L.)
| | - Frits van Osch
- Department of Clinical Epidemiology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, The Netherlands;
- Department of Epidemiology, NUTRIM, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jos L. M. L. LeNoble
- Department of Intensive Care, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, The Netherlands; (M.F.-J.); (J.L.M.L.L.)
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Alnimr A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect Dis Ther 2023:10.1007/s40121-023-00820-2. [PMID: 37273072 DOI: 10.1007/s40121-023-00820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is a serious intensive care unit (ICU)-related infection in mechanically ventilated patients that is frequent, as more than half of antibiotics prescriptions in ICU are due to VAP. Various risk factors and diagnostic criteria for VAP have been referred to in different settings. The estimated attributable mortality of VAP can go up to 50%, which is higher in cases of antimicrobial-resistant VAP. When the diagnosis of pneumonia in a mechanically ventilated patient is made, initiation of effective antimicrobial therapy must be prompt. Microbiological diagnosis of VAP is required to optimize timely therapy since effective early treatment is fundamental for better outcomes, with controversy continuing regarding optimal sampling and testing. Understanding the role of antimicrobial resistance in the context of VAP is crucial in the era of continuously evolving antimicrobial-resistant clones that represent an urgent threat to global health. This review is focused on the risk factors for antimicrobial resistance in adult VAP and its novel microbiological tools. It aims to summarize the current evidence-based knowledge about the mechanisms of resistance in VAP caused by multidrug-resistant bacteria in clinical settings with focus on Gram-negative pathogens. It highlights the evidence-based antimicrobial management and prevention of drug-resistant VAP. It also addresses emerging concepts related to predictive microbiology in VAP and sheds lights on VAP in the context of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Geyer J, Krupa KA, Harris ZM, Sun Y, Sharma L, Würstle S, Hu B, Stanley G, Rajagopalan G, Pellot E, Koff JL, Robinson JB. A Novel Zinc (II) Porphyrin Is Synergistic with PEV2 Bacteriophage against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2023; 12:735. [PMID: 37107097 PMCID: PMC10135120 DOI: 10.3390/antibiotics12040735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Pseudomonas aeruginosa (PsA) is an opportunistic bacterial pathogen that causes life-threatening infections in individuals with compromised immune systems and exacerbates health concerns for those with cystic fibrosis (CF). PsA rapidly develops antibiotic resistance; thus, novel therapeutics are urgently needed to effectively combat this pathogen. Previously, we have shown that a novel cationic Zinc (II) porphyrin (ZnPor) has potent bactericidal activity against planktonic and biofilm-associated PsA cells, and disassembles the biofilm matrix via interactions with eDNA In the present study, we report that ZnPor caused a significant decrease in PsA populations in mouse lungs within an in vivo model of PsA pulmonary infection. Additionally, when combined with an obligately lytic phage PEV2, ZnPor at its minimum inhibitory concentration (MIC) displayed synergy against PsA in an established in vitro lung model resulting in greater protection of H441 lung cells versus either treatment alone. Concentrations above the minimum bactericidal concentration (MBC) of ZnPor were not toxic to H441 cells; however, no synergy was observed. This dose-dependent response is likely due to ZnPor's antiviral activity, reported herein. Together, these findings show the utility of ZnPor alone, and its synergy with PEV2, which could be a tunable combination used in the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jessica Geyer
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Kristen A. Krupa
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Integrated Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| | - Zachary M. Harris
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ying Sun
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Silvia Würstle
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gail Stanley
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Govindarajan Rajagopalan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Erin Pellot
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Jonathan L. Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayne B. Robinson
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
- Integrated Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
9
|
