1
|
Kelley EH, Osipiuk J, Korbas M, Endres M, Bland A, Ehrman V, Joachimiak A, Olsen KW, Becker DP. N α -acetyl-L-ornithine deacetylase from Escherichia coli and a ninhydrin-based assay to enable inhibitor identification. Front Chem 2024; 12:1415644. [PMID: 39055043 PMCID: PMC11270798 DOI: 10.3389/fchem.2024.1415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024] Open
Abstract
Bacteria are becoming increasingly resistant to antibiotics, therefore there is an urgent need for new classes of antibiotics to fight antibiotic resistance. Mammals do not express N ɑ -acetyl-L-ornithine deacetylase (ArgE), an enzyme that is critical for bacterial survival and growth, thus ArgE represents a promising new antibiotic drug target, as inhibitors would not suffer from mechanism-based toxicity. A new ninhydrin-based assay was designed and validated that included the synthesis of the substrate analog N 5, N 5-di-methyl N α-acetyl-L-ornithine (kcat/Km = 7.32 ± 0.94 × 104 M-1s-1). This new assay enabled the screening of potential inhibitors that absorb in the UV region, and thus is superior to the established 214 nm assay. Using this new ninhydrin-based assay, captopril was confirmed as an ArgE inhibitor (IC50 = 58.7 μM; Ki = 37.1 ± 0.85 μM), and a number of phenylboronic acid derivatives were identified as inhibitors, including 4-(diethylamino)phenylboronic acid (IC50 = 50.1 μM). Selected inhibitors were also tested in a thermal shift assay with ArgE using SYPRO Orange dye against Escherichia coli ArgE to observe the stability of the enzyme in the presence of inhibitors (captopril Ki = 35.9 ± 5.1 μM). The active site structure of di-Zn EcArgE was confirmed using X-ray absorption spectroscopy, and we reported two X-ray crystal structures of E. coli ArgE. In summary, we describe the development of a new ninhydrin-based assay for ArgE, the identification of captopril and phenylboronic acids as ArgE inhibitors, thermal shift studies with ArgE + captopril, and the first two published crystal structures of ArgE (mono-Zn and di-Zn).
Collapse
Affiliation(s)
- Emma H. Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Jerzy Osipiuk
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- eBERlight, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | | | - Michael Endres
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | - Alayna Bland
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Victoria Ehrman
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Andrzej Joachimiak
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Terrazas-López M, González-Segura L, Díaz-Vilchis A, Aguirre-Mendez KA, Lobo-Galo N, Martínez-Martínez A, Díaz-Sánchez ÁG. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity. Int J Biol Macromol 2024; 270:132281. [PMID: 38740150 DOI: 10.1016/j.ijbiomac.2024.132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
DapE is a Zn2+-metallohydrolase recognized as a drug target for bacterial control. It is a homodimer that requires the exchange of interface strands by an induced fit essential for catalysis. Identifying novel anti-DapE agents requires greater structural details. Most of the characterized DapEs are from the Gram-negative group. Here, two high-resolution DapE crystal structures from Enterococcus faecium are presented for the first time with novel aspects. A loosened enzyme intermediate between the open and closed conformations is observed. Substrates may bind to loose state, subsequently it closes, where hydrolysis occurs, and finally, the change to the open state leads to the release of the products. Mutation of His352 suggests a role, along with His194, in the oxyanion stabilization in the mono-metalated Zn2+ isoform, while in the di-metalated isoform, the metal center 2 complements it function. An aromatic-π box potentially involved in the interaction of DapE with other proteins, and a peptide flip could determine the specificity in the Gram-positive ArgE/DapE group. Finally, details of two extra-catalytic cavities whose geometry changes depending on the conformational state of the enzyme are presented. These cavities could be a target for developing non-competitive agents that trap the enzyme in an inactive state.
Collapse
Affiliation(s)
- Manuel Terrazas-López
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Lilian González-Segura
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Adelaida Díaz-Vilchis
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Kelly Annecy Aguirre-Mendez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Naún Lobo-Galo
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Alejandro Martínez-Martínez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Ángel G Díaz-Sánchez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico.
