1
|
Zhang T, Nickerson R, Zhang W, Peng X, Shang Y, Zhou Y, Luo Q, Wen G, Cheng Z. The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health 2024; 18:100748. [PMID: 38774301 PMCID: PMC11107239 DOI: 10.1016/j.onehlt.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Yu Shang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
3
|
Seekatz AM, Safdar N, Khanna S. The role of the gut microbiome in colonization resistance and recurrent Clostridioides difficile infection. Therap Adv Gastroenterol 2022; 15:17562848221134396. [PMID: 36425405 PMCID: PMC9679343 DOI: 10.1177/17562848221134396] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
The species composition of the human gut microbiota is related to overall health, and a healthy gut microbiome is crucial in maintaining colonization resistance against pathogens. Disruption of gut microbiome composition and functionality reduces colonization resistance and has been associated with several gastrointestinal and non-gastrointestinal diseases. One prime example is Clostridioides difficile infection (CDI) and subsequent recurrent infections that occur after the development of systemic antibiotic-related dysbiosis. Standard-of-care antibiotics used for both acute and recurrent infections do not address dysbiosis and often worsen the condition. Moreover, monoclonal antibodies, recommended in conjunction with standard-of-care antibiotics for the prevention of recurrent CDI in patients at high risk of recurrence, reduce recurrences but do not address the underlying dysbiosis. Fecal microbiota transplantation (FMT) is an evolving therapeutic strategy in which microbes are harvested from healthy donor stool and transplanted into the gut of a recipient to restore the gut microbiome. Although effective in the prevention of recurrent CDI, some existing challenges include screening and the standardization of stool acquisition and processing. Recent safety alerts by the US Food and Drug Administration raised concern about the possibility of transmission of multidrug-resistant organisms or severe acute respiratory syndrome coronavirus 2 via FMT. Increased knowledge that microbes are beneficial in restoring the gut microbiome has led to the clinical development of several newer biotherapeutic formulations that are more regulated than FMT, which may allow for improved restoration of the gut microbiome and prevention of CDI recurrence. This review focuses on mechanisms by which gut microbiome restoration could influence colonization resistance against the pathogen C. difficile. Plain language summary The Role of the Gut Microbiome in Clostridioides difficile Infection Introduction: A rich and diverse gut microbiome is key to immune system regulation and colonization resistance against pathogens.A disruption in the gut microbiome composition can make the gut more vulnerable to diseases such as Clostridioides difficile infection (CDI), caused by the bacterium C. difficile.CDI management presents a therapeutic dilemma, as it is usually treated with antibiotics that can treat the infection but also can damage the microbiome.Treatment of CDI using antibiotics can further reduce microbial diversity and deplete beneficial bacteria from the gut leading to a condition called dysbiosis.Antibiotic treatment can be followed by therapies that restore the gut microbiota, boost colonization resistance, and prevent the development of antimicrobial resistance.It is important to evaluate treatment options to determine their safety and effectiveness. Methods: The researchers provided an overview of the mechanisms that the gut microbiome uses to prevent colonization of the gut by pathogens.They subsequently reviewed the efficacy and shortcomings of the following treatments for CDI: - Antibiotics- Monoclonal antibodies- Fecal microbiota transplantation (FMT) Results: Commensal intestinal bacteria prevent colonization of the gut by pathogens using mechanisms such as: - Competition for key nutrients- Production of inhibitory bile acids- Short-chain fatty acid production- Lowering the luminal pH- Production of bacteriocinsAntibiotic therapy is recommended as a standard treatment for CDI. However, patients are vulnerable to recurrent CDI after discontinuation of the therapy.Monoclonal antibodies that inactivate C. difficile toxins may be recommended along with antibiotics to prevent recurrent CDI. However, this approach does not restore the microbiome.FMT is one method of microbial restoration, where stool is harvested from a healthy donor and transplanted into a patient's colon.Although FMT has shown some efficacy in the treatment of recurrent CDI, the procedure is not standardized.Safety concerns have been raised about the possibility of transmission of multidrug-resistant pathogens via FMT. Conclusion: Treatment methods that can efficiently restore the diversity of the gut microbiome are crucial in preventing recurrence of CDI.