FERLİÇOLAK L, SARICAOĞLU E, BİLBAY B, ALTINTAŞ ND, YÖRÜK F. Ventilator associated pneumonia in COVID-19 patients: A retrospective cohort study. Tuberk Toraks 2023; 71:41-47. [PMID: 36912408 PMCID: PMC10795243 DOI: 10.5578/tt.20239906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction We aimed to evaluate ventilator-associated pneumonia (VAP) incidence rate, risk factors, and isolated microorganisms in COVID-19 patients as the primary endpoint. Evaluation of VAP-associated intensive care unit (ICU) and hospital mortalities was the secondary endpoint. Materials and Methods Records of patients admitted between March 2020- June 2021 to our pandemic ICU were reviewed and COVID-19 patients with VAP and non-VAP were evaluated retrospectively. Comorbidities, management, length of ICU stay, and outcomes of VAP and non-VAP patients, as well as risk factors for VAP mortality, were identified. Result During the study period, 254 patients were admitted to the ICU. After the exclusion, the data of 208 patients were reviewed. In total, 121 patients required invasive mechanical ventilation, with 78 (64.5%) developing VAP. Length of ICU and hospital stays were longer in VAP patients (p<0.01 and p<0.01 respectively). Steroid use was higher in VAP patients, although it was not statistically significant (p= 0.06). APACHE II score (p<0.01) was higher in non-VAP patients. ICU mortality was high in both groups (VAP 70%, non-VAP 77%). VAP mortality was higher in males (p= 0.03) and in patients who required renal replacement therapy (p= 0.01). Length of ICU stay (p= 0.04), and length of hospital stay (p<0.01) were both high in VAP survivors. The most common isolated microorganisms were Acinetobacter spp. and Klebsiella spp. in VAP patients and most of them were extensively drug-resistant. Conclusions Critically ill COVID-19 patients who required invasive mechanical ventilation developed VAP frequently. The length of ICU stay was longer in patients who developed VAP and ICU mortality was high in both VAP and non-VAP patients. The length of hospital and ICU stays among VAP survivors were also considerably high which is probably related to the long recovery period of COVID-19. The most frequently isolated microorganisms were Acinetobacter spp. and Klebsiella spp. in VAP patients.
Collapse
Affiliation(s)
- L. FERLİÇOLAK
- Division of Intensive Care, Department of Internal Medicine,
Ankara University Faculty of Medicine, Ankara, Türkiye
- Department of Infection Diseases and Clinical Microbiology,
Ankara University Faculty of Medicine, Ankara, Türkiye
- Deparment of Internal Medicine, Ankara University Faculty of Medicine,
Ankara, Türkiye
| | - E. SARICAOĞLU
- Department of Infection Diseases and Clinical Microbiology,
Ankara University Faculty of Medicine, Ankara, Türkiye
| | - B. BİLBAY
- Division of Intensive Care, Department of Internal Medicine,
Ankara University Faculty of Medicine, Ankara, Türkiye
| | - N. D. ALTINTAŞ
- Division of Intensive Care, Department of Internal Medicine,
Ankara University Faculty of Medicine, Ankara, Türkiye
| | - F. YÖRÜK
- Department of Infection Diseases and Clinical Microbiology,
Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
10
|
Langford BJ, So M, Simeonova M, Leung V, Lo J, Kan T, Raybardhan S, Sapin ME, Mponponsuo K, Farrell A, Leung E, Soucy JPR, Cassini A, MacFadden D, Daneman N, Bertagnolio S. Antimicrobial resistance in patients with COVID-19: a systematic review and meta-analysis. THE LANCET. MICROBE 2023; 4:e179-e191. [PMID: 36736332 PMCID: PMC9889096 DOI: 10.1016/s2666-5247(22)00355-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Frequent use of antibiotics in patients with COVID-19 threatens to exacerbate antimicrobial resistance. We aimed to establish the prevalence and predictors of bacterial infections and antimicrobial resistance in patients with COVID-19. METHODS We did a systematic review and meta-analysis of studies of bacterial co-infections (identified within ≤48 h of presentation) and secondary infections (>48 h after presentation) in outpatients or hospitalised patients with COVID-19. We searched the WHO COVID-19 Research Database to identify cohort studies, case series, case-control trials, and randomised controlled trials with populations of at least 50 patients published in any language between Jan 1, 2019, and Dec 1, 2021. Reviews, editorials, letters, pre-prints, and conference proceedings were excluded, as were studies in which bacterial infection was not microbiologically confirmed (or confirmed via nasopharyngeal swab only). We screened titles and abstracts of papers identified by our search, and then assessed the full text of potentially relevant articles. We reported the pooled prevalence of bacterial infections and antimicrobial resistance by doing a random-effects meta-analysis and meta-regression. Our primary outcomes were the prevalence of bacterial co-infection and secondary infection, and the prevalence of antibiotic-resistant pathogens among patients with laboratory-confirmed COVID-19 and bacterial infections. The study protocol was registered with PROSPERO (CRD42021297344). FINDINGS We included 148 studies of 362 976 patients, which were done between December, 2019, and May, 2021. The prevalence of bacterial co-infection was 5·3% (95% CI 3·8-7·4), whereas the prevalence of secondary bacterial infection was 18·4% (14·0-23·7). 42 (28%) studies included comprehensive data for the prevalence of antimicrobial resistance among bacterial infections. Among people with bacterial infections, the proportion of infections that were resistant to antimicrobials was 60·8% (95% CI 38·6-79·3), and the proportion of isolates that were resistant was 37·5% (26·9-49·5). Heterogeneity in the reported prevalence of antimicrobial resistance in organisms was substantial (I2=95%). INTERPRETATION Although infrequently assessed, antimicrobial resistance is highly prevalent in patients with COVID-19 and bacterial infections. Future research and surveillance assessing the effect of COVID-19 on antimicrobial resistance at the patient and population level are urgently needed. FUNDING WHO.
