1
|
Oliveira TAS, Silva JBA, Silva NBS, Félix PCA, Dos Santos DA, de Oliveira AM, Martins CHG, Magalhães LG, Crotti AEM. Antibacterial and Antileishmanial Activity of 1,4-Dihydropyridine Derivatives. Chem Biodivers 2025; 22:e202401300. [PMID: 39231212 DOI: 10.1002/cbdv.202401300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
We have synthesized twenty-three 1,4-dihydropyridine derivatives (1,4-DHPs) by using a microwave-assisted one-pot multicomponent Hantzsch reaction and evaluated their antibacterial activity against a representative panel of cariogenic bacteria and their in vitro antileishmanial activity against Leishmania (L.) amazonensis promastigotes and amastigotes. Thirteen compounds were moderately active against Streptococcus sanguinis, Streptococcus mitis, and Lactobacillus paracasei. Compound 22 (diethyl 4-(3-methoxy-4-hydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) displayed moderate antibacterial activity against S. mitis and S. sanguinis, with a Minimum Inhibitory Concentration (MIC) of 500 μg/mL); compounds 8 (ethyl 2,7,7-trimethyl-4-(3-chlorophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) and 10 (ethyl 2,7,7-trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) were moderately active against S. sanguinis (MIC=500 μg/mL) and very active against L. amazonensis promastigotes (IC50=43.08 and 34.29 μM, respectively). Among the eight 1,4-DHPs that were active (IC50 <50 μM) against L. amazonensis promastigotes, compound 13 (ethyl 2,7,7-trimethyl-4-(3,4,5-trimethoxyphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) was the most active (IC50=24.62 μM) and had a Selectivity Index (SI) higher than 4 compared to GM07492 A cells. On the other hand, compounds 7 (ethyl 2,7,7-trimethyl-4-(3-fluorophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) and 9 (ethyl 2,7,7-trimethyl-4-(2-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) were the most active against L. amazonensis amastigotes (IC50=12.53 and 13.67 μM, respectively; SI>7.9 and >7.3, respectively) after 24 h of treatment. Our results indicated that asymmetric 1,4-DHPs derived from dimedone exhibit antileishmanial potential.
Collapse
Affiliation(s)
- Thaís A S Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Jackson B A Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nagela B S Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Paulo C A Félix
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Daiane A Dos Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Andreia M de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Carlos H G Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Lizandra G Magalhães
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Salama M, Al-Taiar A, McKinney DC, Rahman E, Merchant AT. The impact of scaling and root planning combined with mouthwash during pregnancy on preterm birth and low birth weight: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2024; 24:726. [PMID: 39506741 PMCID: PMC11542403 DOI: 10.1186/s12884-024-06905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The effect of treating periodontal disease (PD) during pregnancy on adverse birth outcomes, such as preterm birth (PTB) and/or low birth weight (LBW), remains unclear. This is partially due to the fact that Randomized Controlled Trials (RCTs) have used different combinations of treatment approaches to test this hypothesis. In this meta-analysis of RCTs, we assessed the impact of treating PD during pregnancy with scaling and root planning (SRP) and mouthwash use on PTB and LBW. METHODS A systematic review with meta-analysis was conducted following PRISMA guidelines. A comprehensive search strategy was employed across electronic databases, including PubMed/Medline, Embase, and Google Scholar. Quality assessment was performed using the Cochrane Risk of Bias 2 Tool. Pooled risk ratios (RRs) with 95% confidence intervals (CIs) were calculated using random-effect models. RESULTS Out of 133 initially identified reports, 9 RCTs involving 3,985 pregnant women met the inclusion criteria. Periodontal treatment with SRP and mouthwash use in pregnancy was associated with a lower risk of PTB and LBW in meta-analysis with random effects models (pooled RR for PTB = 0.44, 95% CI: 0.22-0.88) and (pooled RR for LBW = 0.33, 95% CI: 0.13-0.84). Substantial heterogeneity was observed among studies (I2 = 91% and 90% for PTB and LBW, respectively), with sensitivity analysis suggesting potential sources of heterogeneity. Funnel plot assessment for publication bias showed evidence of asymmetry. CONCLUSION SRP with mouthwash use during pregnancy were associated with significantly lower risks of PTB and LBW. Larger, well-conducted RCTs are warranted to address this issue, as existing trials are small and exhibit methodological and statistical heterogeneity.
