1
|
Sisay A, Kumie G, Gashaw Y, Nigatie M, Gebray HM, Reta MA. Prevalence of genes encoding carbapenem-resistance in Klebsiella pneumoniae recovered from clinical samples in Africa: systematic review and meta-analysis. BMC Infect Dis 2025; 25:556. [PMID: 40251495 PMCID: PMC12007206 DOI: 10.1186/s12879-025-10959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND The potential of Klebsiella pneumoniae (K. pneumoniae) to acquire and spread carbapenem-resistant genes is the most concerning characteristic of the bacteria. In hospitals and other healthcare settings, multidrug-resistant K. pneumoniae can be prevalent and cause severe infections, posing significant challenges to patient management. Studying genetic variants and drug-resistant mutations in pathogenic bacteria of public health importance is essential. Therefore, this study aimed to assess the overall prevalence of carbapenemase-encoding genes in K. pneumoniae across Africa. METHODS All studies published between January 2010, and December 2023, were retrieved from the electronic databases PubMed, Science Direct, and Scopus, as well as through the Google Scholar search engine. This systematic review and meta-analysis adhered strictly to the PRISMA guidelines. Data analysis was performed using STATA version 17. The quality of the included studies was critically evaluated using the "Joanna Briggs Institute" criteria. To evaluate heterogeneity among the studies, inverse variance (I2) tests were utilized. Subgroup analysis was conducted when heterogeneity exists among studies. To assess publication bias, we used a funnel plot and Egger's regression test. A random effects model was used to calculate the weighted pooled prevalence of genetic variants associated with carbapenem resistance in K. pneumoniae. RESULTS A total of 49 potential studies were included in this systematic review and meta-analysis, encompassing 8,021 K. pneumoniae isolates. Among these isolates, 2,254 (28.1%) carbapenems-resistance-conferring genes were identified. The overall pooled prevalence of carbapenemase-encoding genes in K. pneumoniae isolated from clinical specimens across Africa was found to be 34.0% (95% CI: 26.01-41.98%). Furthermore, the pooled prevalence of the carbapenemase genes blaOXA-48 and blaNDM-1 was 16.96% (95% CI: 12.17-21.76%) and 15.08% (95% CI: 9.79-20.37%), respectively. The pooled prevalence of carbapenemase genes in K. pneumoniae isolates from clinical samples across Africa increased over time, reported as 20.4%(-0.7-41.4%) for 2010-2015, 34.5% (20.2-48.8%) for 2016-2020, and 35.2% (24.8-45.5%) for 2021-2023, with heterogeneity (I2) values of 36.5%, 96.7%, and 99.3%, respectively. CONCLUSIONS The emergence and spread of carbapenemase-encoding genes in K. pneumoniae pose a major threat to public health. Knowledge on the genetic mechanisms of carbapenem resistance is crucial for developing effective strategies to combat these multidrug-resistant infections and reduce their impact on healthcare systems. The carbapenemase genes blaOXA-48 and blaNDM-1 were the most prevalent and showed an increasing trend over time.
Collapse
Affiliation(s)
- Assefa Sisay
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia.
| | - Getinet Kumie
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Yalewayker Gashaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Marye Nigatie
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Habtamu Mesele Gebray
- Departments of Internal Medicine, Woldia Comprehensive Specialized Hospital, Woldia, Ethiopia
| | - Melese Abate Reta
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Pretoria, 0084, South Africa
| |
Collapse
|
2
|
Ragueh AA, Abdallah IS, Mouhoumed RM, Aboubaker MH, Rolain JM, Diene SM. Molecular epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in human infections around the Red Sea. J Infect Public Health 2025; 18:102692. [PMID: 39938240 DOI: 10.1016/j.jiph.2025.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
The emergence and global spread of carbapenemase-producing bacteria (CPB) is of great concern to public health. Carbapenemase enzymes, which can hydrolyse almost all β-lactams, can be readily transferred between bacterial species through recombinant plasmids, transposons, or integrons. Human infections caused by CPB have limited treatment options and are associated with high mortality rates. These enzymes are mainly identified among Enterobacteriaceae and non-fermenter bacteria such as Acinetobacter baumannii and are associated either with hospital- or community-acquired infections. Located at the crossroads of the Middle East, Europe, and Africa, the countries around the Red Sea are of interest due to their great diversity and mix of populations. This review aims to describe the epidemiology of carbapenem resistance in Enterobacteriaceae and A. baumannii around the Red Sea, with country-specific findings. In this study, we emphasise the urgent need to screen for and detect these enzymes to prevent their spread and to maintain control.
