1
|
Plummer P, Fajt VR. Biosecurity Practices to Enhance Responsible Antimicrobial Use and Reduce the Burden of Antimicrobial Resistance. Vet Clin North Am Food Anim Pract 2025; 41:25-37. [PMID: 39550313 DOI: 10.1016/j.cvfa.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024] Open
Abstract
The article shows the case for using biosecurity measures to mitigate antimicrobial resistance (AMR) in beef and dairy production through actions of veterinarians and animal caretakers. The impact of biosecurity on the prevention of bacterial infections is discussed, with the goal being to reduce the need for antimicrobial drugs. This is expected to reduce the selection for AMR in pathogens and commensal bacterial organisms in beef and dairy animals. The potential impact of biosecurity on the prevention of dissemination of antimicrobial resistant bacteria and AMR genes in the environment is also described.
Collapse
Affiliation(s)
- Paul Plummer
- College of Veterinary Medicine, University of Tennessee, A102 Veterinary Medical Center, 2407 River Drive, Knoxville, TN 37996-4503, USA
| | - Virginia R Fajt
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA.
| |
Collapse
|
2
|
Singh CK, Sodhi KK. Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings. Crit Rev Microbiol 2024:1-19. [PMID: 39552541 DOI: 10.1080/1040841x.2024.2429603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/01/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Antibiotic resistance has expanded as a result of the careless use of antibiotics in the medical field, the food industry, agriculture, and other industries. By means of genetic recombination between commensal and pathogenic bacteria, the microbes obtain antibiotic resistance genes (ARGs). In bacteria, horizontal gene transfer (HGT) is the main mechanism for acquiring ARGs. With the development of high-throughput sequencing, ARG sequence analysis is now feasible and widely available. Preventing the spread of AMR in the environment requires the implementation of ARGs mapping. The metagenomic technique, in particular, has helped in identifying antibiotic resistance within microbial communities. Due to the exponential growth of experimental and clinical data, significant investments in computer capacity, and advancements in algorithmic techniques, the application of machine learning (ML) algorithms to the problem of AMR has attracted increasing attention over the past five years. The review article sheds a light on the application of bioinformatics for the antibiotic resistance monitoring. The most advanced tool currently being employed to catalog the resistome of various habitats are metagenomics and metatranscriptomics. The future lies in the hands of artificial intelligence (AI) and machine learning (ML) methods, to predict and optimize the interaction of antibiotic-resistant compounds with target proteins.
Collapse
Affiliation(s)
| | - Kushneet Kaur Sodhi
- Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Tarrah A, Zhang D, Darvishzadeh P, LaPointe G. The Contribution of Dairy Bedding and Silage to the Dissemination of Genes Coding for Antimicrobial Resistance: A Narrative Review. Antibiotics (Basel) 2024; 13:905. [PMID: 39335078 PMCID: PMC11428397 DOI: 10.3390/antibiotics13090905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR) is a concern in the dairy industry. Recent studies have indicated that bedding serves as a reservoir for antimicrobial-resistant bacteria and antimicrobial-resistance genes (ARGs), while silage has been proposed as another possible source. The impact of AMR in dairy farming can be significant, resulting in decreased productivity and economic losses for farmers. Several studies have highlighted the safety implications of AMR bacteria and genes in bedding and silage, emphasizing the need for further research on how housing, bedding, and silage management affect AMR in farm environments. Exposure to sub-lethal concentrations of antibiotics, such as those from contaminated bedding and silage, can prompt bacteria to develop resistance mechanisms. Thus, even if antimicrobial usage is diminished, ARGs may be maintained in the dairy farm environment. By implementing proactive measures to tackle AMR in dairy farming, we can take steps to preserve the health and productivity of dairy cattle while also protecting public health. This involves addressing the prudent use of antibiotics during production and promoting animal welfare, hygiene, and management practices in bedding and farm environments to minimize the risk of AMR development and spread. This narrative review compiles the growing research, positioning the contribution of bedding and silage to the prevalence and dissemination of AMR, which can elicit insights for researchers and policymakers.