Collapse
Affiliation(s)
- May Salama
- Joint School of Public Health, Macon & Joan Brock Virginia Health Sciences, Old Dominion University, Norfolk, VA, USA.
| | - Abdullah Al-Taiar
- Joint School of Public Health, Macon & Joan Brock Virginia Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Denise C McKinney
- School of Dental Hygiene, Macon & Joan Brock Virginia Health Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Estiar Rahman
- Joint School of Public Health, Macon & Joan Brock Virginia Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Anwar T Merchant
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
3
|
Batista DG, Sganzerla WG, da Silva LR, Vieira YGS, Almeida AR, Dominguini D, Ceretta L, Pinheiro AC, Bertoldi FC, Becker D, Hotza D, Nunes MR, da Rosa CG, Masiero AV. Antimicrobial and Cytotoxic Potential of Eucalyptus Essential Oil-Based Nanoemulsions for Mouthwashes Application. Antibiotics (Basel) 2024; 13:942. [PMID: 39452209 PMCID: PMC11504657 DOI: 10.3390/antibiotics13100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Objective: An eucalyptus essential oil-based nanoemulsion was produced and evaluated for its antimicrobial properties against Streptococcus mutans and its cytotoxicity in the surface mucous cells of rabbits. Methods: The essential oil-based nanoemulsion was synthesized with two species of eucalyptus-Eucalyptus citriodora and Eucalyptus globulus-followed by physicochemical characterization and the determination of antimicrobial activity and cell viability. Subsequently, the mouthwash formulations (fluoride and fluoride-free) were functionalized with the nanoemulsion, and their in vitro antimicrobial actions were evaluated against S. mutans. Results: The nanoemulsion presented an average particle size of around 100 nm, a polydispersity index close to 0.3, a zeta potential between -19 and -30 mV, a pH close to 7, a spherical shape, and a cell viability above 50%. The antimicrobial activity analysis showed that the nanoemulsion was effective in the control of S. mutans. The mouthwashes functionalized with the nanoemulsion also presented bacteriostatic and bactericidal properties. Conclusions: The bio-based material produced with eucalyptus essential oil presented adequate physicochemical characteristics, with the potential to be used as an innovative material in preventive dentistry, contributing to the maintenance of oral and systemic health.
Collapse
Affiliation(s)
- Dione Glauco Batista
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | | | - Lysa Ribeiro da Silva
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | - Yasmin Gabriele Schmitt Vieira
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | - Aline R. Almeida
- Laboratory of Plasmas, Films, and Surfaces, Santa Catarina State University (UDESC), Joinville 89219-710, SC, Brazil; (A.R.A.); (D.B.)
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, SC, Brazil;
| | - Luciane Ceretta
- Graduate Program in Collective Health, University of Southern Santa Catarina (UNESC), Criciúma 88806-000, SC, Brazil;
| | - Adriana Castro Pinheiro
- Center of Chemical, Pharmaceuticals, and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil;
| | - Fabiano Cleber Bertoldi
- Agricultural Research and Rural Extension Company of Santa Catarina (EPAGRI), Itajaí 88318-112, SC, Brazil;
| | - Daniela Becker
- Laboratory of Plasmas, Films, and Surfaces, Santa Catarina State University (UDESC), Joinville 89219-710, SC, Brazil; (A.R.A.); (D.B.)
| | - Dachamir Hotza
- Graduate Program in Chemical Engineering (PosENQ), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (D.H.); (M.R.N.)
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Michael Ramos Nunes
- Graduate Program in Chemical Engineering (PosENQ), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (D.H.); (M.R.N.)
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
- Federal Institute of Santa Catarina, Lages 88506-400, SC, Brazil
| | - Cleonice Gonçalves da Rosa
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
| | - Anelise Viapiana Masiero
- Multi-User Laboratory, Graduate Program in Environment and Health, Planalto Catarinense University, Lages 88509-900, SC, Brazil; (D.G.B.); (L.R.d.S.); (Y.G.S.V.); (C.G.d.R.); (A.V.M.)