Collapse
Affiliation(s)
- Ayan A Ragueh
- Université de Djibouti, Campus Balbala croisement RN2-RN5, 1904 Djibouti; MEPHI, APHM, Faculté de Pharmacie, Aix-Marseille University, 19-21 Boulevard Jean Moulin, Marseille 13385 CEDEX 05, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 CEDEX 05, France
| | - Ibrahim S Abdallah
- Université de Djibouti, Campus Balbala croisement RN2-RN5, 1904 Djibouti
| | - Rachid M Mouhoumed
- Université de Djibouti, Campus Balbala croisement RN2-RN5, 1904 Djibouti
| | | | - Jean-Marc Rolain
- MEPHI, APHM, Faculté de Pharmacie, Aix-Marseille University, 19-21 Boulevard Jean Moulin, Marseille 13385 CEDEX 05, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 CEDEX 05, France
| | - Seydina M Diene
- MEPHI, APHM, Faculté de Pharmacie, Aix-Marseille University, 19-21 Boulevard Jean Moulin, Marseille 13385 CEDEX 05, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 CEDEX 05, France.
| |
Collapse
|
3
|
Ceylan AN, Kömeç S, Şanlı K, Öncel B, Durmuş MA, Gülmez A. Are New β-Lactam/β-Lactamase Inhibitor Combinations Promising Against Carbapenem-Resistant K. pneumoniae Isolates? Pathogens 2025; 14:220. [PMID: 40137705 PMCID: PMC11944681 DOI: 10.3390/pathogens14030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections present a significant clinical challenge due to limited therapeutic options and high transmission potential. This study aimed to identify the resistance genes associated with carbapenemase production in CRKP isolates and evaluate the in vitro activity of ceftazidime/avibactam (CZA) and meropenem/vaborbactam (MEV), among other β-lactam/β-lactamase inhibitor combinations. METHODS Between October 2021 and June 2022, a total of 504 CRKP isolates were grown from patient samples in intensive care units. When duplicate patient samples were removed, the remaining 89 isolates were included in the study. Bacterial identification and antimicrobial susceptibility testing were per-formed using MALDI-TOF, Phoenix M50, and disk diffusion methods, following EUCAST guidelines. PCR analyses identified carbapenemase genes such as OXA-48, NDM, and KPC. RESULTS The most prevalent carbapenemase gene was OXA-48 (79.8%), followed by NDM (21.4%) and KPC (17.9%). The susceptibility rate to CZA was 82.0%, significantly higher than MEV (10.1%). All isolates were resistant to piperacillin/tazobactam and ceftolozane/tazobactam. Among MEV-resistant isolates, most carried the OXA-48 gene, while NDM was common in CZA-resistant isolates. CONCLUSIONS CZA demonstrates high efficacy against OXA-48-producing CRKP, making it a viable treatment option in settings where OXA-48 predominates. The limited activity of MEV in this study underscores the need for molecular surveillance of resistance mechanisms to guide empirical therapy.
Collapse
Affiliation(s)
- Ayşe Nur Ceylan
- Department of Medical Microbiology, Basaksehir Çam and Sakura City Hospital, University of Health Science, Istanbul 34480, Türkiye
| | - Selda Kömeç
- Department of Medical Microbiology, Basaksehir Çam and Sakura City Hospital, University of Health Science, Istanbul 34480, Türkiye
| | - Kamuran Şanlı
- Department of Medical Microbiology, Basaksehir Çam and Sakura City Hospital, University of Health Science, Istanbul 34480, Türkiye
| | - Beyza Öncel
- Department of Medical Microbiology, Basaksehir Çam and Sakura City Hospital, University of Health Science, Istanbul 34480, Türkiye
| | - Mehmet Akif Durmuş
- Department of Medical Microbiology, Basaksehir Çam and Sakura City Hospital, University of Health Science, Istanbul 34480, Türkiye
| | - Abdurrahman Gülmez
- Medical Microbiology Laboratory, Aydın Ataturk State Hospital, Aydın 09020, Türkiye
| |
Collapse
|
4
|
Khattab S, Askar AM, Abdellatif HAA, Othman AAA, Rayan AH, Azab H. Synergistic combination of ceftazidime and avibactam with Aztreonam against MDR Klebsiella pneumoniae in ICU patients. Sci Rep 2025; 15:5102. [PMID: 39934194 PMCID: PMC11814154 DOI: 10.1038/s41598-025-88965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The proliferation of multidrug-resistant, metallo-beta-lactamase-producing Klebsiella pneumoniae (MBL-producing K. pneumoniae) poses a major threat to public health resulting in increasing treatment costs, prolonged hospitalization, and mortality rate. Treating such bacteria presents substantial hurdles for clinicians. The combination of Aztreonam (ATM) and ceftazidime/avibactam (CAZ/AVI) is likely the most successful approach. The study evaluated the in vitro activity of CAZ/AVI in combination with ATM against MBL-producing K. pneumoniae clinical isolates collected from Suez Canal University Hospital patients. Carbapenem-resistant