Collapse
Affiliation(s)
- Armin Tarrah
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dong Zhang
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Pariya Darvishzadeh
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gisèle LaPointe
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Agga GE, Amenu K. Editorial: Antimicrobial resistance in food-producing environments: a One Health approach. FRONTIERS IN ANTIBIOTICS 2024; 3:1436987. [PMID: 39816248 PMCID: PMC11731954 DOI: 10.3389/frabi.2024.1436987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, KY, United States
| | - Kebede Amenu
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Agga GE, Durso LM, Sistani KR. Effect of poultry litter soil amendment on antibiotic-resistant Escherichia coli. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:300-313. [PMID: 38576271 DOI: 10.1002/jeq2.20560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Given the high cost and non-renewability of mineral-based fertilizers, there is increasing interest in the innovative use of manure-based materials, such as poultry litter (PL). However, manure-based fertilizers add both nutrients and microbes to the soil, including antibiotic-resistant Escherichia coli (AREc). PL soil amendment impact on AREc in corn fields was evaluated in a randomized field experiment (May-October 2017). Two winter cropping systems (fallow and cover crop) were assigned to whole plots, with three spring-applied fertilizer treatments (untreated control [UC], PL, and commercial fertilizer [CF]) assigned to subplots. Soil was collected from 0 to 15 cm on days 0, 7, 28, 70, 98, and 172 post-treatment applications. Samples were cultured for the enumeration and prevalence of generic, tetracycline-resistant (TETr), third-generation cephalosporin-resistant (3GCr) E. coli isolates, and extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. PL soil amendment significantly (p < 0.05) increased the levels of generic E. coli, TETr E. coli, and 3GCr E. coli on days 7 and 28 compared to UC or CF. Beyond day 28, AREc did not significantly (p > 0.05) differ by fertilizer treatment and returned to baseline on day 70. ESBL-producing Enterobacteriaceae were detected from 16 samples, mostly on day 70. Cover crop significantly decreased TETr E. coli concentration on day 28, with no significant effects on the prevalence of 3GCr E. coli and ESBL-producing Enterobacteriaceae compared to no cover crop. All ESBL-producing Enterobacteriaceae and 79% of the 3GCr E. coli isolates were positive for blaCTX-M gene by polymerase chain reaction. Results show that PL soil amendment transiently increases the levels of AREc compared to mineral fertilizer.
Collapse
Affiliation(s)
- Getahun E Agga
- USDA-ARS, Food Animal Environmental Research Unit, Bowling Green, Kentucky, USA
| | - Lisa M Durso
- USDA-ARS, Agroecosystem Management Research Unit, Lincoln, Nebraska, USA
| | - Karamat R Sistani
- USDA-ARS, Food Animal Environmental Research Unit, Bowling Green, Kentucky, USA
| |
Collapse
|
6
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
7
|
Aditya A, Tabashsum Z, Martinez ZA, Biswas D. Effects of Metabolites of Lactobacillus casei on Expression and Neutralization of Shiga Toxin by Enterohemorrhagic Escherichia coli. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10212-8. [PMID: 38224447 DOI: 10.1007/s12602-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Shiga toxin (stx), produced by enterohemorrhagic Escherichia coli (EHEC) or Shigella, causes hemolytic uremic syndrome (HUS) in humans. EHEC-mediated illnesses are recommended to treat by immune supportive strategies, instead of antibiotic therapy. Widely used probiotic Lactobacillus casei produces many bioactive metabolites, i.e., conjugated linoleic acids (CLAs) which have potential to educate host immunity and control EHEC growth and expression of its virulence genes. In this study, it was found that total metabolites of L. casei exerted a protective effect on Gb3 receptor containing mammalian cells against stx exposure.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program, University of Maryland, College Park, MD, 20742, USA
| | | | - Debabrata Biswas
- Department of Animal Sciences, University of Maryland, College Park, MD, 20742, USA.
- Biological Sciences Program, University of Maryland, College Park, MD, 20742, USA.
- Centre for Food Safety and Security Systems, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Issahaku M, Derkyi NSA, Kemausuor F. A systematic review of the design considerations for the operation and maintenance of small-scale biogas digesters. Heliyon 2024; 10:e24019. [PMID: 38230247 PMCID: PMC10789629 DOI: 10.1016/j.heliyon.2024.e24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
This review investigates small-scale biogas digesters' design and construction considerations to address biogas digesters' failures shortly after installation. The frequent failures of small-scale or household biogas digesters negatively affect its adoption as a clean domestic cooking fuel in developing countries, affecting the achievement of Sustainable Development Goal (SDG) 7. The study considered Scopus database-indexed peer-reviewed journals published between 2000 and 2022. Selected papers focussed on real-time monitoring, stirring mechanisms, and temperature control systems based on predefined inclusion and exclusion criteria with initial search results of 4751 documents, narrowing to 55 papers. The PRISMA 2020 statement was adopted to conduct the study. The study highlights the importance of incorporating a real-time monitoring system as a design factor in small-scale biogas digesters for successful operation and maintenance. The study's findings may be helpful to practitioners, policymakers, and researchers promoting sustainable energy and waste management solutions in low-resource settings.
