1
|
Shoaib M, Tang M, Awan F, Aqib AI, Hao R, Ahmad S, Wang S, Shang R, Pu W. Genomic Characterization of Extended-Spectrum β-Lactamase (ESBL) Producing E. coli Harboring bla OXA-1- catB3-arr-3 Genes Isolated From Dairy Farm Environment in China. Transbound Emerg Dis 2024; 2024:3526395. [PMID: 40303104 PMCID: PMC12017223 DOI: 10.1155/2024/3526395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/29/2024] [Indexed: 05/02/2025]
Abstract
Anthropogenic activities in the environment affect the ecosystem and can play an important role in selecting and spreading antibiotic-resistant bacteria (ARB) and genes (ARGs). The dairy farm environment may serve as a hotspot and reservoir for exchanging and spreading ARGs, but studies are scarce. Here, we investigated and characterized the extended-spectrum β-lactamase producing Escherichia coli strains recovered from the dairy farm environment co-harboring bla OXA-1, catB3, and arr-3 genes. The isolates were identified and characterized by PCR, antimicrobial susceptibility testing, conjugation assay, whole genome sequencing (WGS), and multiple bioinformatics tools. Seven E. coli strains co-harboring bla OXA-1, catB3, and arr-3 genes were identified which belonged to distinct sequence types (STs) and carried diverse plasmid replicon types. The conjugation assay revealed a successful transfer of bla OXA-1, catB3, and arr-3 genes into the recipient E. coli J53 with a co-conjugation frequency ranging from (2.25 ± 0.3) × 10-4 to (3.85 ± 0.3) × 10-3. Bioinformatics analysis of WGS revealed the diversity of acquired ARGs, conferring resistance to aminoglycosides, beta-lactams, quinolones, tetracyclines, macrolides, trimethoprim-sulfamethoxazole, phosphonic, phenicol, and rifamycin. The genetic environment analysis showed that aac(6')-Ib-cr-bla OXA-1-catB3-arr-3-qacE1-sul1 was the common genetic backbone among the seven E. coli strains. Among the mobile genetic elements, insertion sequences were the predominant elements as compared to transposons. The phylogenetic analysis demonstrated a close relationship between the E. coli of this study and other strains of human-animal-environment origin retrieved from the NCBI database. This study presented the whole genome-based characterization of E. coli strains carrying the bla OXA-1-catB3-arr-3 genes. It provided evidence that the dairy environment may harbor a variety of ARGs and act as a potential reservoir for their spread in the ecosystem. The results recommend the routine surveillance of ARGs carrying bacteria in dairy environments and the need for additional studies to understand the dissemination mechanism within One Health perspective to prevent their further spread.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Minjia Tang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Furqan Awan
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Ruochen Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Saad Ahmad
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
Gillieatt BF, Coleman NV. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol Rev 2024; 48:fuae017. [PMID: 38897736 PMCID: PMC11253441 DOI: 10.1093/femsre/fuae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The co-selective pressure of heavy metals is a contributor to the dissemination and persistence of antibiotic resistance genes in environmental reservoirs. The overlapping range of antibiotic and metal contamination and similarities in their resistance mechanisms point to an intertwined evolutionary history. Metal resistance genes are known to be genetically linked to antibiotic resistance genes, with plasmids, transposons, and integrons involved in the assembly and horizontal transfer of the resistance elements. Models of co-selection between metals and antibiotics have been proposed, however, the molecular aspects of these phenomena are in many cases not defined or quantified and the importance of specific metals, environments, bacterial taxa, mobile genetic elements, and other abiotic or biotic conditions are not clear. Co-resistance is often suggested as a dominant mechanism, but interpretations are beset with correlational bias. Proof of principle examples of cross-resistance and co-regulation has been described but more in-depth characterizations are needed, using methodologies that confirm the functional expression of resistance genes and that connect genes with specific bacterial hosts. Here, we comprehensively evaluate the recent evidence for different models of co-selection from pure culture and metagenomic studies in environmental contexts and we highlight outstanding questions.