K. pneumoniae were isolated and identified from different specimens. The presence of metallo-β-lactamases was detected phenotypically by modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) testing, and genotypically for the three metallo-β-lactamase genes: blaNDM, blaIMP, and blaVIM by conventional PCR method. The synergistic effect of CAZ/AVI with ATM against MBL-producing K. pneumoniae was detected by ceftazidime-avibactam combination disks and E-test for antimicrobial susceptibility testing. Out of the 65 K. pneumoniae isolates recovered, 60% (39/65) were carbapenem-resistant (CRKP). According to the mCIM and eCIM tests, 89.7% (35/39) of CRKP isolates were carbapenemase-positive, and 68.6% (24/35) were metallo-β-lactamase (MBL)-positive. By using the conventional PCR, at least one of the MBL genes was present in each metallo-bata-lactamase-producing isolate: 8.3% carried the blaVIM gene, 66.7% the blaNDM, and 91.7% the blaIMP gene. After doing the disk combination method for ceftazidime-avibactam plus Aztreonam, 62.5% of the isolates shifted from resistance to sensitivity. Also, ceftazidime/avibactam plus Aztreonam resistance was reduced markedly among CRKP using the E-test. The addition of Aztreonam to ceftazidime/avibactam is an effective therapeutic option against MBL-producing K. pneumoniae.Clinical Trials Registry: Pan African Clinical Trials Registry. Trial No.: PACTR202410744344899. Trial URL: https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=32000.
Collapse
Affiliation(s)
- Sally Khattab
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Mohamed Askar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hidi A A Abdellatif
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University , Ismailia, Egypt
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, King Salman International University, Tur Sinai, South Sinai, Egypt
| | - Amira A A Othman
- Internal Medicine Department, Faculty of Medicine, Suez University, Suez, Egypt.
| | - Amal H Rayan
- Department of Basic Medical Science, College of Medicine, AlMaarefa University, Riyadh, Kingdom of Saudi Arabia
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hasnaa Azab
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Azra, Khan TA, Ul Haq I, Hinthong W, Campino S, Gohar A, Khan N, Kashif M, Ullah I, Clark TG. Antibiotic Susceptibility Patterns and Virulence Profiles of Classical and Hypervirulent Klebsiella pneumoniae Strains Isolated from Clinical Samples in Khyber Pakhtunkhwa, Pakistan. Pathogens 2025; 14:79. [PMID: 39861040 PMCID: PMC11768992 DOI: 10.3390/pathogens14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The emergence of hypervirulent and carbapenem-resistant hypermucoviscous Klebsiella pneumoniae strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent K. pneumoniae strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024. Among these, 64 K. pneumoniae strains were isolated and subsequently subjected to antimicrobial susceptibility testing (AST) and phenotypic virulence detection. Among the 64 isolates, 21 (32.8%) exhibited hypermucoviscosity, a characteristic associated with increased pathogenicity. Hemagglutination was observed in 35 (54.1%) of the isolates, indicating the presence of surface adhesins that facilitate bacterial adherence to host tissues. A high prevalence of biofilm formation was noted, with 54 (84%) isolates capable of forming biofilms, which are known to protect bacteria from antibiotics and the host immune response. Most isolates (59/64, 92.1%) were resistant against ampicillin, highlighting its limited efficacy against these strains. Conversely, the lowest resistance was observed for tigecycline, with only 15% (10/64) of the isolates showing resistance, indicating its potential utility as a treatment option. The study also found that 38 (59.3%) of the isolates were extended-spectrum beta-lactamase (ESBL) producers, 42 (65.6%) were multidrug-resistant (MDR), 32 (50%) were extensively drug-resistant (XDR), and 13 (20.3%) were resistant to carbapenems. The genetic study revealed biofilm producer and enhancer genes (mrkD, pgaABCD, fimH, treC, wzc, pilQ, and luxS) mainly in the hypervirulent strains. These hypervirulent strains also show a high number of resistance genes. The findings of this study underscore the critical need for the active surveillance of antimicrobial resistance and virulence determinants in K. pneumoniae. The coexistence of high levels of antibiotic resistance and virulence factors in these isolates poses a severe threat to public health, as it can lead to difficult-to-treat infections and increased morbidity and mortality.