Collapse
Affiliation(s)
- Bradley J Langford
- Public Health Ontario, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Miranda So
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada
| | | | - Valerie Leung
- Public Health Ontario, Toronto, ON, Canada; Toronto East Health Network, Toronto, ON, Canada
| | - Jennifer Lo
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tiffany Kan
- North York General Hospital, Toronto, ON, Canada
| | | | - Mia E Sapin
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kwadwo Mponponsuo
- University of Calgary, Calgary, AB, Canada; Alberta Health Services, Calgary, AB, Canada
| | | | - Elizabeth Leung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Unity Health Toronto, Toronto, ON, UK
| | - Jean-Paul R Soucy
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Derek MacFadden
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada; Ottawa Hospital, Ottawa, ON, Canada
| | - Nick Daneman
- Public Health Ontario, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | |
Collapse
|
11
|
Raad M, Abou Haidar M, Ibrahim R, Rahal R, Abou Jaoude J, Harmouche C, Habr B, Ayoub E, Saliba G, Sleilaty G, Mounzer K, Saliba R, Riachy M. Stenotrophomonas maltophilia pneumonia in critical COVID-19 patients. Sci Rep 2023; 13:3392. [PMID: 36854720 PMCID: PMC9971679 DOI: 10.1038/s41598-023-28438-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/18/2023] [Indexed: 03/02/2023] Open
Abstract
Stenotrophomonas maltophilia, an environmental aerobic non-fermentative Gram-negative bacilli, has gained attention in many nosocomial outbreaks. COVID-19 patients in intensive care unit have extended hospital stay and are severely immunosuppressed. This study aimed to determine the prevalence and risk factors of S. maltophilia pneumonia in critical COVID-19 patients. A total of 123 COVID-19 patients in ICU admitted between March 2020 and March 2021 were identified from the authors' institutional database and assessed for nosocomial pneumonia. Demographic data and factors predisposing to S. maltophilia pneumonia were collected and analyzed. The mean age was 66 ± 13 years and 74% were males. Median APACHE and SOFA scores were 13 (IQR = 8-19) and 4 (3-6), respectively. The Median NEWS2 score was 6 (Q1 = 5; Q3 = 8). The Median ICU stay was 12 (Q1 = 7; Q3 = 22) days. S. maltophilia was found in 16.3% of pneumonia patients, leading to a lengthier hospital stay (34 vs. 20 days; p < 0.001). Risk factors for S. maltophilia pneumonia included previous treatment with meropenem (p < 0.01), thrombopenia (p = 0.034), endotracheal intubation (p < 0.001), foley catheter (p = 0.009) and central venous catheter insertion (p = 0.016). S. maltophilia nosocomial pneumonia is frequent in critical COVID-19 patients. Many significant risk factors should be addressed to reduce its prevalence and negative impact on outcomes.