Collapse
Affiliation(s)
| | - Nasia Safdar
- University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Mitra S, Sultana SA, Prova SR, Uddin TM, Islam F, Das R, Nainu F, Sartini S, Chidambaram K, Alhumaydhi FA, Emran TB, Simal-Gandara J. Investigating forthcoming strategies to tackle deadly superbugs: current status and future vision. Expert Rev Anti Infect Ther 2022; 20:1309-1332. [PMID: 36069241 DOI: 10.1080/14787210.2022.2122442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Superbugs are microorganisms that cause disease and have increased resistance to the treatments typically used against infections. Recently, antibiotic resistance development has been more rapid than the pace at which antibiotics are manufactured, leading to refractory infections of pathogenic bacteria. Scientists are concerned that a particularly virulent and lethal "superbug" will one day join the ranks of existing bacteria that cause incurable diseases, resulting in a global health disaster on the scale of the Black Death. AREAS COVERED Therefore, this study highlights the current developments in the management of antibiotic-resistant bacteria and recommends strategies for further regulating antibiotic-resistant microorganisms associated with the healthcare system. This review also addresses the origins, prevalence, and pathogenicity of superbugs, and the design of antibacterial against these growing multidrug-resistant organisms from a medical perspective. EXPERT OPINION It is recommended that antimicrobial resistance (AMR) should be addressed by limiting human-to-human transmission of resistant strains, lowering the use of broad-spectrum antibiotics, and developing novel antimicrobials. Using the risk-factor domains framework from this study would assure that not only clinical but also community and hospital-specific factors are covered, lowering the chance of confounders. Extensive subjective research is necessary to fully understand the underlying factors and uncover previously unexplored areas.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sifat Ara Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Sartini Sartini
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.,Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
5
|
Islam MI, Seo H, Redwan A, Kim S, Lee S, Siddiquee M, Song HY. In Vitro and In Vivo Anti- Clostridioides difficile Effect of a Probiotic Bacillus amyloliquefaciens Strain. J Microbiol Biotechnol 2022; 32:46-55. [PMID: 34675143 PMCID: PMC9628829 DOI: 10.4014/jmb.2107.07057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile infection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority. Here, we report a new probiotic strain, Bacillus amyloliquefaciens (BA PMC-80), and its in vitro/in vivo anti-C. difficile effect as a prospective novel candidate for replacing conventional antibiotics. BA PMC-80 showed a significant anti-C. difficile effect in coculture assay, and its cell-free supernatant (CFS) also exhibited a considerable anti-C. difficile effect with an 89.06 μg/ml 50% minimal inhibitory concentration (MIC) in broth microdilution assay. The CFS was stable and equally functional under different pHs, heat, and proteinase treatments. It also exhibited a high sensitivity against current antibiotics and no toxicity in subchronic toxicity testing in hamsters. Finally, BA PMC-80 showed a moderate effect in a hamster CDI model with reduced infection severity and delayed death. However, further studies are required to optimize the treatment condition of the hamster CDI model for better efficacy and identify the antimicrobial compound produced by BA PMC-80.
Collapse
Affiliation(s)
- Md Imtiazul Islam
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Asma Redwan
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Mashuk Siddiquee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea,Corresponding author Phone: +82-41-570-2412 Fax: +82-41-577-2415 E-mail:
| |
Collapse
|
6
|
Ser HL, Letchumanan V, Goh BH, Wong SH, Lee LH. The Use of Fecal Microbiome Transplant in Treating Human Diseases: Too Early for Poop? Front Microbiol 2021; 12:519836. [PMID: 34054740 PMCID: PMC8155486 DOI: 10.3389/fmicb.2021.519836] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiome transplant (FMT) has gained popularity over the past few years, given its success in treating several gastrointestinal diseases. At the same time, microbial populations in the gut have been shown to have more physiological effects than we expected as "habitants" of the gut. The imbalance in the gut microbiome or dysbiosis, particularly when there are excessive harmful pathogens, can trigger not just infections but can also result in the development of common diseases, such as cancer and cardiometabolic diseases. By using FMT technology, the dysbiosis of the gut microbiome in patients can be resolved by administering fecal materials from a healthy donor. The current review summarizes the history and current uses of FMT before suggesting potential ideas for its high-quality application in clinical settings.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
7
|
Matchett WE, Anguiano-Zarate S, Malewana GBR, Mudrick H, Weldy M, Evert C, Khoruts A, Sadowsky M, Barry MA. A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines (Basel) 2020; 8:vaccines8030470. [PMID: 32842679 PMCID: PMC7564163 DOI: 10.3390/vaccines8030470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile causes nearly 500,000 infections and nearly 30,000 deaths each year in the U.S., which is estimated to cost $4.8 billion. C. difficile infection (CDI) arises from bacteria colonizing the large intestine and releasing two toxins, toxin A (TcdA) and toxin B (TcdB). Generating humoral immunity against C. difficile’s toxins provides protection against primary infection and recurrence. Thus, a vaccine may offer the best opportunity for sustained, long-term protection. We developed a novel single-cycle adenovirus (SC-Ad) vaccine against C. difficile expressing the receptor-binding domains from TcdA and TcdB. The single immunization of mice generated sustained toxin-binding antibody responses and protected them from lethal toxin challenge for up to 38 weeks. Immunized Syrian hamsters produced significant toxin-neutralizing antibodies that increased over 36 weeks. Single intramuscular immunization provided complete protection against lethal BI/NAP1/027 spore challenge 45 weeks later. These data suggest that this replicating vaccine may prove useful against CDI in humans.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - Melissa Weldy
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Clayton Evert
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Alexander Khoruts
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael Sadowsky
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Soil, Water, and Climate Department of Plant and Microbial Biology, University of Minnesota, University of Minnesota, St Paul, MN 55108, USA
| | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-9090
| |
Collapse
|
8
|
Clostridium difficile Infection Epidemiology over a Period of 8 Years—A Single Centre Study. SUSTAINABILITY 2020. [DOI: 10.3390/su12114439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridium difficile infection (CDI) is the most common infectious disease related to antibiotic-associated diarrhoea and is a current leading cause of morbidity/mortality, with substantial consequences for healthcare services and overall public health. Thus, we performed a retrospective epidemiological study of CDI for a long period (8 years), in an infectious hospital located in north-western Romania, which serves an entire county of the country (617,827 inhabitants). From 2011 to 2018, 877 patients were diagnosed with CDI; the mean incidence of this disease was 2.76 cases/10,000 patient-days, with an increasing trend in the annual incidence until 2016, at which point there was a decrease. The most commonly afflicted were patients in the 75–84 age group, observed in winter and spring. The results show that the antibiotics were administered in 679 (77.42%) subjects, within the last 3 months before CDI, statistically significant more than proton-pump inhibitors (PPIs)—128 (14.60%) and antidepressant medications—60 (6.84%), which were administered during the same period (p < 0.001). No medication was reported in 10 (6.84%) cases of CDI, in the last 3 months of the study. The fatality rate attained 4.1%, tripling in 2018 vs. 2011. CDI became a significant public health conundrum that can, nevertheless, be combatted through a judicious use of antibiotics.