Collapse
Affiliation(s)
- Mubarick Issahaku
- Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, Sunyani, Ghana
- Energy Technology Centre, School of Engineering, University for Development Studies, P. O. Box TL 1350, Tamale, Ghana
| | - Nana Sarfo Agyemang Derkyi
- Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, Sunyani, Ghana
| | - Francis Kemausuor
- The Brew-Hammond Energy Center, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
9
|
Liu L, Yin Q, Hou Y, Ma R, Li Y, Wang Z, Yang G, Liu Y, Wang H. Fungus reduces tetracycline-resistant genes in manure treatment by predation of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167462. [PMID: 37783436 DOI: 10.1016/j.scitotenv.2023.167462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
New strategies to remove antibiotic resistance genes (ARGs), one of the most pressing threats to public health, are urgently needed. This study showed that the fungus Phanerochaete chrysosporium seeded to a composting reactor (CR) could remarkably reduce tetracycline-resistant genes (TRGs). The reduction efficiencies for the five main TRGs (i.e., tetW, tetO, tetM, tetPA, and tet(32)) increased by 8 to 100 folds compared with the control without P. chrysosporium, and this could be attributed to the decrease in the quantity of bacteria. Enumeration based on green fluorescence protein labeling further showed that P. chrysosporium became dominant in the CR. Meanwhile, the bacteria in the CR invaded the fungal cells via the cell wall defect of chlamydospore or active invasion. Most of the invasive bacteria trapped inside the fungus could not survive, resulting in bacterial death and the degradation of their TRGs by the fungal nucleases. As such, the predation of tetracycline-resistant bacteria by P. chrysosporium was mainly responsible for the enhanced removal of TRGs in the swine manure treatment. This study offers new insights into the microbial control of ARGs.
Collapse
Affiliation(s)
- Lei Liu
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qianxi Yin
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Hou
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Rui Ma
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yi Li
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhenyu Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ganggang Yang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hailei Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
10
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
11
|
Agga GE, Galloway HO. Dynamics of Extended-spectrum Beta-lactamase-producing, Third-generation Cephalosporin-resistant and Tetracycline-resistant Escherichia coli in Feedlot Cattle With or Without Tylosin Administration. J Food Prot 2023; 86:100144. [PMID: 37597606 DOI: 10.1016/j.jfp.2023.100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
The impact of in-feed use of tylosin in feedlot cattle on Gram-negative foodborne bacteria is unknown. We evaluated the effect of continuous in-feed tylosin use on the concentration and prevalence of tetracycline-resistant (TETr)-, third-generation cephalosporin-resistant (3GCr)-, and extended-spectrum β-lactamase-producing (ESBLs) E. coli in feedlot cattle. A cohort of weaned calves (10 animals/group) were randomized to receive a feed ration with or without tylosin. Fecal samples, regularly collected over the entire feeding period, and pen surface and feed samples, collected at the end of the feeding period, were cultured on selective media. Enumeration and binary outcomes were analyzed by mixed effects linear regression or logistic regression, respectively, using treatment and days on feed as fixed factors, and animal ID as a random variable. Tylosin supplementation did not affect the fecal concentrations of TETrE. coli or fecal prevalence of 3GCrE. coli. However, cattle in the tylosin group were 1.5 times more likely (Odds ratio = 1.5: 95% confidence interval: 1.1-2.0) to harbor ESBLs E. coli than the control cattle. Regardless of tylosin treatment, fecal concentrations of TETrE. coli and the prevalence of 3GCr- and ESBLs-E. coli increased over time. Tylosin-supplemented feed did not affect the prevalence of TETrE. coli; 3GCr and ESBLs-E. coli were not detected from the feed samples. Most of the 3GCr- and ESBLs-E. coli isolates carried the blaCTX-M-15 gene, widely detected among ESBLs-E. coli human isolates. In summary, although in-feed tylosin use in feedlot cattle did not select for TETr- and 3GCr-E. coli, it increased the likelihood of detecting ESBL-producing E. coli. Furthermore, the study indicated that the feedlot production setting gradually increases the levels of E. coli resistant to the critically and/or important antibiotics for public health, indicating an increased risk of their dissemination beyond the feedlot environment.