Collapse
Affiliation(s)
- Marc Raad
- grid.42271.320000 0001 2149 479XPulmonary and Critical Care Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Marc Abou Haidar
- grid.42271.320000 0001 2149 479XAnaesthesia and Critical Care, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Racha Ibrahim
- grid.42271.320000 0001 2149 479XInfectious Disease Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Rouba Rahal
- grid.42271.320000 0001 2149 479XPulmonary and Critical Care Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Jocelyne Abou Jaoude
- grid.42271.320000 0001 2149 479XPulmonary and Critical Care Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Carine Harmouche
- grid.42271.320000 0001 2149 479XPulmonary and Critical Care Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Bassem Habr
- grid.42271.320000 0001 2149 479XPulmonary and Critical Care Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Eliane Ayoub
- grid.42271.320000 0001 2149 479XAnaesthesia and Critical Care, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Gebrayel Saliba
- grid.42271.320000 0001 2149 479XInfectious Disease Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ghassan Sleilaty
- grid.42271.320000 0001 2149 479XCardiovascular Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Karam Mounzer
- grid.412713.20000 0004 0435 1019Penn Infectious Disease Penn Presbyterian, Penn Presbyterian Medical Center, Philadelphia, PA USA
| | - Rindala Saliba
- grid.42271.320000 0001 2149 479XClinical Microbiology Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Moussa Riachy
- Pulmonary and Critical Care Department, University Medical Center Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
| |
Collapse
|
12
|
Caiazzo L, Temperoni C, Canovari B, Simonetti O, Montalti R, Barchiesi F. Secondary Infections in Critically Ill Patients with COVID-19: A Retrospective Study. Antibiotics (Basel) 2022; 11:1598. [PMID: 36421240 PMCID: PMC9686752 DOI: 10.3390/antibiotics11111598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 12/17/2024] Open
Abstract
Patients with severe COVID-19, especially those followed in the ICU, are at risk for developing bacterial and fungal superinfections. In this study, we aimed to describe the burden of hospital-acquired superinfections in a cohort of consecutive, severe COVID-19 patients hospitalized between February and May 2021 in the intensive care unit (ICU) department of San Salvatore Hospital in Pesaro, Italy. Among 89 patients considered, 68 (76.4%) acquired a secondary infection during their ICU stay. A total of 46 cases of ventilator-associated pneumonia (VAP), 31 bloodstream infections (BSIs) and 15 catheter-associated urinary tract infections (CAUTIs) were diagnosed. Overall mortality during ICU stay was 48%. A multivariate analysis showed that factors independently associated with mortality were male gender (OR: 4.875, CI: 1.227-19.366, p = 0.024), higher BMI (OR: 4.938, CI:1.356-17.980, p = 0.015) and the presence of VAP (OR: 6.518, CI: 2.178-19.510, p = 0.001). Gram-negative bacteria accounted for most of the isolates (68.8%), followed by Gram-positive bacteria (25.8%) and fungi (5.3%). Over half of the infections (58%) were caused by MDR opportunistic pathogens. Factors that were independently associated with an increased risk of infections caused by an MDR pathogen were higher BMI (OR: 4.378, CI: 1.467-13.064, p = 0.0008) and a higher Charlson Comorbidity Index (OR: 3.451, 95% CI: 1.113-10.700, p = 0.032). Secondary infections represent a common and life-threatening complication in critically ill patients with COVID-19. Efforts to minimize the likelihood of acquiring such infections, often caused by difficult-to-treat MDR organisms-especially in some subgroups of patients with specific risk factors-must be pursued.
Collapse
Affiliation(s)
- Luca Caiazzo
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
| | - Chiara Temperoni
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
| | - Benedetta Canovari
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
| | - Oriana Simonetti
- Clinica Dermatologica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberto Montalti
- Unità di Chirurgia Epato-Bilio-Pancreatica, Mininvasiva e Robotica, Dipartimento di Sanità Pubblica, Università Federico II, 80131 Napoli, Italy
| | - Francesco Barchiesi
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
13
|
Deng J, Li F, Zhang N, Zhong Y. Prevention and treatment of ventilator-associated pneumonia in COVID-19. Front Pharmacol 2022; 13:945892. [PMID: 36339583 PMCID: PMC9627032 DOI: 10.3389/fphar.2022.945892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 07/10/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) is the most common acquired infection in the intensive care unit. Recent studies showed that the critical COVID-19 patients with invasive mechanical ventilation have a high risk of developing VAP, which result in a worse outcome and an increasing economic burden. With the development of critical care medicine, the morbidity and mortality of VAP remains high. Especially since the outbreak of COVID-19, the healthcare system is facing unprecedented challenges. Therefore, many efforts have been made in effective prevention, early diagnosis, and early treatment of VAP. This review focuses on the treatment and prevention drugs of VAP in COVID-19 patients. In general, prevention is more important than treatment for VAP. Prevention of VAP is based on minimizing exposure to mechanical ventilation and encouraging early release. There is little difference in drug prophylaxis from non-COVID-19. In term of treatment of VAP, empirical antibiotics is the main treatment, special attention should be paid to the antimicrobial spectrum and duration of antibiotics because of the existence of drug-resistant bacteria. Further studies with well-designed and large sample size were needed to demonstrate the prevention and treatment of ventilator-associated pneumonia in COVID-19 based on the specificity of COVID-19.