Collapse
Affiliation(s)
- Brodie F Gillieatt
- School of Life and Environmental Sciences, The University of Sydney, F22 - LEES Building, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, 6 Wally’s Walk, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
3
|
Singh CK, Sodhi KK, Shree P, Nitin V. Heavy Metals as Catalysts in the Evolution of Antimicrobial Resistance and the Mechanisms Underpinning Co-selection. Curr Microbiol 2024; 81:148. [PMID: 38642082 DOI: 10.1007/s00284-024-03648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 04/22/2024]
Abstract
The menace caused by antibiotic resistance in bacteria is acknowledged on a global scale. Concerns over the same are increasing because of the selection pressure exerted by a huge number of different antimicrobial agents, including heavy metals. Heavy metals are non-metabolizable and recalcitrant to degradation, therefore the bacteria can expel the pollutants out of the system and make it less harmful via different mechanisms. The selection of antibiotic-resistant bacteria may be influenced by heavy metals present in environmental reservoirs. Through co-resistance and cross-resistance processes, the presence of heavy metals in the environment can act as co-selecting agents, hence increasing resistance to both heavy metals and antibiotics. The horizontal gene transfer or mutation assists in the selection of mutant bacteria resistant to the polluted environment. Hence, bioremediation and biodegradation are sustainable methods for the natural clean-up of pollutants. This review sheds light on the occurrence of metal and antibiotic resistance in the environment via the co-resistance and cross-resistance mechanisms underpinning co-selection emphasizing the dearth of studies that specifically examine the method of co-selection in clinical settings. Furthermore, it is advised that future research incorporate both culture- and molecular-based methodologies to further our comprehension of the mechanisms underlying bacterial co- and cross-resistance to antibiotics and heavy metals.
Collapse
Affiliation(s)
| | - Kushneet Kaur Sodhi
- Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, 110007, India.
| | - Pallee Shree
- Department of Zoology, Lady Irwin College, University of Delhi, Delhi, 110001, India
| | - V Nitin
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, 110075, India
| |
Collapse
|
4
|
Agarwal V, Meier B, Schreiner C, Figi R, Tao Y, Wang J. Airborne antibiotic and metal resistance genes - A neglected potential risk at e-waste recycling facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170991. [PMID: 38365028 DOI: 10.1016/j.scitotenv.2024.170991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Heavy metal-rich environments can promote the selection of metal-resistance genes (MRGs) in bacteria, often leading to the simultaneous selection of antibiotic-resistance genes (ARGs) through a process known as co-selection. To comprehensively evaluate the biological pollutants at electronic-waste (e-waste) recycling facilities, air, soil, and river samples were collected at four distinct Swiss e-waste recycling facilities and analyzed for ARGs, MRGs, mobile genetic elements (MGEs), endotoxins, and bacterial species, with correlations drawn to heavy metal occurrence. To our knowledge, the present work marks the first attempt to quantify these bio-pollutants in the air of e-waste recycling facilities, that might pose a significant health risk to workers. Although ARG and MRG's profiles varied among the different sample types, intl1 consistently exhibited high relative abundance rates, identifying it as the predominant MGE across all sample types and facilities. These findings underscore its pivol role in driving diverse bacterial adaptations to extreme heavy metal exposure by selection and dissemination of ARGs and MRGs. All air samples exhibited consistent profiles of ARGs and MRGs, with blaTEM emerging as the predominant ARG, alongside pbrT and nccA as the most prevalent MRGs. However, one facility, engaged in batteries recycling and characterized by exceptionally high concentrations of heavy metals, showcased a more diverse resistance gene profile, suggesting that bacteria in this environment required more complex resistance mechanisms to cope with extreme metal exposure. Furthermore, this study unveiled a strong association between gram-negative bacteria and ARGs and less with MRGs. Overall, this research emphasizes the critical importance of studying biological pollutants in the air of e-waste recycling facilities to inform robust safety measures and mitigate the risk of resistance gene dissemination among workers. These findings establish a solid foundation for further investigations into the complex interplay among heavy metal exposure, bacterial adaptation, and resistance patterns in such distinctive ecosystems.
