1
|
Liu T, Gu Y, Zhao Y, Li Y. Nanomaterials in gastric cancer: pioneering precision medicine for diagnosis, therapy, and prevention. Med Oncol 2025; 42:93. [PMID: 40050498 DOI: 10.1007/s12032-025-02650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Gastric cancer (GC) continues to be a major health issue globally due to its high rates of both occurrence and mortality. Despite advancements in treatment, the outlook for those affected remains poor, highlighting the critical need for new diagnostic and treatment methods. Nanotechnology, especially nanoparticles, is emerging as a crucial innovation in cancer care by improving imaging, targeting drug delivery, and enhancing early detection. These nanoparticles are also enhancing the effectiveness of treatments like phototherapy, chemotherapy, and immunotherapy. Notably, they show potential in addressing infections like Helicobacter pylori (H. pylori), which is known to increase the risk of developing GC. This review underscores the pivotal role of nanotechnology in enhancing the integrated management of GC, offering a basis for future advancements in the field.
Collapse
Affiliation(s)
- Tiantian Liu
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yanmei Gu
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yang Zhao
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yumin Li
- Lanzhou University Second Clinical Medical School, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Perveen S, Zhai R, Chen X, Kanwal T, Shah MR, Lu M, Ding B, Jin M. Synthesis of high-performance antibacterial agent based on incorporated vancomycin into MOF-modified lignin nanocomposites. Int J Biol Macromol 2024; 274:133339. [PMID: 38917916 DOI: 10.1016/j.ijbiomac.2024.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The alarming rise in antibiotic resistance necessitates urgent action, particularly against the backdrop of resistant bacteria evolving to render conventional antibiotics less effective, leading to an increase in morbidity, mortality, and healthcare costs. Vancomycin-loaded Metal-Organic Framework (MOF) nanocomposites have emerged as a promising strategy in enhancing the eradication of pathogenic bacteria. This study introduces lignin as a novel synergistic agent in Vancomycin-loaded MOF (Lig-Van-MOF), which substantially enhances the antibacterial activity against drug-resistant bacteria. Lig-Van-MOF exhibits six-fold lower minimum inhibitory concentration (MICs) than free vancomycin and Van-MOF with a much higher antibacterial potential against sensitive and resistant strains of Staphylococcus aureus and Escherichia coli. Remarkably, it reduces biofilms of these strains by over 85 % in minimal biofilm inhibitory concentration (MBIC). Utilization of lignin to modify surface properties of MOFs improves their adhesion to bacterial membranes and boosts the local concentration of Reactive Oxygen Species (ROS) via unique synergistic mechanism. Additionally, lignin induces substantial cell deformation in treated bacterial cells. It confirms the superior bactericidal properties of Lig-Van-MOF against Staphylococcus species, underlining its significant potential as a bionanomaterial designed to combat antibiotic resistance effectively. This research paves the way for novel antibacterial platforms that optimize cost-efficiency and broaden microbial resistance management applications.