- Department of Endodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Manuschai J, Sotozono M, Takenaka S, Kornsombut N, Takahashi R, Saito R, Nagata R, Ida T, Noiri Y. In Vitro Inhibitory Effect of Silver Diamine Fluoride Combined with Potassium Iodide against Mixed-Species Biofilm Formation on Human Root Dentin. Antibiotics (Basel) 2024; 13:743. [PMID: 39200043 PMCID: PMC11350696 DOI: 10.3390/antibiotics13080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Applying a saturated potassium iodide (KI) solution immediately after silver diamine fluoride (SDF) application may affect the inhibitory effects of SDF on biofilm formation. This study compared the efficacy of 38% SDF with and without KI on preventing mixed-species biofilm formation on human root dentin surfaces and assessed ion incorporation into root dentin. The biofilms, composed of Streptococcus mutans, Lactobacillus rhamnosus, and Actinomyces naeslundii, were grown on specimen surfaces treated with either SDF or SDF + KI. After 24 h, the biofilms were evaluated using scanning electron microscopy, live/dead staining, adenosine triphosphate (ATP) assays, colony-forming unit (CFU) counts, and quantitative polymerase chain reaction. A Mann-Whitney U test was used to compare the results between the groups. Ion incorporation was assessed using an electron probe microanalyzer. The relative ATP content in the SDF + KI group was significantly higher than that in the SDF group (p < 0.05). However, biofilm morphology and the logarithmic reduction in CFUs and bacterial DNA were comparable across the groups. The SDF + KI treatment resulted in less silver and fluoride ion incorporation than that yielded by SDF alone. The inhibitory effects of SDF and SDF + KI on mixed-species biofilm formation were almost equivalent, although KI application affected the ion incorporation.
Collapse
Affiliation(s)
- Jutharat Manuschai
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Maki Sotozono
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Niraya Kornsombut
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Ryouhei Takahashi
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Rui Saito
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Takako Ida
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| |
Collapse
|
5
|
Mansoor M, Monis D, Anjum R, Siddiqui TA, Mir HA, Nazir R. A cross-sectional study to correlate oral hygiene habit among orthodontic patients with their clinical findings and periodontal treatment need. BMC Oral Health 2024; 24:903. [PMID: 39107771 PMCID: PMC11304922 DOI: 10.1186/s12903-024-04678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Orthodontic treatment requires good oral hygiene for successful completion of treatment. As protocol, patients are usually given instructions for oral hygiene and diet at the start of treatment, however, they are not fully followed. Different methods are employed in order to increase patient compliance including digital means, however, these are not possible in teaching hospitals with high burden of patient care and limited resources. The present study aims to correlate the patient reported behavior with their clinical findings and treatment need. This will enable us to identify potential sources of motivation which will be incorporated in daily practice and enable us to improve methods to enhance patient's behavior. METHOD A cross-sectional study was conducted in the orthodontic department of a semi-government teaching hospital from August to October 2023 using a modified questionnaire. The clinical examination was done using a Community Periodontal Index for Treatment Need-C (CPITN-C) probe. The diagnosis of presenting clinical conditions and treatment need was done using Community Periodontal Index for Treatment Need (CPITN) and Gingival Bleeding Index (BI). Data collected was analyzed for frequencies and correlation was done using Spearman Correlation Coefficient. P- value ≤ 0.05 was taken as statistically significant. RESULT The sample size consisted of 110 patients of which 60% were entitled to receive treatment. The predominant age group was 15-20 years (39.1%). Approximately 70% patients were in code 1 for CPITN and GI and in need of oral hygiene instructions. Overall patients' showed good level of awareness, however, they were not compliant in behavior. CONCLUSION Although patients showed a good level of awareness towards oral hygiene practices, there was a lack of compliance in following them. Patients were more concerned for being affected by dental caries due to poor oral hygiene than its effect on overall treatment outcome.