Collapse
Affiliation(s)
- Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 2413 Nashville Road, B-5, Bowling Green, KY 42101, USA.
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
12
|
Kirmizakis P, Hinojosa-Prieto HR, Bilias F, Soupios P. Integrated environmental characterization and assessment of an exposed historic manure repository. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162184. [PMID: 36775178 DOI: 10.1016/j.scitotenv.2023.162184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Historic manure stockpiled (active from 1935 through 2018) in a repository mound approximately 15 m high with a 31,415.93 m2 footprint was sampled from various depths at six locations in an environmental assessment framework. The manure samples were analyzed for nutrient content to investigate potential application as a soil amendment to local fields in combination with biowaste disposal regulations. Results indicate that manure can be used as a soil amendment; however, different crops and land conditions require specific nutrients, and application must be determined accordingly. Likewise, the manure analysis did not indicate any negative issues that would disallow land application as a disposal option. In addition to limiting environmental soil boring into the manure repository, two-dimensional geophysical electrical resistivity imaging was performed to characterize and quantify the deposited manure. Based on those efforts, the material volume within the site's manure repository was calculated to be 611,942.354 cubic meters (m3). Finally, based on the geophysical results and the historical information about the manure's deposited volume in the study area, an estimation of the released landfill gases and its expected produced energy is presented.
Collapse
Affiliation(s)
- Panagiotis Kirmizakis
- Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | | | - Fotios Bilias
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Pantelis Soupios
- Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
13
|
Agga GE, Galloway HO, Appala K, Mahmoudi F, Kasumba J, Loughrin JH, Conte E. Effect of continuous in-feed administration of tylosin to feedlot cattle on macrolide and tetracycline resistant enterococci in a randomized field trial. Prev Vet Med 2023; 215:105930. [PMID: 37163775 DOI: 10.1016/j.prevetmed.2023.105930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Liver abscess causes substantial economic loss to the beef cattle industry through liver condemnation, reduced animal performance, and carcass yield. Continuous in-feed use of tylosin is the most effective and a commonly used practice in beef cattle production to prevent liver abscess. However, such mass medication can increase the level of antimicrobial resistant bacteria. We investigated the effect of continuous in-feed use of tylosin in feedlot cattle on (i) concentrations and prevalence of erythromycin-resistant (ERYr) and tetracycline-resistant (TETr) enterococci; (ii) associated antimicrobial resistance genes (ARGs) for resistance; (iii) species distribution; iv) macrolide and tetracycline resistance gene concentrations; and (v) tylosin concentration. A cohort of weaned calves were randomized to receive tylosin-medicated feed (Tylosin; n = 10) or nonmedicated feed (Control; n = 10) for a full feedlot cycle. Feces, feed and pen-surface samples were collected and processed by culture, droplet digital PCR, and liquid chromatography/mass spectroscopy for bacterial enumeration, detection and characterization, ARG quantification, and tylosin concentration, respectively. Data were analyzed by mixed effects linear- or binary-regression models depending on the outcomes. Tylosin administration significantly increased fecal concentration (P < 0.001) and prevalence (P = 0.021) of ERYr enterococci and erm(B) gene concentration (P < 0.001), compared to the control group. Interestingly, tylosin administration significantly reduced (P = 0.037) fecal TETr enterococci concentration compared to the control group, with no significant effect (P = 0.758) on fecal tet(M) concentration. In both treatment groups, enterococci concentrations increased over time, peaking on 174 days in feed before returning to the baseline. ERYr enterococci concentration was significantly (P = 0.012) higher in tylosin medicated feeds, with no significant effect (P = 0.321) on TETr enterococci concentration. Pen-surface concentration of ermB was significantly (P = 0.024) higher in the tylosin group, with no significant effect (P > 0.05) on bacterial concentrations. Increased diversity and a shift in the composition of enterococcal species and ARGs were observed over time, although tylosin use did not significantly affect (P > 0.05) their prevalence. Tylosin concentration was significantly higher in the feces of tylosin administered cattle (P < 0.001) and medicated feed (P = 0.027), with numerically higher pen-surface concentration (P = 0.065) in the tylosin group. In conclusion, continuous in-feed use of tylosin in feedlot cattle increases macrolide resistant enterococci and its fecal excretion, while decreasing tetracycline resistance. Two medically important species, E. faecium and E. faecalis, were predominant regardless of resistance status or sample source. Risk-based approaches including label changes to limit tylosin use such as withdrawal period, and development of effective manure treatments are potential areas of research to reduce environmental and public health impacts.