Collapse
Affiliation(s)
- Azra
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Woranich Hinthong
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
- Faculty of Epidemiology and Population Health, School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Aisha Gohar
- Microbiology Department, Bacha Khan Medical College Mardan, Mardan 23200, Pakistan;
| | - Noman Khan
- Al Rasheed Hospital & Kidney Center, Opposite Gilani Mart, Maneshra Road, Abbottabad 22020, Pakistan;
| | - Muhammad Kashif
- Public Health Reference Laboratory, Khyber Medical University Peshawar, Peshawar 25000, Pakistan
| | - Ihsan Ullah
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
| |
Collapse
|
6
|
Selim MI, El-Banna T, Sonbol F, Negm WA, Elekhnawy E. Unveiling the potential of spirulina algal extract as promising antibacterial and antibiofilm agent against carbapenem-resistant Klebsiella pneumoniae: in vitro and in vivo study. Microb Cell Fact 2025; 24:7. [PMID: 39755644 DOI: 10.1186/s12934-024-02619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae. In this study, thirty carbapenem-resistant K. pneumoniae isolates were collected, identified, and then screened for their susceptibility to several antibiotics and carbapenemase production genes using PCR. Both blaKPC and blaOXA-48 genes were the most predominant detected carbapenemase genes in the tested isolates. The phytochemical profiling of A. maxima algal extract was conducted using LC-MS/MS in a positive mode technique. The minimum inhibitory concentrations (MIC) of the algal extract ranged from 500 to 1000 µg/mL. The algal extract also resulted in decreasing the membrane integrity and distortion in the bacterial cells as revealed by scanning electron microscope. The bioactive compounds that were responsible for the antibacterial action were fatty acids, including PUFAs, polysaccharides, glycosides, peptides, flavonoids, phycocyanin, minerals, essential amino acids, and vitamins. Moreover, A. maxima algal extract revealed an antibiofilm activity by crystal violet assay and qRT-PCR. A murine pneumonia model was employed for the in vivo assessment of the antibacterial action of the algal extract. A. maxima showed a promising antibacterial action which was comparable to the action of colistin (standard drug). This was manifested by improving the pulmonary architecture, decreasing the inflammatory cell infiltration, and fibrosis after staining with hematoxylin and eosin and Masson's trichrome stain. Using immunohistochemical investigations, the percentage of the immunoreactive cells significantly decreased after using monoclonal antibodies of the tumor necrosis factor-alpha and interleukin six. So, A. maxima may be considered a new candidate for the development of new antibacterial medications.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Abdelsalam NA, ElBanna SA, Mouftah SF, Cobo-Díaz JF, Shata AH, Shawky SM, Atteya R, Elhadidy M. Genomic dynamics of high-risk carbapenem-resistant klebsiella pneumoniae clones carrying hypervirulence determinants in Egyptian clinical settings. BMC Infect Dis 2024; 24:1193. [PMID: 39438795 PMCID: PMC11515790 DOI: 10.1186/s12879-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Ongoing studies have revealed the global prevalence of severe infections caused by the hypervirulent strains of Klebsiella pneumoniae (K. pneumoniae). Meanwhile, the World Health Organization and the Centers for Disease Control declared carbapenem-resistant K. pneumoniae as an urgent public health threat, requiring swift and effective action to mitigate its spread. Low- and middle-income countries are severely impacted by such devastating infectious diseases owing to the ill implementation of antimicrobial practices and infection control policies. Having both hypervirulence and carbapenemase gene determinants, the emergence of convergent hypervirulent carbapenem-resistant K. pneumoniae is now being reported worldwide. METHODS In this study, we sequenced 19 carbapenemase-producing K. pneumoniae strains recovered from various clinical specimens. Additionally, we evaluated the phenotypic antimicrobial susceptibility to multiple antimicrobial classes using the VITEK2 automated system. Utilizing the sequencing data, we characterized the sequence types, serotypes, pangenome, resistance profiles, virulence profiles, and mobile genetic elements of the examined isolates. We highlighted the emergence of high-risk clones carrying hypervirulence genetic determinants among the screened isolates. RESULTS Our findings revealed that all carbapenem-resistant isolates exhibited either extensive- or pan-drug resistance and harbored multiple variants of resistance genes spanning nearly all the antimicrobial classes. The most prevalent carbapenemase genes detected within the isolates were blaNDM-5 and blaOXA-48. We identified high-risk clones, such as ST383-K30, ST147-K64, ST11-K15, and ST14-K2, which may have evolved into putative convergent strains by acquiring the full set of hypervirulence-associated genetic determinants (iucABCD, rmpA and/ or rmpA2, putative transporter peg-344). Additionally, this study identified ST709-K9 as a high-risk clone for the first time and uncovered that capsule types K15 and K9 carried hypervirulence genetic determinants. The most frequent Inc types found in these isolates were Col440I, IncHI1B, and Inc FII(K). CONCLUSION This study highlights the emergence of high-risk, extensively carbapenem-resistant K. pneumoniae strains co-carrying hypervirulence determinants in Egyptian clinical settings. This poses an imminent threat not only to Egypt but also to the global community, underscoring the urgent need for enhanced surveillance and control strategies to combat this pathogen.
