1
|
Abdank L, Loncaric I, Braun SD, Müller E, Monecke S, Ehricht R, Krametter-Frötscher R. Characterizing Methicillin-Resistant Staphylococcus spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli in Cattle. Animals (Basel) 2024; 14:3383. [PMID: 39682349 DOI: 10.3390/ani14233383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In the field of cattle medicine in Austria, to date, few studies have investigated the presence of methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing Escherichia coli in Austria. For this reason, milk and nasal samples were examined for the presence of methicillin-resistant Staphylococcus aureus as well as fecal samples for extended-spectrum cephalosporin-resistant Escherichia coli. The nasal and fecal swabs were collected during the veterinary treatment of calf pneumonia and calf diarrhea. For the milk samples, the first milk jets were milked into a pre-milking cup and then the teats were cleaned and disinfected before the samples were taken. The cows were selected during the veterinary visits to the farms when treatment was necessary due to mastitis. Depending on the severity of the mastitis (acute mastitis or subclinical mastitis), antibiotics and non-steroidal anti-inflammatory drugs were given immediately (acute disease) or after completion of the antibiogram (subclinical disease). Isolates were characterized by a polyphasic approach including susceptibility pheno- and genotyping and microarray-based assays. No methicillin-resistant Staphylococcus aureus was found in the milk samples, but one nasal swab was positive for methicillin-resistant Staphylococcus aureus. Twenty-two Escherichia coli isolates were detected among the fecal samples. All the Escherichia coli isolates were resistant to ceftazidime. In all the Escherichia coli isolates, genes from the blaCTX family were detected with other bla genes or alone; the most frequently observed β-lactamase gene was blaCTX-M-1/15 (n = 20). In total, 63.6% (n = 14) of the isolates exhibited a multidrug-resistant phenotype and one E. coli isolate (4.5%) harbored the AmpC gene. Precisely because the presence of data regarding extended-spectrum cephalosporin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus in calves and cows in Austria is rare, this study further expands our understanding of antimicrobial resistance in Austrian cattle, which is highly relevant for successful antibiotic therapy in sick cattle.
Collapse
Affiliation(s)
- Lisa Abdank
- Clinical Centre for Ruminant and Camelid Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
2
|
Singh H, Neha K, Kumar R, Kaushik P, Singh AK, Singh G. Role of infrastructure and operation in disease prevalence in dairy farms: groundwork for disease prevention-based antibiotic stewardship. Prev Vet Med 2024; 225:106158. [PMID: 38447491 DOI: 10.1016/j.prevetmed.2024.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Attempts at regulating misuse of antibiotics in the dairy industry have been ineffective, especially in low- and middle-income countries, who also typically have high burden of preventable infectious disease, we propose a disease prevention-based approach to minimize the need and in turn consumption of antibiotics in dairy farms. Since the immediate environment of the animals is key to disease prevalence, we targeted the infrastructure- and operation-related factors in dairy farms and their link with prevalence of most common diseases and symptoms. We conducted four focused group discussions and a cross-sectional survey in 378 dairy farms to investigate disease prevalence and associated infrastructural (housing system, and manger shape), and operational (waste management, feed management, and type of cleaning agent) parameters. The most common diseases (Mastitis and secondary infections related to Foot-and-mouth disease) and symptoms (fever and diarrhoea) in the focus area were linked with the infrastructural and operational factors on the dairy farm with higher disease prevalence reported in dairy farms, where the animals were exposed to variations in diurnal temperatures or were hard to clean. We further used ML classifiers - Neural Network (NN), k-Nearest Neighbour (kNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) - to corroborate the relationship between infrastructure and operations of the dairy farms and disease prevalence- The DT classifier on randomly sampled data could predict the prevalence of the two most common diseases (accuracy = 92%, F1-score = 0.919) Our results open new avenues for cost-effective interventions such as use of curve-edged mangers, use of rubber mats on floors, not reusing leftover feed etc. in dairy farms to prevent the most common diseases and symptoms in dairy farms and reduce the need and consumption of antibiotics.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Kumari Neha
- College of Veterinary and Animal Science, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar 263145, India
| | - Rajesh Kumar
- College of Veterinary and Animal Science, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar 263145, India
| | - Pallavi Kaushik
- Department of Computer Science Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Awanish Kumar Singh
- College of Veterinary and Animal Science, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar 263145, India
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
3
|