Collapse
Affiliation(s)
- Maira Mansoor
- Foundation University College of Dentistry and Hospital Foundation University Islamabad, Rawalpindi, Pakistan
| | - Duaa Monis
- Foundation University College of Dentistry and Hospital Foundation University Islamabad, Rawalpindi, Pakistan
| | - Rameen Anjum
- Foundation University College of Dentistry and Hospital Foundation University Islamabad, Rawalpindi, Pakistan
| | - Tania Arshad Siddiqui
- Foundation University College of Dentistry and Hospital Foundation University Islamabad, Rawalpindi, Pakistan.
| | - Hassam Anjum Mir
- Foundation University College of Dentistry and Hospital Foundation University Islamabad, Rawalpindi, Pakistan
| | - Rozina Nazir
- Foundation University College of Dentistry and Hospital Foundation University Islamabad, Rawalpindi, Pakistan
| |
Collapse
|
6
|
Gandhi UH, Benjamin A, Gajjar S, Hirani T, Desai K, Suhagia BB, Ahmad R, Sinha S, Haque M, Kumar S. Alcohol and Periodontal Disease: A Narrative Review. Cureus 2024; 16:e62270. [PMID: 39006719 PMCID: PMC11246185 DOI: 10.7759/cureus.62270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The scientific literature dealing with alcohol and alcoholic beverages revealed that these drinks possess an adverse impact on periodontal tissues. Additionally, other principal risk factors include tobacco, smoking, poor oral hygiene, etc. It has been observed that among chronic alcoholics, there are further issues, such as mental, social, and physical effects, that promote alcoholism. These people may have weak immunity for defense against pathogenic organisms and bacteria. Thus, chances of gingival bleeding, swollen gums, bad breath, and increased bone loss are there. Different alcoholic beverages in the market cause less salivation; these beverages contain sugars that promote acid production in the oral cavity by pathogens that demineralize the enamel and damage gum and teeth. This chronic alcohol consumption can progress into different types of oral disorders, including cancer, halitosis, and caries, and is also associated with tobacco and smoking. Chronic alcohol consumption can cause alteration of the oral microbiome and increase oral pathogens, which lead to periodontal disease and an environment of inflammation created in the body due to malnutrition, diminished immunity, altered liver condition, brain damage, and gut microbiota alteration. Heavily colored alcoholic beverages produce staining on teeth and, due to less saliva, may cause other toxic effects on the periodontium. Over-dependency on alcohol leads to necrotizing lesions such as necrotizing gingivitis, necrotizing periodontitis, and necrotizing stomatitis. These pathological impairments instigate severe damage to oral structures. Therefore, proper counseling by the attending dental surgeon and related health professionals is urgently required for the patient on the basis that the individual case needs to go away from the regular heavy consumption of alcohol.
Collapse
Affiliation(s)
- Utsav H Gandhi
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Amit Benjamin
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shreya Gajjar
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Tanvi Hirani
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Khushboo Desai
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bansariben B Suhagia
- Department of Periodontology, Ahmedabad Dental College and Hospital, Gujarat University, Ahmedabad, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center, School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
7
|
Yüce E, Sharifikolouei E, Micusik M, Ferraris S, Rashidi R, Najmi Z, Gümrükçü S, Scalia A, Cochis A, Rimondini L, Spriano S, Omastova M, Sarac AS, Eckert J, Sarac B. Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutment. ACS APPLIED BIO MATERIALS 2024; 7:936-949. [PMID: 38299869 PMCID: PMC10880059 DOI: 10.1021/acsabm.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
In this study, a recently reported Ti-based metallic glass (MG), without any toxic element, but with a significant amount of metalloid (Si-Ge-B, 18 atom %) and minor soft element (Sn, 2 atom %), was produced in ribbon form using conventional single-roller melt-spinning. The produced Ti60Zr20Si8Ge7B3Sn2 ribbons were investigated by differential scanning calorimetry and X-ray diffraction to confirm their amorphous structure, and their corrosion properties were further investigated by open-circuit potential and cyclic polarization tests. The ribbon's surface was functionalized by tannic acid, a natural plant-based polyphenol, to enhance its performance in terms of corrosion prevention and antimicrobial efficacy. These properties can potentially be exploited in the premucosal parts of dental implants (abutments). The Folin and Ciocalteu test was used for the quantification of tannic acid (TA) grafted on the ribbon surface and of its redox activity. Fluorescent microscopy and ζ-potential measurements were used to confirm the presence of TA on the surfaces of the ribbons. The cytocompatibility evaluation (indirect and direct) of TA-functionalized Ti60Zr20Si8Ge7B3Sn2 MG ribbons toward primary human gingival fibroblast demonstrated that no significant differences in cell viability were detected between the functionalized and as-produced (control) MG ribbons. Finally, the antibacterial investigation of TA-functionalized samples against Staphylococcus aureus demonstrated the specimens' antimicrobial properties, shown by scanning electron microscopy images after 24 h, presenting a few single colonies remaining on their surfaces. The thickness of bacterial aggregations (biofilm-like) that were formed on the surface of the as-produced samples reduced from 3.5 to 1.5 μm.