Collapse
Affiliation(s)
- Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shaimaa F Mouftah
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Ahmed H Shata
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Sherine M Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
8
|
Davoodi NR, Soleimani N, Hosseini SM, Rahnamaye-Farzami M. Molecular characterization and epidemiological investigation of colistin resistance in carbapenem-resistant Klebsiella pneumoniae in a tertiary care hospital in Tehran, Iran. BMC Microbiol 2024; 24:230. [PMID: 38943054 PMCID: PMC11212209 DOI: 10.1186/s12866-024-03376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Carbapenemase-producing Klebsiella pneumoniae (CRKP) presents a significant challenge to antimicrobial therapy, especially when compounded by resistance to colistin. The objective of this study was to explore molecular epidemiological insights into strains of clinical K. pneumoniae that produce carbapenemases and exhibit resistance to colistin. Eighty clinical isolates of CRKP were obtained from Milad Hospital in Tehran, Iran. Antimicrobial susceptibility and colistin broth disk elution were determined. PCR assays were conducted to examine the prevalence of resistance-associated genes, including blaKPC, blaIMP, blaVIM, blaOXA-48, blaNDM and mcr-1 to -10. Molecular typing (PFGE) was used to assess their spread. RESULTS Colistin resistance was observed in 27 isolates (33.7%) using the Broth Disk Elution method. Among positive isolates for carbapenemase genes, the most frequent gene was blaOXA-48, identified in 36 strains (45%). The mcr-1 gene was detected in 3.7% of the obtained isolates, with none of the other of the other mcr genes detected in the studied isolates. CONCLUSION To stop the spread of resistant K. pneumoniae and prevent the evolution of mcr genes, it is imperative to enhance surveillance, adhere rigorously to infection prevention protocols, and implement antibiotic stewardship practices.
Collapse
Affiliation(s)
- Neda Razavi Davoodi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Marjan Rahnamaye-Farzami
- Department of Microbiology, Research Center of Health Reference Laboratory, Ministry of Health and Medical Education, Tehran, Iran.
- Department of Microbiology, Reference Health Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
9
|
Mohammed R, Nader SM, Hamza DA, Sabry MA. Occurrence of carbapenem-resistant hypervirulent Klebsiella pneumoniae in oysters in Egypt: a significant public health issue. Ann Clin Microbiol Antimicrob 2024; 23:53. [PMID: 38886796 PMCID: PMC11184735 DOI: 10.1186/s12941-024-00711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The global dissemination of critical-priority carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) via food sources represents a significant public health concern. Epidemiological data on CR-hvKp in oysters in Egypt is limited. This study aimed to investigate the potential role of oysters sold in Egypt as a source for carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKp), and CR-hvKp and assess associated zoonotic risks. METHODS A sample of 330 fresh oysters was randomly purchased from various retail fish markets in Egypt and divided into 33 pools. Bacteriological examination and the identification of Klebsiella pneumoniae were performed. Carbapenem resistance in K. pneumoniae isolates was determined by phenotypic and molecular methods. Additionally, the presence of hypervirulent K. pneumoniae was identified based on virulence gene markers (peg-344, rmpA, rmpA2, iucA, and iroB), followed by a string test. The clustering of CR-hvKp strains was carried out using R with the pheatmap package. RESULTS The overall prevalence of K. pneumoniae was 48.5% (16 out of 33), with 13 isolates displaying carbapenem resistance, one intermediate resistance, and two sensitive. Both carbapenem-resistant K. pneumoniae and carbapenem-intermediate-resistant K. pneumoniae strains exhibited carbapenemase production, predominantly linked to the blaVIM gene (68.8%). HvKp strains were identified at a rate of 62.5% (10/16); notably, peg-344 was the most prevalent gene. Significantly, 10 of the 13 CRKP isolates possessed hypervirulence genes, contributing to the emergence of CR-hvKp. Moreover, cluster analysis revealed the clustering of two CR-hvKp isolates from the same retail fish market. CONCLUSION This study provides the first insight into the emergence of CR-hvKp among oysters in Egypt. It underscores the potential role of oysters as a source for disseminating CR-hvKp within aquatic ecosystems, presenting a possible threat to public health.