Collapse
Affiliation(s)
- Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fanglin Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Delić N, Matetic A, Domjanović J, Kljaković-Gašpić T, Šarić L, Ilić D, Došenović S, Domazet J, Kovač R, Runjić F, Stipić SS, Duplančić B. Effects of Different Inhalation Therapy on Ventilator-Associated Pneumonia in Ventilated COVID-19 Patients: A Randomized Controlled Trial. Microorganisms 2022; 10:1118. [PMID: 35744636 PMCID: PMC9228146 DOI: 10.3390/microorganisms10061118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of routine inhalation therapy on ventilator-associated pneumonia (VAP) in mechanically ventilated patients with the coronavirus disease (COVID-19) has not been well-defined. This randomized controlled trial included 175 eligible adult patients with COVID-19 who were treated with mechanical ventilation at the University Hospital of Split between October 2020 and June 2021. Patients were randomized and allocated to a control group (no routine inhalation) or one of the treatment arms (inhalation of N-acetylcysteine; 5% saline solution; or 8.4% sodium bicarbonate). The primary outcome was the incidence of VAP, while secondary outcomes included all-cause mortality. Routine inhalation therapy had no effect on the incidence of bacterial or fungal VAP nor on all-cause mortality (p > 0.05). Secondary analyses revealed a significant reduction of Gram-positive and methicillin-resistant Staphylococcus aureus (MRSA) VAP in the treatment groups. Specifically, the bicarbonate group had a statistically significantly lower incidence of Gram-positive bacterial VAP (4.8%), followed by the N-acetylcysteine group (10.3%), 5% saline group (19.0%), and control group (34.6%; p = 0.001). This difference was driven by a lower incidence of MRSA VAP in the bicarbonate group (2.4%), followed by the N-acetylcysteine group (7.7%), 5% saline group (14.3%), and control group (34.6%; p < 0.001). Longer duration of ventilator therapy was the only significant, independent predictor of any bacterial or fungal VAP in the multivariate analysis (aOR 1.14, 95% CI 1.01−1.29, p = 0.038 and aOR 1.05, 95% CI 1.01−1.10, p = 0.028, respectively). In conclusion, inhalation therapy had no effect on the overall VAP incidence or all-cause mortality. Further studies should explore the secondary findings of this study such as the reduction of Gram-positive or MRSA-caused VAP in treated patients.
Collapse
Affiliation(s)
- Nikola Delić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Andrija Matetic
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia; (A.M.); (F.R.)
| | - Josipa Domjanović
- Department of Nephrology, University Hospital of Split, 21000 Split, Croatia;
| | - Toni Kljaković-Gašpić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Lenko Šarić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Darko Ilić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Svjetlana Došenović
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Josipa Domazet
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Ruben Kovač
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Frane Runjić
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia; (A.M.); (F.R.)