Collapse
Affiliation(s)
- Eray Yüce
- Erich
Schmid Institute of Materials Science, Austrian
Academy of Sciences, 8700 Leoben, Austria
- Department
of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Elham Sharifikolouei
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino (POLITO), 10129 Turin, Italy
| | - Matej Micusik
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Sara Ferraris
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino (POLITO), 10129 Turin, Italy
- POLITO
BIOMed LAB, Politecnico di Torino, 10129 Torino, Italy
| | - Reza Rashidi
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino (POLITO), 10129 Turin, Italy
| | - Ziba Najmi
- Department
of Health Sciences, Center for Translational Research on Autoimmune
and Allergic Diseases-CAAD, Università
del Piemonte Orientale UPO, 28100 Novara, Italy
| | - Selin Gümrükçü
- Department
of Chemistry, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Alessandro Scalia
- Department
of Health Sciences, Center for Translational Research on Autoimmune
and Allergic Diseases-CAAD, Università
del Piemonte Orientale UPO, 28100 Novara, Italy
| | - Andrea Cochis
- Department
of Health Sciences, Center for Translational Research on Autoimmune
and Allergic Diseases-CAAD, Università
del Piemonte Orientale UPO, 28100 Novara, Italy
| | - Lia Rimondini
- Department
of Health Sciences, Center for Translational Research on Autoimmune
and Allergic Diseases-CAAD, Università
del Piemonte Orientale UPO, 28100 Novara, Italy
| | - Silvia Spriano
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino (POLITO), 10129 Turin, Italy
- POLITO
BIOMed LAB, Politecnico di Torino, 10129 Torino, Italy
| | - Maria Omastova
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | | | - Jürgen Eckert
- Erich
Schmid Institute of Materials Science, Austrian
Academy of Sciences, 8700 Leoben, Austria
- Department
of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Baran Sarac
- Erich
Schmid Institute of Materials Science, Austrian
Academy of Sciences, 8700 Leoben, Austria
| |
Collapse
|
8
|
Czarnowski M, Słowińska M, Sawieljew M, Wnorowska U, Daniluk T, Król G, Karasiński M, Okła S, Savage PB, Piktel E, Bucki R. Efficacy of Ceragenins in Controlling the Growth of Oral Microorganisms: Implications for Oral Hygiene Management. Pharmaceuticals (Basel) 2024; 17:204. [PMID: 38399419 PMCID: PMC10893225 DOI: 10.3390/ph17020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Ensuring proper dental hygiene is of paramount importance for individuals' general well-being, particularly for patients receiving medical care. There is a prevailing utilization of conventional oral hygiene items, including toothbrushes and mouthwashes, which have gained widespread acceptance; nevertheless, their limitations encourage investigating novel options in this domain. Our study indicates that ceragenins (CSAs) being lipid analogs of host defense peptides, well-recognized for their wide-ranging antimicrobial properties, may be a potentially efficacious means to augment oral hygiene in hospitalized individuals. We demonstrate that ceragenins CSA-13, CSA-44, and CSA-131 as well as undescribed to date CSA-255 display potent antimicrobial activities against isolates of fungi, aerobic, and anaerobic bacteria from Candida, Streptococcus, Enterococcus, and Bacteroides species, which are well-recognized representatives of microbes found in the oral cavity. These effects were further confirmed against mono- and dual-species fungal and bacterial biofilms. While the ceragenins showed similar or slightly diminished efficacy compared to commercially available mouthwashes, they demonstrated a highly favorable toxicity profile toward host cells, that may translate into better maintenance of host mucosal membrane stability. This suggests that incorporating ceragenins into oral hygiene products could be a valuable strategy for reducing the risk of both oral cavity-localized and secondary systemic infections and for improving the overall health outcomes of individuals receiving medical treatment.