Collapse
|
9
|
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int J Mol Sci 2020; 21:E1061. [PMID: 32033477 PMCID: PMC7037027 DOI: 10.3390/ijms21031061] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are one of the greatest medical advances of the 20th century, however, they are quickly becoming useless due to antibiotic resistance that has been augmented by poor antibiotic stewardship and a void in novel antibiotic discovery. Few novel classes of antibiotics have been discovered since 1960, and the pipeline of antibiotics under development is limited. We therefore are heading for a post-antibiotic era in which common infections become untreatable and once again deadly. There is thus an emergent need for both novel classes of antibiotics and novel approaches to treatment, including the repurposing of existing drugs or preclinical compounds and expanded implementation of combination therapies. In this review, we highlight to utilize alternative drug targets/therapies such as combinational therapy, anti-regulator, anti-signal transduction, anti-virulence, anti-toxin, engineered bacteriophages, and microbiome, to defeat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zachary M. Powers
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
10
|
Kuriyama A, Jackson JL. Defining metronidazole-induced encephalopathy. J Neurol 2019; 266:1272-1273. [PMID: 30863892 DOI: 10.1007/s00415-019-09275-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/07/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Akira Kuriyama
- Emergency and Critical Care Center, Kurashiki Central Hospital, 1-1-1 Miwa Kurashiki, Okayama, 710-8602, Japan.
| | - Jeffrey L Jackson
- Department of Medicine, GIM Section, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Abstract
Bacillus and Clostridium spores are known to be highly resistant to killing, persisting on environmental and human body surfaces for long periods of time. In favorable environments, these spores may germinate and cause human diseases. It is thus important to identify agents that can be used on both environmental and human skin and mucosal surfaces and that are effective in killing spores. We previously showed that the fatty acid monoester glycerol monolaurate (GML) kills stationary-phase cultures of Bacillus anthracis. Since such cultures are likely to contain spores, it is possible that GML and a human-use-approved GML nonaqueous gel would kill Bacillus and Clostridium spores. The significance of our studies is that we have identified GML, and, to a greater extent, GML solubilized in a nonaqueous gel, as effective in killing spores from both bacterial genera. Glycerol monolaurate is a broadly antimicrobial fatty acid monoester, killing bacteria, fungi, and enveloped viruses. The compound kills stationary-phase cultures of Bacillus anthracis, suggesting that the molecule may kill spores. In this study, we examined the ability of glycerol monolaurate alone or solubilized in a nonaqueous gel to kill vegetative cells and spores of aerobic B. anthracis, B. subtilis, and B. cereus and anaerobic Clostridium perfringens and Clostridium (Clostridioides) difficile. Glycerol monolaurate alone was bactericidal for all five organisms tested. Glycerol monolaurate alone was effective in killing spores. When solubilized in a nonaqueous gel, the glycerol monolaurate gel was bactericidal for all spores tested. The data suggest that glycerol monolaurate nonaqueous gel could be effective in decontaminating environmental and body surfaces, such as skin. IMPORTANCEBacillus and Clostridium spores are known to be highly resistant to killing, persisting on environmental and human body surfaces for long periods of time. In favorable environments, these spores may germinate and cause human diseases. It is thus important to identify agents that can be used on both environmental and human skin and mucosal surfaces and that are effective in killing spores. We previously showed that the fatty acid monoester glycerol monolaurate (GML) kills stationary-phase cultures of Bacillus anthracis. Since such cultures are likely to contain spores, it is possible that GML and a human-use-approved GML nonaqueous gel would kill Bacillus and Clostridium spores. The significance of our studies is that we have identified GML, and, to a greater extent, GML solubilized in a nonaqueous gel, as effective in killing spores from both bacterial genera.
Collapse
|