Collapse
Affiliation(s)
- Rahma Mohammed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Dalia A Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
10
|
Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Tuli HS, Jindal T, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024; 15:1403168. [PMID: 38741745 PMCID: PMC11089201 DOI: 10.3389/fmicb.2024.1403168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.
Collapse
Affiliation(s)
- Shikha Sharma
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
11
|
Tartor YH, Ammar AM, Abdelkhalek A, Hassan KA, Shaker A, Elnahriry SS, Nekouei O, Elsohaby I. Emergence of pandrug-resistant carbapenemase-producing Enterobacterales in dogs and cats: a cross-sectional study in Egypt. Front Cell Infect Microbiol 2024; 14:1318585. [PMID: 38562962 PMCID: PMC10982511 DOI: 10.3389/fcimb.2024.1318585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
One of the most important emerging health problems is the increasing role of animals in the rapid global rise in resistance to last-resort antibiotics, such as carbapenems. However, there is limited information on the role of pet animals in harboring and spreading pandrug-resistant (PDR) carbapenemase-producing Enterobacterales (CPE), especially in Egypt. This cross-sectional study was conducted to screen for CPE in healthy and diseased pets using phenotypic and molecular methods and the NG-Test CARBA 5 immunochromatographic assay. Rectal swabs were collected from 62 dogs and 48 cats, incubated overnight in tryptic soy broth containing 10 μg of meropenem disc and subsequently cultured on MacConkey agar supplemented with meropenem (1 mg/L). Sixty-six isolates (60.6%), including 56 Klebsiella pneumoniae, seven Escherichia coli, and three K. oxytoca isolates, were confirmed to be carbapenem-resistant Enterobacterales (CRE) by the disc diffusion method, broth microdilution test, CNPt-direct, and PCR assay targeting carbapenemase genes. Forty-three (65.2%) dogs and 23 (34.8%) cats carried CPE. Of these, 35 (70.0%) were healthy (including 27 dogs and 8 cats) and 31 (52.5%) were diseased (including 16 dogs and 15 cats). bla OXA-181 was the most common gene detected (42/66, 63.6%), followed by bla IMP (40/66, 60.6%), bla OXA-48-like (29/66, 43.9%), bla KPC and bla VIM (20/66, 30.3% each), and bla NDM (17/66, 25.8%). The identified genotypes were bla KPC-2, bla IMP-1, bla VIM-1, bla NDM-1, and bla NDM-5. The CARBA 5 assay showed higher sensitivity and specificity for the detection of NDM, OXA and KPC than that for VIM and IMP genes. Antimicrobial resistance profiles of CRE isolates revealed 20 PDR, 30 extensively drug-resistant (XDR), and 16 multidrug-resistant (MDR) phenotypes. This study provides evidence of colonization with PDR CPE in dogs and cats. To manage the infection or colonization of pets in veterinary clinical settings, extended surveillance systems should be considered, and the use of critical antibiotics should be strictly controlled.
Collapse
Affiliation(s)
- Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Khlood A. Hassan
- Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Shaker
- Department of Microbiology, Veterinary Hospital, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menofia, Egypt
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Abdel-Halim MS, El-Ganiny AM, Mansour B, Yahya G, Latif HKAE, Askoura M. Phenotypic, molecular, and in silico characterization of coumarin as carbapenemase inhibitor to fight carbapenem-resistant Klebsiella pneumoniae. BMC Microbiol 2024; 24:67. [PMID: 38413891 PMCID: PMC10898048 DOI: 10.1186/s12866-024-03214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Carbapenems represent the first line treatment of serious infections caused by drug-resistant Klebsiella pneumoniae. Carbapenem-resistant K. pneumoniae (CRKP) is one of the urgent threats to human health worldwide. The current study aims to evaluate the carbapenemase inhibitory potential of coumarin and to test its ability to restore meropenem activity against CRKP. Disk diffusion method was used to test the antimicrobial susceptibility of K. pneumoniae clinical isolates to various antibiotics. Carbapenemase genes (NDM-1, VIM-2, and OXA-9) were detected using PCR. The effect of sub-MIC of coumarin on CRKP isolates was performed using combined disk assay, enzyme inhibition assay, and checkerboard assay. In addition, qRT-PCR was used to estimate the coumarin effect on expression of carbapenemase genes. Molecular docking was used to confirm the interaction between coumarin and binding sites within three carbapenemases. RESULTS K. pneumoniae clinical isolates were found to be multi-drug resistant and showed high resistance to meropenem. All bacterial isolates harbor at least one carbapenemase-encoding gene. Coumarin significantly inhibited carbapenemases in the crude periplasmic extract of CRKP. The checkerboard assay indicated that coumarin-meropenem combination was synergistic exhibiting a fractional inhibitory concentration index ≤ 0.5. In addition, qRT-PCR results revealed that coumarin significantly decreased carbapenemase-genes expression. Molecular docking revealed that the binding energies of coumarin to NDM1, VIM-2, OXA-48 and OXA-9 showed a free binding energy of -7.8757, -7.1532, -6.2064 and - 7.4331 Kcal/mol, respectively. CONCLUSION Coumarin rendered CRKP sensitive to meropenem as evidenced by its inhibitory action on hydrolytic activity and expression of carbapenemases. The current findings suggest that coumarin could be a possible solution to overcome carbapenems resistance in CRKP.