Collapse
Affiliation(s)
- Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, 2413 Nashville Road Building 5, Bowling Green, KY 42101, USA.
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY, USA
| | - Keerthi Appala
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Faranak Mahmoudi
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - John Kasumba
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - John H Loughrin
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, 2413 Nashville Road Building 5, Bowling Green, KY 42101, USA
| | - Eric Conte
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
14
|
Manyi-Loh CE, Okoh AI, Lues R. Occurrence and Multidrug Resistance in Strains of Listeria monocytogenes Recovered from the Anaerobic Co-Digestion Sludge Contained in a Single Stage Steel Biodigester: Implications for Antimicrobial Stewardship. Microorganisms 2023; 11:microorganisms11030725. [PMID: 36985298 PMCID: PMC10056191 DOI: 10.3390/microorganisms11030725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
L. monocytogenes is a zoonotic foodborne pathogen with inherent adaptability to tolerate environmental and physiological stresses, thereby causing severe disease outbreaks. Antibiotic resistant foodborne pathogens are a challenge to the food industry. A total of 18 samples were pooled from a bio-digester co-digesting swine manure/pinewood sawdust, and evaluated for the occurrence of bacterium plus total viable counts using the spread plate method. The recovered bacterial isolates were presumptively identified by growth on selective medium and confirmed by biochemical characterisation, leading to the isolation of 43 L. monocytogenes. The isolates were characterized based on their susceptibility to antibiotics via the Kirby-Bauer disc diffusion technique against a panel of 14 antibiotics. Equally, the multiple antibiotic resistance (MAR) index was calculated, and MAR phenotypes generated. The bacterial counts were between 102 and104 cfu/mL. Complete susceptibility (100%) was demonstrated to ampicillin, gentamicin and sulfamethoxazole, which are the drugs of choice in the treatment of listeriosis. In addition, intermediate sensitivity occurred at 25.58% to cefotaxime, and the highest resistance (51.16%) was exhibited against nalidixic acid. The MAR index ranged from 0 to 0.71. Overall, 41.86% of the Listeria isolates displayed multidrug resistance, with 18 different MAR phenotypes, demonstrating CIP, E, C, TET, AUG, S, CTX, NA, AML, NI as the greatest MAR phenotype. It can be concluded that the isolates yielding MAR > 0.2 originated from the farm, where antibiotics had been in routine use. Therefore, strict monitoring of antibiotics use in the farm is crucial to mitigate further increase in antibiotic resistance amongst these bacterial isolates.
Collapse
Affiliation(s)
- Christy Echakachi Manyi-Loh
- Centre of Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Bloemfontein 9301, South Africa
- Correspondence: ; Tel.: +27-738324268
| | - Anthony Ifeanyin Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ryk Lues
- Centre of Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Bloemfontein 9301, South Africa
| |
Collapse
|
15
|
Aditya A, Tabashsum Z, Alvarado Martinez Z, Wei Tung C, Suh G, Nguyen P, Biswas D. Diarrheagenic Escherichia coli and Their Antibiotic Resistance Patterns in Dairy Farms and Their Microbial Ecosystems. J Food Prot 2023; 86:100051. [PMID: 36916558 DOI: 10.1016/j.jfp.2023.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Ruminants are the largest reservoir for all types of Escherichia coli, including the pathogenic ones, which can potentially be transmitted to humans via the food chain and environment. A longitudinal study was performed to estimate the prevalence and antibiotic-resistant pattern of pathogenic E. coli (pE.coli) strains in dairy farm environments. A total of 846 environmental samples (water, lagoon slurry, bedding, feed, feces, soil, and compost) were collected in summer over two years from five dairy farms in Maryland, USA. An additional 40 soil samples were collected in winter and summer seasons for evaluating microbiome composition. Collected environmental samples were screened for the presence of pE.coli, which was isolated using a selective culture medium, for later confirmation and virotyping using PCR with specific primers. The overall prevalence of