Collapse
Affiliation(s)
- V Agarwal
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - B Meier
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland
| | - C Schreiner
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - R Figi
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Y Tao
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - J Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
| |
Collapse
|
5
|
Markowicz A. The significance of metallic nanoparticles in the emerging, development and spread of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162029. [PMID: 36740055 DOI: 10.1016/j.scitotenv.2023.162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An ever-increasing number of newly synthesised nanoparticles have a constantly expanding range of applications. The large-scale implementation of nanoparticles will inevitably lead to intentional or accidental contamination of various environments. Since the major benefit of using several metallic nanoparticles is antimicrobial activity, these emerging contaminants may have a potentially hazardous impact on the development and spread of antibiotic resistance - a challenge that threats infection therapy worldwide. Few studies underline that metallic nanoparticles may affect the emergence and evolution of resistance via mutations and horizontal transfer between different bacterial species. Due to the complexity of factors and mechanisms involved in disseminating antibiotic resistance, it is crucial to investigate if metallic nanoparticles play a significant role in this process through co-selection ability and pressure exerted on bacteria. The aim of this review is to summarise the current research on mutations and three main horizontal gene transfer modes facilitated by nanoparticles. Here, the current results in the field are presented, major knowledge gaps and the necessity for more environmentally relevant studies are discussed.
Collapse
Affiliation(s)
- Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
6
|
Markowicz A, Borymski S, Adamek A, Sułowicz S. The influence of ZnO nanoparticles on horizontal transfer of resistance genes in lab and soil conditions. ENVIRONMENTAL RESEARCH 2023; 223:115420. [PMID: 36764431 DOI: 10.1016/j.envres.2023.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is a severe problem that threatens the achievements of modern medicine. Metallic nanoparticles may promote the horizontal transfer of resistance genes due to their toxicity to bacterial cells and metal-induced co-selection mechanisms. In this study, we investigated the toxicity of ZnO nanoparticles to E. coli DH5α laboratory strain and the abundance of soil microbial community. Moreover, the influence of ZnO nanoparticles on resistance gene transfer in laboratory and soil conditions was evaluated. ZnO nanoparticles at concentrations up to 10 mg L-1 reduced the survival of E. coli cells by 14.6% and increased the transformation frequency by almost 1.8 fold. In soil, ZnO nanoparticles at a concentration of 1000 mg kg-1 affected the total abundance of bacteria, causing a decrease in the 16S rRNA gene copy number. We did not detect the presence of 11 target antibiotic resistance genes (sul1, sul2, imp2, imp5, blaCTX-M, ermB, mefA, strB, aadA1, tetA1, tetB), which confer resistance to five classes of antibiotics in soil treated with ZnO nanoparticles. No elevated conjugation frequency was observed in soil microbial communities treated with ZnO nanoparticles. However, the increase in czcA gene copies indicates the spread of genetic elements harbouring metal resistance. The data shows that metallic nanoparticles promote the spread of antibiotic and metal resistance genes. The broad implication of the present research is that the inevitable nanoparticles environmental pollution may lead to the further dissemination of antibiotic resistance and profoundly influence public health.
Collapse
Affiliation(s)
- Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Sławomir Borymski
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Anna Adamek
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| | - Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
7
|
Cheesman MJ, Shivashekaregowda NKH, Cock IE. Bacterial Foodborne Illness in Malaysia: Terminalia spp. as a Potential Resource for Treating Infections and Countering Antibiotic Resistance. Malays J Med Sci 2023; 30:42-54. [PMID: 37102050 PMCID: PMC10125245 DOI: 10.21315/mjms2023.30.2.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/17/2021] [Indexed: 04/28/2023] Open
Abstract
Acute diarrhoea is becoming a major public health problem in Malaysia, with more than 13.5 million cases reported annually. Foodborne bacterial pathogens are a predominant cause of diarrhoea, with infections causing prolonged illness durations and higher patient mortality rates, placing a tremendous burden on the Malaysian economy. Due to increasing incidences of diarrhoea in Malaysia caused by foodborne pathogens and the increasing levels of resistance towards antibiotics from many different classes, new drugs and/or therapies are urgently required. The evidence for plants as new sources of antibiotics has increased dramatically in recent years and there has been a substantial increase in interest in traditional and herbal medicines. Several Terminalia spp. are native to Malaysia, with previous research demonstrating that Terminalia spp. are rich in therapeutic phytochemicals and possess antibacterial properties. However, limited research has been conducted on the native Malaysian Terminalia spp. for their potential as new antibacterial therapies. The current review discusses the types of bacteria, including antibiotic-resistant strains, that cause food poisoning in Malaysia, and reports the phytochemical content and antibacterial properties of eight of these useful plant species. Future directions pertaining to drug discovery pathways are also suggested.