Collapse
Affiliation(s)
- Mahmoud Saad Abdel-Halim
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hemat K Abd El Latif
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
13
|
El Naggar NM, Shawky RM, Serry FME, Emara M. Investigating the relationship between carbapenemase production and biofilm formation in Klebsiella pneumoniae clinical isolates. BMC Res Notes 2024; 17:49. [PMID: 38360658 PMCID: PMC10870607 DOI: 10.1186/s13104-024-06708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Carbapenemase production and biofilm formation in K. pneumoniae are crucial factors influencing the pathogenicity and antibiotic resistance of this bacterium. This study investigated the interplay between carbapenemase production and biofilm formation in K. pneumoniae clinical isolates. RESULTS The distribution of biofilm-forming ability significantly differed between carbapenemase-producing (CP-Kp) (n = 52) isolates and carbapenemase-nonproducing (CN-Kp) isolates (n = 37), suggesting a potential link between carbapenemase production and biofilm formation. All the blaNDM-1-harbouring isolates demonstrated biofilm formation, with varying levels classified as strong (33.33%), moderate (22.22%), or weak (44.45%). blaNDM-1 and blaKPC-coharbouring isolates did not exhibit strong or moderate biofilm formation. blaNDM-1 and blaOXA-48-coharbouring isolates were predominantly moderate (48.65%), followed by weak (32.43%), with none showing strong biofilm production. These findings suggest a correlation between the presence of carbapenemases and biofilm-forming ability; however, the heterogeneity in biofilm-forming abilities associated with different carbapenemase types and the absence of strong biofilm producers in the detected carbapenemase combinations prompt a closer look at the complex regulatory mechanisms governing biofilm formation in CP-Kp isolates.
Collapse
Affiliation(s)
- Nora M El Naggar
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, POX 11795, Ain Helwan, Cairo, Egypt
| | - Riham M Shawky
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, POX 11795, Ain Helwan, Cairo, Egypt
| | - Fathy M E Serry
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Zagazig University, Zagazig, Egypt
| | - Mohamed Emara
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, POX 11795, Ain Helwan, Cairo, Egypt.
| |
Collapse
|
14
|
Baraka K, Abozahra R, Haggag MM, Abdelhamid SM. Genotyping and molecular investigation of plasmid-mediated carbapenem resistant clinical Klebsiella pneumoniae isolates in Egypt. AIMS Microbiol 2023; 9:228-244. [PMID: 37091821 PMCID: PMC10113168 DOI: 10.3934/microbiol.2023014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Klebsiella pneumoniae is a multidrug-resistant nosocomial pathogen. Carbapenem resistance is mediated mainly by enzymes carried on transmissible plasmids causing their dissemination among other members of Enterobacteriaceae. This study aimed to molecularly detect carbapenem resistance genes in K. pneumoniae clinical isolates, genotype them using ERIC-PCR, and investigate plasmid transformation of resistant genes by using ERIC-PCR and sequencing. Methods Antimicrobial resistance of sixty carbapenem-resistant K. pneumoniae strains was evaluated by using the disc diffusion method. Five carbapenemases' genes were amplified by conventional PCR. Genotyping was performed using ERIC-PCR. Gene transformation was performed for the five genes to sensitive isolates. Wild and transformed isolates were genetically investigated using ERIC-PCR and sequencing. Results Carbapenem resistance in our isolates was associated with high resistance to all tested antibiotics. The 60 K. pneumoniae isolates were divided into 6 resistor types. The prevalence of KPC, IMP, VIM, NDM, and OXA-48 genes were 17%, 63%, 93%, 85% and 100%, respectively. Dendrogram analysis showed 57 distinct patterns, arranged in three clusters. The five genes were transformed successfully into sensitive isolates. ERIC profiles of wild and transformed isolates showed cluster A contained all the wild isolates, and cluster B contained all transformed isolates. Genetic sequences of the 5 genes reflected high genetic similarity with the GenBank reference genes before plasmid transformation; however, a distinguishable decrease of genetic similarity was observed after transformation. Conclusion Plasmid-mediated carbapenem resistance in K. pneumoniae and its dissemination among different strains is a real threat to public health.