Collapse
Affiliation(s)
- Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Monika Słowińska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Mariusz Sawieljew
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
| | - Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
- Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| |
Collapse
|
9
|
Montesani L, Montesani L, Mateo L, Daep C, Huber N, Isapour G, Zhang YP. Antibacterial and clinical effectiveness of a mouthwash with a novel active system of amine + zinc lactate + fluoride: a randomized controlled trial. Clin Oral Investig 2024; 28:90. [PMID: 38217757 PMCID: PMC10902027 DOI: 10.1007/s00784-023-05487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVES To support the daily oral hygiene of patients experiencing gum inflammation, a new mouthwash was developed containing an amine + zinc lactate + fluoride system. In vitro and clinical efficacy was assessed using traditional methods as well as using novel site-specific and subject-specific analyses of the clinical data. MATERIALS AND METHODS This mouthwash was evaluated in a 12-h biofilm regrowth assay against a negative control mouthwash and in a 6-month plaque and gingivitis clinical study as compared to a negative control mouthwash. Analyses of healthy versus inflamed sites, visible plaque versus non-visible plaque sites, as well as subject-level evaluations bring new perspectives to the overall performance of this mouthwash and its significance from a patient outcome perspective. RESULTS Studies demonstrated that this new mouthwash provided long-term (12-h) antibacterial activity after single application in vitro and reduced clinically all plaque and gingivitis parameters after 3 months and 6 months of use when compared to the negative control mouthwash. Examination of site-level and subject-level data determined that this mouthwash significantly increased the number of healthy sites in the oral cavity and significantly improved the gum health of subjects in the study, as compared to the negative control mouthwash. CONCLUSIONS In vitro and clinical research has demonstrated the antibacterial and clinical benefits of this mouthwash containing an amine compound + zinc lactate + fluoride system. CLINICAL RELEVANCE Our subject-specific and site-specific analyses provide the dental practitioner with tools that can be used to guide patients who suffer from gingivitis toward optimal product selection and use. CLINICAL TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov (reference no. NCT05821712).
Collapse
Affiliation(s)
| | | | - Luis Mateo
- LRM Statistical Consulting, West Orange, NJ, USA
| | - Carlo Daep
- Colgate-Palmolive Technology Center, Piscataway, NJ, USA
| | | | | | - Yun-Po Zhang
- Colgate-Palmolive Technology Center, Piscataway, NJ, USA.
| |
Collapse
|
10
|
Bencze B, Temesfői V, Das S, Papp H, Kaltenecker P, Kuczmog A, Jakab F, Kocsis B, Kőszegi T. Development of a novel, entirely herbal-based mouthwash effective against common oral bacteria and SARS-CoV-2. BMC Complement Med Ther 2023; 23:138. [PMID: 37127611 PMCID: PMC10150350 DOI: 10.1186/s12906-023-03956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Parallel to the growth of the oral healthcare market, there is a constantly increasing demand for natural products as well. Many customers prefer products that contain fewer toxic agents, therefore providing an environmentally friendly solution with the benefit of smaller risk to the user. Medieval and early modern medicinal knowledge might be useful when looking for natural, herbal-based components to develop modern products. Along with these considerations we created, tested, and compared an entirely natural mouthwash, named Herba Dei. METHODS The manufacturing procedure was standardized, and the created tincture was evaluated by GC/MS analysis for active compounds, experimentally tested in cell-based cytotoxicity, salivary protein integrity, cell-free antioxidant activity, anti-bacterial and anti-viral assays, and compared with three market-leading mouthwashes. RESULTS Our tincture did not show significant damage in the cytotoxicity assays to keratinocyte and Vero E6 cells and did not disrupt the low molecular weight salivary proteins. Its radical scavenging capacity surpassed that of two tested, partly natural, and synthetic mouthwashes, while its antibacterial activity was comparable to the tested products, or higher in the bacterial aerobic respiratory assay. The active compounds responsible for the effects include naturally occurring phenylpropanoids, terpenes, and terpenoids. Our mouthwash proved to be effective in vitro in lowering the copy number of SARS-CoV-2 in circumstances mimicking the salivary environment. CONCLUSIONS The developed product might be a useful tool to impede the transmission and spread of SARS-CoV-2 in interpersonal contact and aerosol-generating conditions. Our mouthwash can help reduce the oral bacterial flora and has an antioxidant activity that facilitates wound healing and prevents adverse effects of smoke in the oral cavity.