pE.coli in dairy farms was 8.93% (71/846), with the most common virotype identified in isolates being ETEC, followed by STEC. The highest pE.coli prevalence were recorded in lagoon slurry (21.57%) while the lowest was in compost heap (2.99%). Among isolates, 95.87% of the virotypes were resistant to 9 classes of antibiotics whereas only 4.12% were sensitive. The highest proportion (68.04%) of resistance was found for quinolones (e.g., ciprofloxacin). The resulting metagenomic analysis at the phylum and genus levels of the grazing land soil suggests that climatic conditions actively influence the abundance of bacteria. Proteobacteria, which contains many Gram-negative foodborne pathogens (including pE.coli), was the most predominant phylum, accounting for 26.70% and 24.93% of soil bacteria in summer and winter, respectively. In addition to relative abundance, there was no significant difference in species diversity between seasons when calculated via Simpson (D) and Shannon (H) index. This study suggests that antibiotic-resistant E. coli virotypes are present in the dairy farm environment, and proper steps are warranted to control its transmission irrespective of seasonality.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | | | - Chuan Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Grace Suh
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | - Phuong Nguyen
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Biological Sciences Program, University of Maryland, College Park, MD 20742, USA; Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
Chang D, Mao Y, Qiu W, Wu Y, Cai B. The Source and Distribution of Tetracycline Antibiotics in China: A Review. TOXICS 2023; 11:214. [PMID: 36976979 PMCID: PMC10052762 DOI: 10.3390/toxics11030214] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In recent years, antibiotics have been listed as a new class of environmental pollutants. Tetracycline antibiotics (TCs) used in human medical treatment, animal husbandry and agricultural production are the most widely used antibiotics. Due to their wide range of activities and low cost, their annual consumption is increasing. TCs cannot be completely metabolized by humans and animals. They can be abused or overused, causing the continuous accumulation of TCs in the ecological environment and potential negative effects on non-target organisms. These TCs may spread into the food chain and pose a serious threat to human health and the ecology. Based on the Chinese environment, the residues of TCs in feces, sewage, sludge, soil and water were comprehensively summarized, as well as the potential transmission capacity of air. This paper collected the concentrations of TCs in different media in the Chinese environment, contributing to the collection of a TC pollutant database in China, and facilitating the monitoring and treatment of pollutants in the future.
Collapse
|
17
|
Biodigestion System Made of Polyethylene and Polystyrene Insulator for Dog Farm (on the Example of the Republic of Chile). LIFE (BASEL, SWITZERLAND) 2022; 12:life12122039. [PMID: 36556404 PMCID: PMC9785096 DOI: 10.3390/life12122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Anaerobic digestion is a system that can have a high environmental impact through the use of different wastes to obtain biogas and its consequent use for the generation of renewable energy. The objective of this study was to implement a polyethylene biodigester, using polystyrene for thermal insulation in a dog kennel, using canine feces collected in the same place during a period of 5 months to obtain biogas and energy. The results indicated that biogas production started on day 30 and stopped during the winter period with low temperatures; therefore, from day 54 onwards, equine manure was added to continue producing biogas. Although biogas was obtained, the biodigester did not function optimally, due to the fact that the materials used in its construction did not provide efficient insulation from the low external temperatures; the low C/N ratio of the canine feces, which led to a reduction in the processing of the methanogenic bacteria; and the low amount of feces collected for use. In general, the use of a biodigester can provide a tool for the biological processing and management of organic waste, yielding a cumulative source of renewable energy and ensuring environmental safety.