Collapse
Affiliation(s)
- Matthew James Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Queensland, Australia
| | | | - Ian Edwin Cock
- School of Environment and Science, Nathan Campus, Griffith University, Australia
| |
Collapse
|
8
|
Anedda E, Farrell ML, Morris D, Burgess CM. Evaluating the impact of heavy metals on antimicrobial resistance in the primary food production environment: A scoping review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121035. [PMID: 36623784 DOI: 10.1016/j.envpol.2023.121035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals are naturally occurring environmental compounds, which can influence antimicrobial resistance (AMR) dissemination. However, there is limited information on how heavy metals may act as a selective pressure on AMR in the primary food production environment. This review aims to examine the literature on this topic in order to identify knowledge gaps. A total of 73 studies, which met pre-established criteria, were included. These investigations were undertaken between 2008 and 2021, with a significant increase in the last three years. The majority of studies included were undertaken in China. Soil, water and manure were the most common samples analysed, and the sampling locations varied from areas with a natural presence of heavy metals, areas intentionally amended with heavy metals or manure, to areas close to industrial activity or mines. Fifty-four per cent of the investigations focused on the analysis of four or more heavy metals, and copper and zinc were the metals most frequently analysed (n = 59, n = 49, respectively). The findings of this review highlight a link between heavy metals and AMR in the primary food production environment. Heavy metals impacted the abundance and dissemination of mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), with MGEs also observed as playing a key role in the spread of ARGs and metal resistance genes (MRGs). Harmonization of methodologies used in future studies would increase the opportunity for comparison between studies. Further research is also required to broaden the availability of data at a global level.
Collapse
Affiliation(s)
- Elena Anedda
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
| | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Ireland.
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Ireland.
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
| |
Collapse
|
9
|
El-Mahallawy HA, El Swify M, Abdul Hak A, Zafer MM. Increasing trends of colistin resistance in patients at high-risk of carbapenem-resistant Enterobacteriaceae. Ann Med 2022; 54:1-9. [PMID: 36373970 PMCID: PMC9668277 DOI: 10.1080/07853890.2022.2129775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Occurrence of colistin-resistant Enterobacteriaceae in response to the unregulated use of this antibiotic has been documented. This study reports an investigation of colistin resistance rates among carbapenem-resistant enterobacterial clinical isolates. METHODS A total of 196 multidrug-resistant Enterobacteriaceae isolates (Klebsiella pneumoniae (n = 100), Escherichia coli (n = 89) and Enterobacter cloacae (n = 7) were selected from Gram-negative isolates over one year. Susceptibility to antimicrobials was determined using Vitek2. Broth microdilution method was used to detect colistin antimicrobial susceptibility. Identification of ESBL and carbapenemases were both done phenotypically and by PCR. RESULTS All the studied isolates showed multidrug-resistant phenotypes with 51.5% resistance to carbapenems (meropenem, imipenem). Very low resistance rates towards tigecycline (n = 9) 4.6% were found. Thirty-nine isolates (19.9%) showed reduced susceptibility to colistin among the MDR isolates. Sixty-four isolates (32.7%) were ESBL producers. Hundred isolates (51%) were carbapenemase producers using Carba NP test. The PCR amplification results revealed that 40 isolates (20%) harboured NDM-1 and 40 isolates contained OXA-48-like gene. Coexistence of both (NDM-1 and OXA-48-like) was observed in nine (4.59%) isolates. A Statistically significant relationship was observed between carbapenem resistance and each of the followings; OXA-48 producers (p= .009), amikacin resistance (p = .000), gentamicin resistance (p = .032), tobramycin resistance (p = .000), and tigecycline resistance (p-value ≤ .001). A statistical significance was detected between ESBL-producing isolates and carbapenem susceptible isolates ESBL producers with p = 0.000. CONCLUSION An alarming sign is the increasing colistin resistance rates among carbapenem-resistant isolates. Aminoglycosides are still a therapeutic option to decrease the use of colistin and avoid further development of resistance.KEY MESSAGESHigh rates of colistin resistance among carbapenem-resistant Enterobacteriaceae.The choice of antibiotic is significantly associated with the clinical site of infection.Aminoglycosides are offered choices for treating multiple drug-resistant Enterobacteriaceae to preserve the colistin and carbapenems.