Collapse
Affiliation(s)
- Bálint Bencze
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
| | - Viktória Temesfői
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary.
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary.
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary.
| | - Sourav Das
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Péter Kaltenecker
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Clinical Centre, Medical School, University of Pécs, Szigeti Út 12, Pécs, 7624, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
11
|
Novozhilova N, Andreeva E, Polyakova M, Makeeva I, Sokhova I, Doroshina V, Zaytsev A, Babina K. Antigingivitis, Desensitizing, and Antiplaque Effects of Alkaline Toothpastes: A Randomized Clinical Trial. Dent J (Basel) 2023; 11:96. [PMID: 37185474 PMCID: PMC10136796 DOI: 10.3390/dj11040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Gingivitis is a widespread disease commonly associated with dentin hypersensitivity, that, in turn, may complicate routine dental care, leading to plaque accumulation. We aimed to assess the antigingivitis, desensitizing, and antiplaque effects of a fluoride-containing (TWF) alkaline toothpaste and a fluoride-free (TW) alkaline toothpaste. Eighty-four consenting patients aged 20-25 years with diagnosed gingivitis and dentin hypersensitivity (DH) were recruited in this double-blind, parallel-group study and randomly divided into two groups (each n = 42). Eighty-two patients completed the entire study protocol. The outcomes were assessed after 4 weeks of intervention. A significant improvement in gingival condition was found according to the modified gingival index, with effect sizes of 0.99 [CI95%: 0.52-1.46] and 1.71 [CI95%: 1.18-2.24], and the gingival bleeding index, with effect sizes of 3.17 [CI95%: 2.39-3.94] and 2.64 [CI95%: 1.96-3.32] in the TW and TWF groups, respectively. DH also decreased in both groups, with a significantly greater reduction in the TWF group (effect sizes of 3.28 [CI95%: 2.51-4.04] and 3.10 [CI95%: 2.40-3.80] according to the visual analog scale and Schiff scale, respectively). No side effects were registered. In conclusion, the use of alkaline toothpaste provided a significant reduction in gingival inflammation and bleeding, DH, and oral hygiene after 4 weeks of daily use in young adults. Trial Registration: NCT0562376. Funding: none.
Collapse
Affiliation(s)
- Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Andreeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Inna Sokhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladlena Doroshina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
12
|
Ong J, Godfrey R, Nazarian A, Tam J, Drake L, Isaacson B, Pasquina P, Williams D. Antimicrobial blue light as a biofilm management therapy at the skin-implant interface in an ex vivo percutaneous osseointegrated implant model. J Orthop Res 2023. [PMID: 36815575 DOI: 10.1002/jor.25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Biofilm contamination is often present at the skin-implant interface of transfemoral osseointegrated implants leading to frequent infection, irritation, and discomfort. New biofilm management regimens are needed as the current standard of washing the site with soap and water is inadequate to manage infection rates. We investigated the potential of antimicrobial blue light, which has reduced risk of resistance development and broad antimicrobial mechanisms. Our lab developed an antimicrobial blue light (aBL) device uniquely designed for an ex vivo system based on an established ovine osseointegrated (OI) implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Samples were irradiated with aBL or washed for three consecutive days after which they were quantified. Colony-forming unit (CFU) counts were compared with a control group (bacterial inocula without treatment). After 1 day, aBL administered as a single 6 h dose or two 1 h doses spaced 6 h apart both reduced the CFU count by 1.63 log10 ± 0.02 CFU. Over 3 days of treatment, a positive aBL trend was observed with a maximum reduction of ~2.7 log10 CFU following 6 h of treatment, indicating a relation between multiple days of irradiation and greater CFU reductions. aBL was more effective at reducing the biofilm burden at the skin-implant interface compared with the wash group, demonstrating the potential of aBL as a biofilm management option.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Rose Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Drake
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brad Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Geneva Foundation, Tacoma, Washington, USA.,Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness (MIRROR), Uniformed Services University, Bethesda, Maryland, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA
| | - Paul Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Thiha A, Ibrahim F, Joseph K, Petrović B, Kojić S, Dahlan NA, Jamaluddin NF, Qureshi S, Stojanović GM. A novel microfluidic compact disc to investigate electrochemical property changes between artificial and real salivary samples mixed with mouthwashes using electrical impedance analysis. PLoS One 2023; 18:e0280381. [PMID: 36795661 PMCID: PMC9934320 DOI: 10.1371/journal.pone.0280381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/26/2022] [Indexed: 02/17/2023] Open
Abstract
Diagnosing oral diseases at an early stage may lead to better preventive treatments, thus reducing treatment burden and costs. This paper introduces a systematic design of a microfluidic compact disc (CD) consisting of six unique chambers that run simultaneously from sample loading, holding, mixing and analysis. In this study, the electrochemical property changes between real saliva and artificial saliva mixed with three different types of mouthwashes (i.e. chlorhexidine-, fluoride- and essential oil (Listerine)-based mouthwashes) were investigated using electrical impedance analysis. Given the diversity and complexity of patient's salivary samples, we investigated the electrochemical impedance property of healthy real saliva mixed with different types of mouthwashes to understand the different electrochemical property which could be a foundation for diagnosis and monitoring of oral diseases. On the other hand, electrochemical impedance property of artificial saliva, a commonly used moisturizing agent and lubricant for the treatment of xerostomia or dry mouth syndrome was also studied. The findings indicate that artificial saliva and fluoride-based mouthwash showed higher conductance values compared to real saliva and two other different types of mouthwashes. The ability of our new microfluidic CD platform to perform multiplex processes and detection of electrochemical property of different types of saliva and mouthwashes is a fundamental concept for future research on salivary theranostics using point-of-care microfluidic CD platform.
Collapse
Affiliation(s)
- Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur, Malaysia
- Microwave Research Institute, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail: (FI); (BP)
| | - Karunan Joseph
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Bojan Petrović
- Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- * E-mail: (FI); (BP)
| | - Sanja Kojić
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia
| | - Nuraina Anisa Dahlan
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurul Fauzani Jamaluddin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saima Qureshi
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | |
Collapse
|
14
|
Nowak A, Zielonka-Brzezicka J, Perużyńska M, Klimowicz A. Epilobium angustifolium L. as a Potential Herbal Component of Topical Products for Skin Care and Treatment-A Review. Molecules 2022; 27:3536. [PMID: 35684473 PMCID: PMC9182203 DOI: 10.3390/molecules27113536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Epilobium angustifolium L. (EA) has been used as a topical agent since ancient times. There has been an increasing interest in applying EA as a raw material used topically in recent years. However, in the literature, there are not many reports on the comprehensive application of this plant to skin care and treatment. EA contains many valuable secondary metabolites, which determine antioxidant, anti-inflammatory, anti-aging, and antiproliferative activity effects. One of the most important active compounds found in EA is oenothein B (OeB), which increases the level of ROS and protects cells from oxidative damage. OeB also influences wound healing and reduces inflammation by strongly inhibiting hyaluronidase enzymes and inhibiting COX-1 and COX-2 cyclooxygenases. Other compounds that play a key role in the context of application to the skin are flavonoids, which inhibit collagenase and hyaluronidase enzymes, showing anti-aging and anti-inflammatory properties. While terpenes in EA play an important role in fighting bacterial skin infections, causing, among other things cell membrane, permeability increase as well as the modification of the lipid profiles and the alteration of the adhesion of the pathogen to the animal cells. The available scientific information on the biological potential of natural compounds can be the basis for the wider use of EA in skin care and treatment. The aim of the article is to review the existing literature on the dermocosmetic use of E. angustifolium.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland;
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| |
Collapse
|