| | - Sanda Stojanović Stipić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Božidar Duplančić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| |
Collapse
|
15
|
Velásquez-Garcia L, Mejia-Sanjuanelo A, Viasus D, Carratalà J. Causative Agents of Ventilator-Associated Pneumonia and Resistance to Antibiotics in COVID-19 Patients: A Systematic Review. Biomedicines 2022; 10:biomedicines10061226. [PMID: 35740246 PMCID: PMC9220146 DOI: 10.3390/biomedicines10061226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) have an increased risk of ventilator-associated pneumonia (VAP). This systematic review updates information on the causative agents of VAP and resistance to antibiotics in COVID-19 patients. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed/MEDLINE, and LILACS databases from December 2019 to December 2021. Studies that described the frequency of causative pathogens associated with VAP and their antibiotic resistance patterns in critically ill COVID-19 adult patients were included. The Newcastle-Ottawa Quality Assessment Scale was used for critical appraisal. The data are presented according to the number or proportions reported in the studies. A total of 25 articles were included, involving 2766 VAP cases in COVID-19 patients (range 5–550 VAP cases). Most of the studies included were carried out in France (32%), Italy (20%), Spain (12%) and the United States (8%). Gram-negative bacteria were the most frequent causative pathogens of VAP (range of incidences in studies: P. aeruginosa 7.5–72.5%, K. pneumoniae 6.9–43.7%, E. cloacae 1.6–20% and A. baumannii 1.2–20%). S. aureus was the most frequent Gram-positive pathogen, with a range of incidence of 3.3–57.9%. The median incidence of Aspergillus spp. was 6.4%. Few studies have recorded susceptibility patterns among Gram-negative causative pathogens and have mainly reported extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenem resistance. The median frequency of methicillin resistance among S. aureus isolates was 44.4%. Our study provides the first comprehensive description of the causative agents and antibiotic resistance in COVID-19 patients with VAP. Gram-negative bacteria were the most common pathogens causing VAP. Data on antibiotic resistance patterns in the published medical literature are limited, as well as information about VAP from low- and middle-income countries.
Collapse
Affiliation(s)
- Larry Velásquez-Garcia
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia; (L.V.-G.); (A.M.-S.); (D.V.)
| | - Ana Mejia-Sanjuanelo
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia; (L.V.-G.); (A.M.-S.); (D.V.)
| | - Diego Viasus
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia; (L.V.-G.); (A.M.-S.); (D.V.)
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital—Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
Boyd S, Nseir S, Rodriguez A, Martin-Loeches I. Ventilator-associated pneumonia in critically ill patients with COVID-19 infection, a narrative review. ERJ Open Res 2022; 8:00046-2022. [PMID: 35891621 PMCID: PMC9080287 DOI: 10.1183/23120541.00046-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/24/2022] [Indexed: 01/08/2023] Open
Abstract
COVID pneumonitis can cause patients to become critically ill. They may require intensive care and mechanical ventilation. Ventilator-associated pneumonia is a concern. This review aims to discuss the topic of ventilator-associated pneumonia in this group. Several reasons have been proposed to explain the elevated rates of VAP in critically ill COVID patients compared to non-COVID patients. Extrinsic factors include understaffing, lack of PPE and use of immunomodulating agents. Intrinsic factors include severe parenchymal damage, immune dysregulation, along with pulmonary vascular endothelial inflammation and thrombosis. The rate of VAP has been reported at 45.4%, with an ICU mortality rate of 42.7%. Multiple challenges to diagnosis exist. Other conditions such as acute respiratory distress syndrome, pulmonary oedema and atelectasis can present with similar features. Frequent growth of gram-negative bacteria has been shown in multiple studies, with particularly high rates of pseudomonas aeruginosa. The rate of invasive pulmonary aspergillosis has been reported at 4–30%. We would recommend the use of invasive techniques when possible. This will enable de-escalation of antibiotics as soon as possible, decreasing overuse. It is also important to keep other possible causes of ventilator-associated pneumonia in mind, such as COVID-19 associated pulmonary aspergillosis, cytomegalovirus, etc. Diagnostic tests such as galactomannan and B-D-glucan should be considered. These patients may face a long treatment course, with risk of re-infection, along with prolonged weaning, which carries its own long-term consequences.