Collapse
Affiliation(s)
- Hadir A El-Mahallawy
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa El Swify
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Asmaa Abdul Hak
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
10
|
Sultan I, Siddiqui MT, Gogry FA, Haq QMR. Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154221. [PMID: 35245551 DOI: 10.1016/j.scitotenv.2022.154221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance conceded as a global concern is a phenomenon that emerged from the bacterial response to the extensive utilization of antimicrobials. The expansion of resistance determinants through horizontal transfer is linked with mobile genetic elements (MGEs) like transposons, insertion sequences, and integrons. Heavy metals also create consequential health hazards. Metal resistance gene in alliance with antibiotic resistance genes (ARGs) and MGEs is assisting bacteria to attain exalted quantity of resistance. METHODOLOGY The present work was carried out to study ARGs blaCTX-M, AmpC, qnrS, MGEs like ISecp1, TN3, TN21, and Int I by performing PCR and sequencing from Wular and Dal lakes of Kashmir; India. The genetic environment analysis of blaCTX-M-15 was carried out using PCR amplification, and sequencing approach followed by in-silico docking and mutational studies. Co-occurrence of ARGs and HMRGs was determined. Plasmid typing was done using PCR-based replicon typing (PBRT) and conjugation assay was also performed. RESULTS Out of 201 isolates attained from 16 locations, 33 were ESBLs producers. 30 ESBL displaying isolates were perceived positive for CTX-M gene, followed by AmpC (17), qnrS (13), ISecp1 (15), TN3 (11), TN21 (11), Int I (18), and SulI (14). The genetic environment of blaCTX-M-15 was observed as (ISEcp1-blaCTX-M-15-orf477), classical promoter-10 TACAAT and -35 TTGAA was found at the 3' region. The 3D structure of CTX-M-15 and ISEcp1 was generated and CTX-M-15-ISEcp1 (R299L) docking and mutation showed a reduction in hydrogen bonds. Co-occurrence of antibiotics and HMRGs (mer, sil, and ars) was found in 18, 14, and 8 isolates. PBRT analysis showed the presence of Inc. groups- B/O, F, I1, HI1, FIA, HI2, N, FIB, L/M. Molecular analysis of transconjugants showed the successful transfer of ARGs, MGEs, and HMRGs in the E. coli J53 AZR strain. CONCLUSION This study highlights the occurrence of ESBL producing bacteria in the aquatic environment of Kashmir India that can serve as a reservoir of ARGs. It also discussed the molecular mechanisms of MGEs which can help in containing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | | |
Collapse
|
11
|
Gaeta NC, de Carvalho DU, Fontana H, Sano E, Moura Q, Fuga B, Munoz PM, Gregory L, Lincopan N. Genomic features of a multidrug-resistant and mercury-tolerant environmental Escherichia coli recovered after a mining dam disaster in South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153590. [PMID: 35122850 PMCID: PMC8994849 DOI: 10.1016/j.scitotenv.2022.153590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Mining dam disasters contribute to the contamination of aquatic environments, impacting associated ecosystems and wildlife. A multidrug-resistant Escherichia coli strain (B2C) was isolated from a river water sample in Brazil after the Mariana mining dam disaster. The genome was sequenced using the Illumina MiSeq platform, and de novo assembled using Unicycler. Resistome, virulome, and plasmidome were predicted using bioinformatics tools. Data analysis revealed that E. coli B2C belonged to sequence type ST219 and phylogroup E. Strikingly, a broad resistome (antibiotics, hazardous heavy metals, and biocides) was predicted, including the presence of the clinically relevant blaCTX-M-2 extended-spectrum β-lactamase (ESBL) gene, qacE∆1 efflux pump gene, and the mer (mercury resistance) operon. SNP-based analysis revealed that environmental E. coli B2C was clustered along to ESBL-negative E. coli strains of ST219 isolated between 1980 and 2021 from livestock in the United States of America. Acquisition of clinically relevant genes by ST219 seems to be a recent genetic event related to anthropogenic activities, where polluted water environments may contribute to its dissemination at the human-animal-environment interface. In addition, the presence of genes conferring resistance to heavy metals could be related to environmental pollution from mining activities. Antimicrobial resistance genes could be essential biomarkers of environmental exposure to human and mining pollution.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Daniel U de Carvalho