Werner T, Käsbohrer A, Wasner B, Köberl-Jelovcan S, Vetter SG, Egger-Danner C, Fuchs K, Obritzhauser W, Firth CL. Antimicrobial resistance and its relationship with antimicrobial use on Austrian dairy farms. Front Vet Sci 2023; 10:1225826. [PMID: 37546336 PMCID: PMC10403287 DOI: 10.3389/fvets.2023.1225826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of this study was to investigate the prevalence of ESBL/AmpC-producing E. coli and the resistance pattern of commensal E. coli, as well as the link between the use of antibiotics (AMU) and the occurrence of resistance in E. coli on Austrian dairy farms. AMU data from 51 farms were collected over a one-year period in 2020. Fecal samples were collected from cows, pre-weaned and weaned calves in 2020 and 2022. Samples were then analyzed using non-selective and selective agar plates, E. coli isolates were confirmed by MALDI-TOF analysis. Broth microdilution was used for antimicrobial susceptibility testing. The AMU of each farm was quantified as the number of Defined Daily Doses (nDDDvet) and Defined Course Doses (nDCDvet) per cow and year. Cephalosporins (mean 1.049; median 0.732 DDDvet/cow/year) and penicillins (mean 0.667; median 0.383 DDDvet/cow/year) were the most frequently used antibiotics on these farms, followed by tetracyclines (mean 0.275; median 0.084 DDDvet/cow/year). In 2020, 26.8% of the E. coli isolated were resistant to at least one antibiotic class and 17.7% of the isolates were classified as multidrug resistant (≥3 antibiotic classes). Out of 198 E. coli isolates, 7.6% were identified as extended-spectrum/AmpC beta-lactamase (ESBL/AmpC) producing E. coli. In 2022, 33.7% of E. coli isolates showed resistance to at least one antibiotic and 20.0% of isolates displayed multidrug resistance. Furthermore, 29.5% of the samples carried ESBL/AmpC-producing E. coli. In 2020 and 2022, the most frequently determined antibiotic resistances among commensal E. coli isolates were to tetracyclines, sulfonamides and penicillins. In addition, pre-weaned calves had the highest resistance rates in both years. Statistical analyses showed a significant association between low and high use AMU classifications for penicillins (in nDDDvet/cow/year) and their respective resistance among commensal E. coli isolates in 2020 (p = 0.044), as well as for sulfonamide/trimethoprim (p = 0.010) and tetracyclines (p = 0.042). A trend was also noted between the total amount of antibiotics used on farm in 2020 (by nDDDvet/cow/year) and multidrug resistances in commensal E. coli isolated on farm that year (p = 0.067). In conclusion, the relationship between AMU and antimicrobial resistance (AMR) on dairy farms continues to be complex and difficult to quantify.
Collapse
Affiliation(s)
- Thomas Werner
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Annemarie Käsbohrer
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Barbara Wasner
- Upper Austrian Animal Health Organization Laboratory, Clinical Microbiology, Upper Austrian Animal Health Organization, Ried im Innkreis, Austria
| | - Sandra Köberl-Jelovcan
- Institute for Medical Microbiology and Hygiene, Centre for Foodborne Infectious Diseases, Division of Public Health, Austrian Agency for Health and Food Safety (AGES), Graz, Austria
| | - Sebastian G. Vetter
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Klemens Fuchs
- Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Graz, Austria
| | - Walter Obritzhauser
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Veterinary Practice, Parschlug, Austria
| | - Clair L. Firth
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Rhouma M, Soufi L, Cenatus S, Archambault M, Butaye P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet Sci 2022; 9:480. [PMID: 36136696 PMCID: PMC9503504 DOI: 10.3390/vetsci9090480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Soufi
- Department of Microbiology, Faculty of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (BVBGR)-LR11ES31, Higher Institute for Biotechnology, University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia
| | - Schlasiva Cenatus
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| |
Collapse
|
5
|
Abstract
Antibiotics have long been used for the prevention and treatment of common diseases and for prophylactic purposes in dairy animals. However, in recent decades it has become a matter of concern due to the widespread belief that there has been an abuse or misuse of these drugs in animals and that this misuse has led to the presence of residues in derived foods, such as milk and dairy products. Therefore, this review aims to compile the scientific literature published to date on the presence of antibiotic residues in these products worldwide. The focus is on the reasons that lead to their presence in food, on the potential problems caused by residues in the characteristics of dairy products and in their manufacturing process, on the development and spread of antibiotic-resistant bacteria, and on the effects that both residues and resistant bacteria can cause on human and environmental health.
Collapse
|
6
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Staphylococcus aureus in cattle and horses. EFSA J 2022; 20:e07312. [PMID: 35582361 PMCID: PMC9087474 DOI: 10.2903/j.efsa.2022.7312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) was identified among the most relevant antimicrobial-resistant (AMR) bacteria in the EU for cattle and horses in previous scientific opinions. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR S. aureus can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (60-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2 and 4 (Categories A, B and D; 1-5%, 5-10% and 10-33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Sections 3 and 5 (Categories C and E, 33-90% and 60-90% probability of meeting the criteria, respectively). The animal species to be listed for AMR S. aureus according to Article 8 criteria include mainly mammals, birds, reptiles and fish.
Collapse
|