| |
Collapse
|
3
|
Kelley EH, Minasov G, Konczak K, Shuvalova L, Brunzelle JS, Shukla S, Beulke M, Thabthimthong T, Olsen KW, Inniss NL, Satchell KJF, Becker DP. Biochemical and Structural Analysis of the Bacterial Enzyme Succinyl-Diaminopimelate Desuccinylase (DapE) from Acinetobacter baumannii. ACS OMEGA 2024; 9:3905-3915. [PMID: 38284080 PMCID: PMC10809365 DOI: 10.1021/acsomega.3c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
There is an urgent need for new antibiotics given the rise of antibiotic resistance, and succinyl-diaminopimelate desuccinylase (DapE, E.C. 3.5.1.18) has emerged as a promising bacterial enzyme target. DapE from Haemophilus influenzae (HiDapE) has been studied and inhibitors identified, but it is essential to explore DapE from different species to assess selective versus broad-spectrum therapeutics. We have determined the structure of DapE from the ESKAPE pathogen Acinetobacter baumannii (AbDapE) and studied inhibition by known inhibitors of HiDapE. AbDapE is inhibited by captopril and sulfate comparable to HiDapE, but AbDapE was not significantly inhibited by a known indoline sulfonamide HiDapE inhibitor. Captopril and sulfate both stabilize HiDapE by increasing the thermal melting temperature (Tm) in thermal shift assays. By contrast, sulfate decreases the stability of the AbDapE enzyme, whereas captopril increases the stability. Further, we report two crystal structures of selenomethionine-substituted AbDapE in the closed conformation, one with AbDapE in complex with succinate derived from enzymatic hydrolysis of N6-methyl-l,l-SDAP substrate and acetate (PDB code 7T1Q, 2.25 Å resolution), and a crystal structure of AbDapE with bound succinate along with l-(S)-lactate, a product of degradation of citric acid from the crystallization buffer during X-ray irradiation (PDB code 8F8O, 2.10 Å resolution).
Collapse
Affiliation(s)
- Emma H. Kelley
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - George Minasov
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Katherine Konczak
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Ludmilla Shuvalova
- Department
of Pharmacology, Northwestern University,
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Joseph S. Brunzelle
- Northwestern
Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Shantanu Shukla
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Megan Beulke
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Teerana Thabthimthong
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Kenneth W. Olsen
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Nicole L. Inniss
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Karla J. F. Satchell
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Daniel P. Becker
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
4
|
Hussein M, Allobawi R, Zhao J, Yu H, Neville SL, Wilksch J, Wong LJM, Baker M, McDevitt CA, Rao GG, Li J, Velkov T. Integrated Transcriptomic and Metabolomic Mapping Reveals the Mechanism of Action of Ceftazidime/Avibactam against Pan-Drug-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:2409-2422. [PMID: 37878861 PMCID: PMC10714405 DOI: 10.1021/acsinfecdis.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Here, we employed an integrated metabolomics and transcriptomics approach to investigate the molecular mechanism(s) of action of ceftazidime/avibactam against a pan-drug-resistant K. pneumoniae clinical isolate from a patient with urinary tract infection. Ceftazidime/avibactam induced time-dependent perturbations in the metabolome and transcriptome of the bacterium, mainly at 6 h, with minimal effects at 1 and 3 h. Metabolomics analysis revealed a notable reduction in essential lipids involved in outer membrane glycerolipid biogenesis. This disruption effect extended to peptidoglycan and lipopolysaccharide biosynthetic pathways, including lipid A and O-antigen assembly. Importantly, ceftazidime/avibactam not only affected the final steps of peptidoglycan biosynthesis in the periplasm, a common mechanism of ceftazidime action, but also influenced the synthesis of lipid-linked intermediates and early stages of cytoplasmic peptidoglycan synthesis. Furthermore, ceftazidime/avibactam substantially inhibited central carbon metabolism (e.g., the pentose phosphate pathway and tricarboxylic acid cycle). Consistently, the dysregulation of genes governing these metabolic pathways aligned with the metabolomics findings. Certain metabolomics and transcriptomics signatures associated with ceftazidime resistance were also perturbed. Consistent with the primary target of antibiotic activity, biochemical assays also confirmed the direct impact of ceftazidime/avibactam on peptidoglycan production. This study explored the intricate interactions of ceftazidime and avibactam within bacterial cells, including their impact on cell envelope biogenesis and central carbon metabolism. Our findings revealed the complexities of how ceftazidime/avibactam operates, such as hindering peptidoglycan formation in different cellular compartments. In summary, this study confirms the existing hypotheses about the antibacterial and resistance mechanisms of ceftazidime/avibactam while uncovering novel insights, including its impact on lipopolysaccharide formation.