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Surveillance of Antimicrobial Resistance in Hospital Wastewater: Identification of Carbapenemase-Producing Klebsiella spp. Antibiotics (Basel) 2022; 11:antibiotics11030288. [PMID: 35326752 PMCID: PMC8944648 DOI: 10.3390/antibiotics11030288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to investigate the presence and persistence of carbapenemase-producing Klebsiella spp. isolated from wastewater and treated wastewater from two tertiary hospitals in Mexico. We conducted a descriptive cross-sectional study in two hospital wastewater treatment plants, which were sampled in February 2020. We obtained 30 Klebsiella spp. isolates. Bacterial identification was carried out by the Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (MALDI-TOF MS®) and antimicrobial susceptibility profiles were performed using the VITEK2® automated system. The presence of carbapenem resistance genes (CRGs) in Klebsiella spp. isolates was confirmed by PCR. Molecular typing was determined by pulsed-field gel electrophoresis (PFGE). High rates of Klebsiella spp. resistance to cephalosporins and carbapenems (80%) were observed in isolates from treated wastewater from both hospitals. The molecular screening by PCR showed the presence of blaKPC and blaOXA-48-like genes. The PFGE pattern separated the Klebsiella isolates into 19 patterns (A–R) with three subtypes (C1, D1, and I1). Microbiological surveillance and identification of resistance genes of clinically important pathogens in hospital wastewater can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections.
Collapse
|
13
|
Martis B S, Mohan AK, Chiplunkar S, Kamath S, Goveas LC, Rao CV. Bacterium isolated from coffee waste pulp biosorps lead: Investigation of EPS mediated mechanism. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100029. [PMID: 34841320 PMCID: PMC8610291 DOI: 10.1016/j.crmicr.2021.100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Kleibsiella pneumoniae Kpn555 tolerates 900 mg/L lead. SEM and TEM studies revealed surface deposition and bioaccumulation of lead. Surface deposition mediated by EPS produced in response to lead stress, characterised as glycolipid with protein moieties. Maximum biosorption ability of EPS – 475 mg/g. Ability of lead bioaccumulation is plasmid mediated.
Kleibsiella pneumoniae Kpn555, isolated from coffee waste pulp showed high level of tolerance to lead with a minimum inhibitory concentration of 900 mg/L. On its growth in nutrient broth supplemented with lead, brown clumps were visualised at the bottom of the flask. On scanning and transmission electron microscopic studies the brown clumps were corroborated to be bacterial cells with lead biosorbed on the cell surface and accumulated inside the cytoplasm. Biochemical and FT-IR analysis of the extracellular polymeric substance produced on exposure to lead revealed its chemical nature as glycolipid with protein moieties. Purified EPS (100 mg/L) could remove 50% of lead from aqueous solution (200 mg/L). Isolation of plasmid from Klebsiella pneumoniae Kpn555 revealed the presence of a plasmid of size 30–40 kb. This capability of the bacteria was proven to be plasmid mediated as the Escherichia coli DH5α cells transformed with the plasmid of Klebsiella pneumoniae Kpn555 also could tolerate 900 mg/L of lead and form brown clumps. This study shows that these bacteria, aided by EPS could serve as an effective agent for the removal of lead from contaminated water environmental samples.