Collapse
|
18
|
Agga GE, Galloway HO, Netthisinghe AMP. Effects of age and pasture type on the concentration and prevalence of tetracycline and macrolide resistant Enterococcus species in beef cow-calf production system. FRONTIERS IN ANTIBIOTICS 2022; 1:1052316. [PMID: 39816401 PMCID: PMC11733798 DOI: 10.3389/frabi.2022.1052316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2025]
Abstract
Enterococci are a normal flora of the gastrointestinal tracts of humans and animals. Enterococci can also cause life-threatening nosocomial infections. Antimicrobial-resistant Enterococcus species have been reported in the feedlot and dairy cattle productions and in meat and milk products, suggesting their foodborne importance. Cow-calf operations represent a significant segment in the beef production system by producing weaned calves. Weaned calves are brought into the feedlot to be finished for meat, and culled cows are also slaughtered for beef, primarily for ground beef products. Infection dynamics in the cow-calf operation can contribute to meat contamination. This study evaluated the effects of age and wheat grazing on the concentration and prevalence of a macrolide antibiotic erythromycin (ERYr) and tetracycline (TETr) resistant enterococci, associated resistance genes and species distribution in a cow-calf production system. In 2017 and 2018, 32 Angus breed cow-calf pairs were randomly assigned to feed on tall fescue or wheat pasture in two independent field experiments. During the grazing experiments of 2-3 weeks, fecal samples were collected weekly and cultured to enumerate, isolate and identify ERYr, TETr, and generic enterococci, using media supplemented with erythromycin, tetracycline or non-supplemented media, respectively. The two main species frequently associated with human illnesses, Enterococcus faecium and E. faecalis, were widely distributed in the cow-calf groups. Generic and TETr- enterococci were prevalent (96-100% prevalence) and abundant (3.2-4.9 log10 CFU/g) in the cow-calf population; however, ERYr enterococci were enumerable by direct plating only from a single cow despite being detected in at least 40% of the fecal samples after enrichment, showing their low abundance. TET- and ERY-resistance were mainly conferred by tet(M) and erm(B), respectively. Wheat grazing reduced the concentration of TETr enterococci and modified enterococcal species and resistance gene distributions. Hence, it is necessary to further investigate wheat grazing in cow-calf production as a potential strategy to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, KY, United States
| | - Hunter O. Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY, United States
| | - Annesly M. P. Netthisinghe
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY, United States
| |
Collapse
|
19
|
Agga GE, Galloway HO, Netthisinghe AMP, Schmidt JW, Arthur TM. Tetracycline-Resistant, Third-Generation Cephalosporin-Resistant, and Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Beef Cow-Calf Production System. J Food Prot 2022; 85:1522-1530. [PMID: 35981257 DOI: 10.4315/jfp-22-178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cow-calf production plays a significant role in the beef production chain. However, bacteria in these systems are not typically monitored for antimicrobial resistance (AMR). We determined the baseline level of AMR in fecal bacteria collected from preweaned calves prior to feedlot entry and evaluated the effects of type of graze and age on AMR occurrence. Two grazing experiments (16 cow-calf pairs each) were conducted on tall fescue or wheat. Fecal samples were cultured for the detection of tetracycline-resistant (TETr), third-generation cephalosporin-resistant (3GCr), and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Isolates were characterized for resistance to other antibiotics and resistance mechanisms. Concentrations (P < 0.001) and prevalence (P = 0.007) of TETrE. coli isolates were significantly higher in the calves (5.1 log CFU/g and 93%, respectively) than in the cows (4.4 log CFU/g and 80%, respectively). Wheat grazing did not affect TETr isolates phenotypically; however, it significantly expanded (P = 0.005) the resistant population carrying tet(A) over that carrying tet(B). Fecal prevalence of 3GCr and ESBL-producing isolates was 31.3 and 3.4%, respectively, with no significant effects of age (P = 0.340) or wheat grazing (P = 0.597). All 3GCr and ESBL-producing isolates were multidrug resistant (resistant to at least three antimicrobial classes). 3GCr isolates were positive for blaCMY-2 (73%) or blaCTX-M (27%), and blaCTX-M-15 was the most prevalent gene (94%, n = 17) among the CTX-M-positive isolates. Wheat grazing significantly expanded (P < 0.001) the 3GCr population carrying blaCTX-M and reduced the population carrying blaCMY-2. Five of the seven ESBL-producing isolates were positive for blaCTX-M. Our study revealed age-dependent occurrence of TETrE. coli and that wheat grazing expanded the resistant population carrying certain resistance genes. Cow-calf production is a significant reservoir for antibiotic-resistant bacteria of significant public health importance such as 3GCr and CTX-M ESBL-producing E. coli. HIGHLIGHTS
Collapse
Affiliation(s)
- Getahun E Agga
- U.S. Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, Bowling Green, Kentucky 42101
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, Kentucky 42101
| | - Annesly M P Netthisinghe
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, Kentucky 42101
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| |
Collapse
|
20
|