Collapse
|
17
|
Russo A, Olivadese V, Trecarichi EM, Torti C. Bacterial Ventilator-Associated Pneumonia in COVID-19 Patients: Data from the Second and Third Waves of the Pandemic. J Clin Med 2022; 11:jcm11092279. [PMID: 35566405 PMCID: PMC9100863 DOI: 10.3390/jcm11092279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, many patients requiring invasive mechanical ventilation were admitted to intensive care units (ICU) for COVID-19-related severe respiratory failure. As a matter of fact, ICU admission and invasive ventilation increased the risk of ventilator-associated pneumonia (VAP), which is associated with high mortality rate and a considerable burden on length of ICU stay and healthcare costs. The objective of this review was to evaluate data about VAP in COVID-19 patients admitted to ICU that developed VAP, including their etiology (limiting to bacteria), clinical characteristics, and outcomes. The analysis was limited to the most recent waves of the epidemic. The main conclusions of this review are the following: (i) P. aeruginosa, Enterobacterales, and S. aureus are more frequently involved as etiology of VAP; (ii) obesity is an important risk factor for the development of VAP; and (iii) data are still scarce and increasing efforts should be put in place to optimize the clinical management and preventative strategies for this complex and life-threatening disease.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The first studies on COVID-19 patients with acute respiratory distress syndrome (ARDS) described a high rate of secondary bacterial ventilator-associated pneumonia (VAP). The specificity of VAP diagnoses in these patients are reviewed, including their actual rate. RECENT FINDINGS Published studies described high rates of bacterial VAP among COVID-19 patients with ARDS, and these VAP episodes are usually severe and of specifically poor prognosis with high mortality. Indeed, Severe acute respiratory syndrome - coronavirus disease 19 (SARS-CoV2) infection elicits alterations that may explain a high risk of VAP. In addition, breaches in the aseptic management of patients might have occurred when the burden of care was heavy. In addition, VAP in these patients is more frequently suspected, and more often investigated with diagnostic tools based on molecular techniques. SUMMARY VAP is frequented and of particularly poor prognosis in COVID-19 patients with ARDS. It can be explained by SARS-CoV-2 pathophysiology, and also breaches in the aseptic procedures. In addition, tools based on molecular techniques allow an early diagnosis and unmask VAP usually underdiagnosed by traditional culture-based methods. The impact of molecular technique-based diagnostics in improving antibacterial therapy and COVID-19 prognosis remain to be evaluated.
Collapse
|
19
|
Brandi N, Ciccarese F, Rimondi MR, Balacchi C, Modolon C, Sportoletti C, Renzulli M, Coppola F, Golfieri R. An Imaging Overview of COVID-19 ARDS in ICU Patients and Its Complications: A Pictorial Review. Diagnostics (Basel) 2022; 12:846. [PMID: 35453894 PMCID: PMC9032937 DOI: 10.3390/diagnostics12040846] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
A significant proportion of patients with COVID-19 pneumonia could develop acute respiratory distress syndrome (ARDS), thus requiring mechanical ventilation, and resulting in a high rate of intensive care unit (ICU) admission. Several complications can arise during an ICU stay, from both COVID-19 infection and the respiratory supporting system, including barotraumas (pneumothorax and pneumomediastinum), superimposed pneumonia, coagulation disorders (pulmonary embolism, venous thromboembolism, hemorrhages and acute ischemic stroke), abdominal involvement (acute mesenteric ischemia, pancreatitis and acute kidney injury) and sarcopenia. Imaging plays a pivotal role in the detection and monitoring of ICU complications and is expanding even to prognosis prediction. The present pictorial review describes the clinicopathological and radiological findings of COVID-19 ARDS in ICU patients and discusses the imaging features of complications related to invasive ventilation support, as well as those of COVID-19 itself in this particularly fragile population. Radiologists need to be familiar with COVID-19's possible extra-pulmonary complications and, through reliable and constant monitoring, guide therapeutic decisions. Moreover, as more research is pursued and the pathophysiology of COVID-19 is increasingly understood, the role of imaging must evolve accordingly, expanding from the diagnosis and subsequent management of patients to prognosis prediction.
Collapse
Affiliation(s)
- Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (F.C.); (C.B.); (M.R.); (F.C.); (R.G.)
| | - Federica Ciccarese
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (F.C.); (C.B.); (M.R.); (F.C.); (R.G.)
| | - Maria Rita Rimondi
- Cardio-Thoracic Radiology Unit, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy; (M.R.R.); (C.M.); (C.S.)
| | - Caterina Balacchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (F.C.); (C.B.); (M.R.); (F.C.); (R.G.)
| | - Cecilia Modolon
- Cardio-Thoracic Radiology Unit, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy; (M.R.R.); (C.M.); (C.S.)
| | - Camilla Sportoletti
- Cardio-Thoracic Radiology Unit, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy; (M.R.R.); (C.M.); (C.S.)
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (F.C.); (C.B.); (M.R.); (F.C.); (R.G.)
| | - Francesca Coppola
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (F.C.); (C.B.); (M.R.); (F.C.); (R.G.)