Collapse
Affiliation(s)
- Kholoud Baraka
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Behira, Egypt
- * Correspondence: ; Tel: +21006878989
| | - Rania Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Behira, Egypt
| | - Marwa Mohammed Haggag
- Microbiology and Immunology Department, Faculty of Pharmacy, Sinai University, Arish Campus, Sinai, Egypt
| | - Sarah M Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Behira, Egypt
| |
Collapse
|
15
|
Shahid M, Ahmad N, Saeed NK, Shadab M, Joji RM, Al-Mahmeed A, Bindayna KM, Tabbara KS, Dar FK. Clinical carbapenem-resistant Klebsiella pneumoniae isolates simultaneously harboring blaNDM-1, blaOXA types and qnrS genes from the Kingdom of Bahrain: Resistance profile and genetic environment. Front Cell Infect Microbiol 2022; 12:1033305. [PMID: 36304935 PMCID: PMC9592905 DOI: 10.3389/fcimb.2022.1033305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
The prevalence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) is currently increasing worldwide, prompting WHO to classify it as an urgent public health threat. CRKP is considered a difficult to treat organism owing to limited therapeutic options. In this study, a total of 24 CRKP clinical isolates were randomly collected from Salmaniya Medical Complex, Bahrain. Bacterial identification and antibiotic susceptibility testing were performed, on MALDI-TOF and VITEK-2 compact, respectively. The isolates were screened for carbapenem resistance markers (blaNDM,blaOXA-23,blaOXA-48 and blaOXA-51) and plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS) by monoplex PCR. On the other hand, only colistin-resistant isolates (n=12) were screened for MCR-1, MCR-2 and MCR-3 genes by monoplex PCR. Moreover, the Genetic environment of blaNDM, integrons analysis, and molecular characterization of plasmids was also performed. Antibiotic susceptibility revealed that all the isolates (100%) were resistant to ceftolozane/tazobactam, piperacillin/tazobactam, 96% resistant to ceftazidime, trimethoprim/sulfamethoxazole, 92% resistant to meropenem, gentamicin and cefepime, 88% resistant to ciprofloxacin, imipenem, and 37% resistant to amikacin. Ceftazidime/avibactam showed the least resistance (12%). 75% (n=12/16) were resistant to colistin and 44% (n=7/16) showed intermediate susceptibility to tigecycline. The detection of resistant determinants showed that the majority (95.8%) of CRKP harbored blaNDM-1, followed by blaOXA-48 (91.6%) blaOXA-51 (45.8%), and blaOXA-23 (41.6%). Sequencing of the blaNDM amplicons revealed the presence of blaNDM-1. Alarmingly, 100% of isolates showed the presence of qnrS. These predominant genes were distributed in various combinations wherein the majority were blaNDM-1 + blaOXA-51+ qnrS + blaOXA-48 (n =10, 41.7%), blaNDM-1 + blaOXA-23+ qnrS + blaOXA-48 (n=8, 33.3%), among others. In conclusion, the resistance rate to most antibiotics is very high in our region, including colistin and tigecycline, and the genetic environment of CRKP is complex with the carriage of multiple resistance markers. Resistance to ceftazidime/avibactam is uncommon and hence can be used as a valuable option for empirical therapy. Molecular data on resistance markers and the genetic environment of CRKP is lacking from this geographical region; this would be the first report addressing the subject matter. Surveillance and strict infection control strategies should be reinforced in clinical settings to curb the emergence and spread of such isolates.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
- *Correspondence: Mohammad Shahid,
| | - Nayeem Ahmad
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Nermin Kamal Saeed
- Department of Pathology, Microbiology Section, Salmaniya Medical Complex, Manama, Bahrain
| | - Mohd Shadab
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ronni Mol Joji
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ali Al-Mahmeed
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khalid M. Bindayna
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khaled Saeed Tabbara
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Fazal K. Dar
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|