Marutescu LG, Jaga M, Postolache C, Barbuceanu F, Milita NM, Romascu LM, Schmitt H, de Roda Husman AM, Sefeedpari P, Glaeser S, Kämpfer P, Boerlin P, Topp E, Gradisteanu Pircalabioru G, Chifiriuc MC, Popa M. Insights into the impact of manure on the environmental antibiotic residues and resistance pool. Front Microbiol 2022; 13:965132. [PMID: 36187968 PMCID: PMC9522911 DOI: 10.3389/fmicb.2022.965132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent – cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| | - Mihaela Jaga
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Florica Barbuceanu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Nicoleta Manuela Milita
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Luminita Maria Romascu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Heike Schmitt
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Stefanie Glaeser
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Peter Kämpfer
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Department of Biology, Agriculture and Agri-Food Canada, University of Western Ontario, London, ON, Canada
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- *Correspondence: Gratiela Gradisteanu Pircalabioru,
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Mariana Carmen Chifiriuc,
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| |
Collapse
|
21
|
Gomes FBR, Fernandes PAA, Bottrel SEC, Brandt EMF, Pereira RDO. Fate, occurrence, and removal of estrogens in livestock wastewaters. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:814-833. [PMID: 36038979 DOI: 10.2166/wst.2022.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During the last decades, livestock and animal feeding operations have been expanded. In parallel, these activities are among the major sources of estrogens in the environment. Thus, considering the environmental and health risks associated with estrogenic compounds, this work reviews the fate, occurrence, and removal of free and conjugated E1, E2, and E3 in livestock wastewaters. A systematic literature review was carried out, and after applying the eligibility criteria, 66 peer-reviewed papers were selected. Results suggest high estrogen concentrations and, consequently, high estrogenic activity, especially in samples from swine farming. E1 and E2 are frequently found in wastewaters from bovine, swine, and other livestock effluents. Aerobic treatment processes were more efficient for estrogen removal, whereas anaerobic systems seem poorly effective. Removal efficiencies of estrogens and estrogenic activity of up to 90% were reported for constructed wetlands, advanced pond systems, trickling filters, membrane bioreactors, aerated and nitrifying reactors, combined air flotation, and vegetable oil capture processes. High concentrations found in wastewaters from livestock allied to the removal efficiencies reported for anaerobic processes (usually used to treat livestock wastewaters) evidence the importance of monitoring these compounds in environmental matrices.
Collapse
Affiliation(s)
- Fernanda Bento Rosa Gomes
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail:
| | - Pedro Antônio Alves Fernandes
- Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Sue Ellen Costa Bottrel
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail: ; Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Emanuel Manfred Freire Brandt
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail:
| | - Renata de Oliveira Pereira
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail: ; Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
22
|
Assessment Impacts of Ozone on Salmonella Typhimurium and Escherichia coli O157:H7 in Liquid Dairy Waste. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Liquid dairy manure, which is produced in enormous quantities in flush dairy manure management systems, is commonly used as an alternative to chemical fertilizers. It provides nutrient benefits to crops and soils. While dairy waste is a well-accepted and widely used fertilizer, the presence of indicator organisms and human pathogens in manure may lead to pathogen contamination in crops and soils. This study is focused on the examination of ozone gas-based sterilization. In the past, ozone (O3) has been used for sanitizing various foods and solid surfaces, but the potential of O3 for eliminating human pathogens in liquid dairy waste is not studied yet. Pathogens such as Salmonella Typhimurium and Escherichia coli O157:H7 are reported to be present in liquid dairy manure, and this research evaluated the effects of various levels of ozone on the survival of these two pathogens. We designed a continuous type O3 treatment system that has four major components: (1) ozone generator using oxygen; (2) ozone concentration control by mixing with pure air; (3) continuous monitoring of ozone concentrations; and (4) ozone experiment chambers. Various levels of ozone (43.26, 87.40, and 132.46 mg·L−1) were produced in the ozone system, and subsequently, ozone was diffused through liquid manure. Liquid manure was exposed to ozone for multiple durations (30, 60, and 120 min). To determine the effectiveness of O3 in eliminating pathogens, time-series samples were collected and analyzed for determining the levels of S. typhimurium and E. coli O157:H7. Preliminary results showed that ozone concentrations of 132.46 mg/L, and exposure time of 120 min resulted in the reduced levels of E. coli and Salmonella. Low levels of ozone and limited exposure time were found to be less effective in pathogen removal potentially due to high solid contents. Additional studies carrying out experiments to evaluate the impacts of solids in combination with ozone concentrations will provide further insights into developing full-scale ozone-based treatment systems.
Collapse
|