Collapse
Affiliation(s)
- Maytham Hussein
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Rafah Allobawi
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jinxin Zhao
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi Yu
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie L. Neville
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jonathan Wilksch
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Labell J. M. Wong
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Baker
- Discipline
of Biological Sciences, Priority Research Centre in Reproductive Biology,
Faculty of Science and IT, University of
Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| | - Christopher A. McDevitt
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gauri G. Rao
- Division
of Pharmacotherapy and Experimental Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7355, United
States
| | - Jian Li
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Liveris ZJ, Kelley EH, Simmons E, Konczak K, Lutz MR, Ballicora M, Olsen KW, Becker DP. Synthesis and characterization of the N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) alternate substrate analog N,N-dimethyl-l,l-SDAP. Bioorg Med Chem 2023; 91:117415. [PMID: 37459673 DOI: 10.1016/j.bmc.2023.117415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Growing antibiotic resistance by pathogenic bacteria has led to a global crisis. The bacterial enzyme N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) provides a very attractive target for the discovery of a new class of antibiotics, as it resides exclusively in many pathogenic bacterial strains and is a key enzyme in the lysine biosynthetic pathway. This pathway is responsible for the production of lysine as well as meso-diaminopimelate (m-DAP), both of which are required for peptidoglycan cell-wall synthesis, and lysine for peptide synthesis. The enzyme DapE catalyzes the hydrolysis of N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) to succinate and l,l-diaminopimelic acid (l,l-DAP), and due to its absence in humans, inhibition of DapE avoids mechanism-based side effects. We have executed the asymmetric synthesis of N,N-dimethyl-SDAP, an l,l-SDAP substrate analog and an analog of the synthetic substrate of our previously described DapE assay. Previous modeling studies advocated that N,N-dimethyl-SDAP might function as an inhibitor, however the compound behaves as a substrate, and we have demonstrated the use of N,N-dimethyl-SDAP as the substrate in a modified ninhydrin-based DapE assay. Thermal shift experiments of DapE in the presence of N,N-dimethyl-SDAP are consistent with a melt temperature (Tm) shifted by succinate, the product of enzymatic hydrolysis.
Collapse
Affiliation(s)
- Zachary J Liveris
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Emma H Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Emma Simmons
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Katherine Konczak
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Marlon R Lutz
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Miguel Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States.
| |
Collapse
|
6
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
7
|
DiPuma T, Thabthimthong T, Kelley EH, Konczak K, Beulke M, Herbert C, S Habeeb Mohammad T, Starus A, Nocek B, Olsen KW, Holz RC, Becker DP. Tetrazole-based inhibitors of the bacterial enzyme N-succinyl-l,l-2,6-diaminopimelic acid desuccinylase as potential antibiotics. Bioorg Med Chem Lett 2023; 83:129177. [PMID: 36764468 DOI: 10.1016/j.bmcl.2023.129177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Based on a hit from a high-throughput screen, a series of phenyltetrazole amides was synthesized and assayed for inhibitory potency against DapE from Haemophilus influenzae (HiDapE). The inhibitory potency was modest but confirmed, with the most potent analog containing an aminothiazole moiety displaying an IC50 = 50.2 ± 5.0 μM. Docking reveals a potential binding mode wherein the amide carbonyl bridges both zinc atoms in the active site, and the tetrazole forms key hydrogen bonds with Arg330.
Collapse
Affiliation(s)
- Thomas DiPuma
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Teerana Thabthimthong
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Emma H Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Katherine Konczak
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Megan Beulke
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Claire Herbert
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Thahani S Habeeb Mohammad
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Anna Starus
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Richard C Holz
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA.
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA.
| |
Collapse
|
8
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
9
|
Kochert M, Nocek BP, Habeeb Mohammad TS, Gild E, Lovato K, Heath TK, Holz RC, Olsen KW, Becker DP. Atomic-Resolution 1.3 Å Crystal Structure, Inhibition by Sulfate, and Molecular Dynamics of the Bacterial Enzyme DapE. Biochemistry 2021; 60:908-917. [PMID: 33721990 DOI: 10.1021/acs.biochem.0c00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the atomic-resolution (1.3 Å) X-ray crystal structure of an open conformation of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE, EC 3.5.1.18) from Neisseria meningitidis. This structure [Protein Data Bank (PDB) entry 5UEJ] contains two bound sulfate ions in the active site that mimic the binding of the terminal carboxylates of the N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) substrate. We demonstrated inhibition of DapE by sulfate (IC50 = 13.8 ± 2.8 mM). Comparison with other DapE structures in the PDB demonstrates the flexibility of the interdomain connections of this protein. This high-resolution structure was then utilized as the starting point for targeted molecular dynamics experiments revealing the conformational change from the open form to the closed form that occurs when DapE binds l,l-SDAP and cleaves the amide bond. These simulations demonstrated closure from the open to the closed conformation, the change in RMS throughout the closure, and the independence in the movement of the two DapE subunits. This conformational change occurred in two phases with the catalytic domains moving toward the dimerization domains first, followed by a rotation of catalytic domains relative to the dimerization domains. Although there were no targeting forces, the substrate moved closer to the active site and bound more tightly during the closure event.
Collapse
Affiliation(s)
- Matthew Kochert
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Boguslaw P Nocek
- The Center for Structural Genomics of Infectious Diseases, Computation Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Thahani S Habeeb Mohammad
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Elliot Gild
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Kaitlyn Lovato
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Tahirah K Heath
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Richard C Holz
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
10
|
Tondi D. Novel Targets and Mechanisms in Antimicrobial Drug Discovery. Antibiotics (Basel) 2021; 10:antibiotics10020141. [PMID: 33535514 PMCID: PMC7912713 DOI: 10.3390/antibiotics10020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|