Collapse
Affiliation(s)
- Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Xiangxue Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Tasmina Kanwal
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
3
|
Jabbar A, Rehman K, Jabri T, Kanwal T, Perveen S, Rashid MA, Kazi M, Ahmad Khan S, Saifullah S, Shah MR. Improving curcumin bactericidal potential against multi-drug resistant bacteria via its loading in polydopamine coated zinc-based metal-organic frameworks. Drug Deliv 2023; 30:2159587. [PMID: 36718806 PMCID: PMC9891165 DOI: 10.1080/10717544.2022.2159587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Multi-drug resistant (MDR) bactearial strains have posed serious health issues, thus leading to a significant increase in mortality, morbidity, and the expensive treatment of infections. Metal-organic frameworks (MOFs), comprising metal ions and a variety of organic ligands, have been employed as an effective drug deliveryy vehicle due to their low toxicity, biodegradability, higher structural integrity and diverse surface functionalities. Polydopamine (PDA) is a versatile biocompatible polymer with several interesting properties, including the ability to adhere to biological surfaces. As a result, modifying drug delivery vehicles with PDA has the potential to improve their antimicrobial properties. This work describes the preparation of PDA-coated Zn-MOFs for improving curcumin's antibacterial properties against S. aureus and E. coli. Powder X-ray diffraction (P-XRD), FT-IR, scanning electron microscopy (SEM), and DLS were utilized to characterize PDA-coated Zn-MOFs. The curcumin loading and in vitro release of the prepared MOFs were also examined. Finally, the MOFs were tested for bactericidal ability against E. coli and S. aureus using an anti-bacterial assay and surface morphological analysis. Smaller size MOFs were capable of loading and releasing curcumin. The findings showed that as curcumin was encapsulated into PDA-coated MOFs, its bactericidal potential was significantly enhanced, and the findings were further supported by SEM which indicated the complete morphological distortion of the bacteria after treatment with PDA-Cur-Zn-MOFs. These studies clearly indicate that the PDA-Cur-Zn-MOFs developed in this study are extremely promising for long-term release of drugs to treat a wide range of microbial infections.
Collapse
Affiliation(s)
- Abdul Jabbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khadija Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Tooba Jabri
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, Saudi Arabia,Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia,Md Abdur Rashid Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha62529, Saudi Arabia; Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan,Pakistan Forest Institute, Peshawar, Pakistan
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan,CONTACT Muhammad Raza Shah International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, 74200Karachi, Pakistan
| |
Collapse
|
4
|
Gao Q, Bai Q, Zheng C, Sun N, Liu J, Chen W, Hu F, Lu T. Application of Metal–Organic Framework in Diagnosis and Treatment of Diabetes. Biomolecules 2022; 12:biom12091240. [PMID: 36139080 PMCID: PMC9496218 DOI: 10.3390/biom12091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes-related chronic wounds are often accompanied by a poor wound-healing environment such as high glucose, recurrent infections, and inflammation, and standard wound treatments are fairly limited in their ability to heal these wounds. Metal–organic frameworks (MOFs) have been developed to improve therapeutic outcomes due to their ease of engineering, surface functionalization, and therapeutic properties. In this review, we summarize the different synthesis methods of MOFs and conduct a comprehensive review of the latest research progress of MOFs in the treatment of diabetes and its wounds. State-of-the-art in vivo oral hypoglycemic strategies and the in vitro diagnosis of diabetes are enumerated and different antimicrobial strategies (including physical contact, oxidative stress, photothermal, and related ions or ligands) and provascular strategies for the treatment of diabetic wounds are compared. It focuses on the connections and differences between different applications of MOFs as well as possible directions for improvement. Finally, the potential toxicity of MOFs is also an issue that we cannot ignore.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingli Lu
- Correspondence: ; Tel.: +86-136-5918-8506
| |
Collapse
|
5
|
Gastric Cancer Due to Chronic H. pylori Infection: What We Know and Where We Are Going. Diseases 2022; 10:diseases10030057. [PMID: 36135213 PMCID: PMC9498082 DOI: 10.3390/diseases10030057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Helicobacter pylori is an established cause of many gastrointestinal pathologies including peptic ulcer disease, gastritis, and gastric cancer. It is an entity that affects the global population, and its true nature has only been known since the 1980s. Although there is much known about H. pylori including its pathophysiology, detection, and eradication, resistance to current therapy models is common. This is problematic because untreated or inadequately treated H. pylori increases morbidity and mortality related to gastric cancer and peptic ulcer disease among others. In order to improve the treatment and reduce resistance, there is significant ongoing research identifying new detection and eradication methods for H. pylori. This review aims to highlight what has already been established regarding H. pylori’s epidemiology, pathophysiology, detection, and treatment as well as the most current and novel research involving detection and treatment of H. pylori.