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, Via della Signora 2, 20122 Milano, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (F.C.); (C.B.); (M.R.); (F.C.); (R.G.)
| |
Collapse
|
20
|
The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11040437. [PMID: 35453189 PMCID: PMC9025156 DOI: 10.3390/antibiotics11040437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The multiplex PCR is a powerful and efficient tool that was widely used during the COVID-19 pandemic to diagnose SARS-CoV-2 infections and that has applications for bacterial identification, as well as determining bacterial resistance to antibiotics. Therefore, this study aimed to determine the usability of multiplex PCR, especially in patients self-medicated with antibiotics, where bacterial cultures often give false-negative results. A cross-sectional study was developed in two COVID-19 units, where 489 eligible patients were included as antibiotic takers and non-antibiotic takers. Antibiotic takers used mostly over-the-counter medication; they suffered significantly more chronic respiratory conditions and were self-medicated most often with cephalosporins (41.4%), macrolide (23.2%), and penicillin (19.7%). The disease severity in these patients was significantly higher than in non-antibiotic takers, and bacterial superinfections were the most common finding in the same group (63.6%). Antibiotic takers had longer hospital and ICU admissions, although the mortality rate was not significantly higher than in non-antibiotic takers. The most common bacteria involved in secondary infections were Staphylococcus aureus (22.2%), Pseudomonas aeruginosa (27.8%), and Klebsiellaspp (25.0%). Patients self-medicating with antibiotics had significantly higher rates of multidrug resistance. The multiplex PCR test was more accurate in identifying multidrug resistance and resulted in a quicker initiation of therapeutic antibiotics compared with instances where a bacterial culture was initially performed, with an average of 26.8 h vs. 40.4 h, respectively. The hospital stay was also significantly shorter by an average of 2.5 days when PCR was used as an initial assessment tool for secondary bacterial infections. When adjusted for age, COVID-19 severity, and pulmonary disease, over-the-counter use of antibiotics represented a significant independent risk factor for a prolonged hospitalization (AOR = 1.21). Similar findings were observed for smoking status (AOR = 1.44), bacterial superinfection (AOR = 1.52), performing only a conventional bacterial culture (AOR = 1.17), and a duration of more than 48 h for bacterial sampling from the time of hospital admission (AOR = 1.36). Multiplex PCR may be a very effective method for diagnosing secondary bacterial infections in COVID-19 individuals self-medicating with antibiotics. Utilizing this strategy as an initial screen in COVID-19 patients who exhibit signs of sepsis and clinical deterioration will result in a faster recovery time and a shorter period of hospitalization.
Collapse
|
21
|
Comparing the Occurrence of Healthcare-Associated Infections in Patients with and without COVID-19 Hospitalized during the Pandemic: A 16-Month Retrospective Cohort Study in a Hospital Intensive Care Unit. J Clin Med 2022; 11:jcm11051446. [PMID: 35268538 PMCID: PMC8910983 DOI: 10.3390/jcm11051446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has increased the healthcare-associated infection (HAI) risk in intensive care unit (ICU) patients. However, a comparison between patients with and without COVID-19 in terms of HAI incidence has been rarely explored. In this study, we characterized the occurrence of HAI among patients with and without COVID-19 admitted to the ICU of the Umberto I hospital of Rome during the first 16 months of the pandemic and also identified risk factors for HAI acquisition. Patients were divided into four groups according to their ICU admission date. A multivariable conditional risk set regression model for multiple events was constructed for each admission period. Adjusted hazard ratios and 95% confidence intervals were calculated. Overall, 352 COVID-19 and 130 non-COVID-19 patients were included, and a total of 361 HAIs were recorded. We found small differences between patients with and without COVID-19 in the occurrence and type of HAI, but the infections in the two cohorts mostly involved different microorganisms. The results indicate that patient management was likely an important factor influencing the HAI occurrence during the pandemic. Effective prevention and control strategies to reduce HAI rates should be implemented.
Collapse
|
22
|
The Puzzles of Ventilator-Associated Pneumonia and COVID-19: Absolute Knowns and Relative Unknowns. Crit Care Med 2022; 50:894-896. [PMID: 35120039 PMCID: PMC9005095 DOI: 10.1097/ccm.0000000000005475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|