Collapse
|
6
|
Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics (Basel) 2022; 11:696. [PMID: 35625340 PMCID: PMC9137731 DOI: 10.3390/antibiotics11050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
To combat the public health threat posed by multiple-drug-resistant (MDR) pathogens, new drugs with novel chemistry and modes of action are needed. In this study, several drugs including Hesperidin (HES), curcumin (CUR), and Amphotericin B (AmpB) drug-nanoparticle formulations were tested for antibacterial strength against MDR Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, Methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae, and Gram-negative bacteria, including Escherichia coli K1, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens. Nanoparticles were synthesized and subjected to Atomic force microscopy, Fourier transform-infrared spectroscopy, and Zetasizer for their detailed characterization. Antibacterial assays were performed to determine their bactericidal efficacy. Lactate dehydrogenase (LDH) assays were carried out to measure drugs' and drug-nanoparticles' cytotoxic effects on human cells. Spherical NPs ranging from 153 to 300 nm were successfully synthesized. Results from antibacterial assays revealed that drugs and drug-nanoparticle formulations exerted bactericidal activity against MDR bacteria. Hesperidin alone failed to exhibit antibacterial effects but, upon conjugation with cinnamic-acid-based magnetic nanoparticle, exerted significant bactericidal activity against both the Gram-positive and Gram-negative isolates. AmpB-LBA-MNPs produced consistent, potent antibacterial efficacy (100% kill) against all Gram-positive bacteria. AmpB-LBA-MNPs showed strong antibacterial activity against Gram-negative bacteria. Intriguingly, all the drugs and their conjugated counterpart except AmpB showed minimal cytotoxicity against human cells. In summary, these innovative nanoparticle formulations have the potential to be utilized as therapeutic agents against infections caused by MDR bacteria and represent a significant advancement in our effort to counter MDR bacterial infections.
Collapse
Affiliation(s)
- Noor Akbar
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 26521, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| |
Collapse
|
7
|
Orafa Z, Bakhshi H, Arab-Ahmadi S, Irani S. Laponite/amoxicillin-functionalized PLA nanofibrous as osteoinductive and antibacterial scaffolds. Sci Rep 2022; 12:6583. [PMID: 35449188 PMCID: PMC9023499 DOI: 10.1038/s41598-022-10595-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/11/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, Amoxicillin (AMX) was loaded on laponite (LAP) nanoplates and then immobilized on the surface of electrospun polylactic acid (PLA) nanofibers to fabricate scaffolds with osteoinductive and antibacterial activities. The highest loading efficiency (49%) was obtained when the concentrations of AMX and LAP were 3 mg/mL and 1 mg/mL, respectively. FTIR and XRD spectroscopies and zeta potentiometry confirmed the successful encapsulating of AMX within LAP nanoplates. The immobilization of AMX-loaded LAPs on the surface of PLA nanofibers was verified by SEM and FTIR spectroscopy. In vitro release study showed a two-phase AMX release profile for the scaffolds; an initial burst release within the first 48 h and a later sustained release up to 21 days. In vitro antibacterial tests against Staphylococcus aureus and Escherichia coli presented the ability of scaffolds to inhibit the growth of both bacteria. The biocompatibility assays revealed the attachment and viability of human bone marrow mesenchymal stem cells (hBMSCs) cultured on the surface of scaffolds (p ≤ 0.05). The increased ALKALINE PHOSPHATASE (ALP) activity (p ≤ 0.001), calcium deposition, and expression of ALP and OSTEONECTIN genes indicated the osteoinductivity of functionalized scaffolds for hBMSCs. These LAP/AMX-functionalized scaffolds might be desirable candida for the treatment of bone defects.
Collapse
Affiliation(s)
- Zahra Orafa
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Bakhshi
- Department of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research, Geiselbergstraße 68, 14476, Potsdam, Germany
| | - Samira Arab-Ahmadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|