Collapse
|
14
|
Mohammed MA, Salim MTA, Anwer BE, Aboshanab KM, Aboulwafa MM. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones. Sci Rep 2021; 11:20136. [PMID: 34635692 PMCID: PMC8505613 DOI: 10.1038/s41598-021-99230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 01/16/2023] Open
Abstract
Among bacterial species implicated in hospital-acquired infections are the emerging Pan-Drug Resistant (PDR) and Extensively Drug-Resistant (XDR) Acinetobacter (A.) baumannii strains as they are difficult to eradicate. From 1600 clinical specimens, only 100 A. baumannii isolates could be recovered. A high prevalence of ≥ 78% resistant isolates was recorded for the recovered isolates against a total of 19 tested antimicrobial agents. These isolates could be divided into 12 profiles according to the number of antimicrobial agents to which they were resistant. The isolates were assorted as XDR (68; 68%), Multi-Drug Resistant (MDR: 30; 30%), and PDR (2; 2%). Genotypically, the isolates showed three major clusters with similarities ranging from 10.5 to 97.8% as revealed by ERIC-PCR technique. As a resistance mechanism to fluoroquinolones (FQs), target site mutation analyses in gyrA and parC genes amplified from twelve selected A. baumannii isolates and subjected to sequencing showed 12 profiles. The selected isolates included two CIP-susceptible ones, these showed the wild-type profile of being have no mutations. For the ten selected CIP-resistant isolates, 9 of them (9/10; 90%) had 1 gyrA/1 parC mutations (Ser 81 → Leu mutation for gyrA gene and Ser 84 → Leu mutation for parC gene). The remaining CIP-resistant isolate (1/10; 10%) had 0 gyrA/1 parC mutation (Ser 84 → Leu mutation for parC gene). Detection of plasmid-associated resistance genes revealed that the 86 ciprofloxacin-resistant isolates carry qnrA (66.27%; 57/86), qnrS (70.93%; 61/86), aac (6')-Ib-cr (52.32%; 45/86), oqxA (73.25%; 63/86) and oqxB (39.53%; 34/86), while qepA and qnrB were undetected in these isolates. Different isolates were selected from profiles 1, 2, and 3 and qnrS, acc(6,)-ib-cr, oqxA, and oqxB genes harbored by these isolates were amplified and sequenced. The BLAST results revealed that the oqxA and oqxB sequences were not identified previously in A. baumannii but they were identified in Klebsiella aerogenes strain NCTC9793 and Klebsiella pneumoniae, respectively. On the other hand, the sequence of qnrS, and acc(6,)-ib-cr showed homology to those of A. baumannii. MDR, XDR, and PDR A. baumannii isolates are becoming prevalent in certain hospitals. Chromosomal mutations in the sequences of GyrA and ParC encoding genes and acquisition of PAFQR encoding genes (up to five genes per isolate) are demonstrated to be resistance mechanisms exhibited by fluoroquinolones resistant A. baumannii isolates. It is advisable to monitor the antimicrobial resistance profiles of pathogens causing nosocomial infections and properly apply and update antibiotic stewardship in hospitals and outpatients to control infectious diseases and prevent development of the microbial resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Mostafa Ahmed Mohammed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Mohammed T A Salim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Bahaa E Anwer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt.
- Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai, Egypt.
| |
Collapse
|
15
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
16
|
Ali A, Sultan I, Mondal AH, Siddiqui MT, Gogry FA, Haq QMR. Lentic and effluent water of Delhi-NCR: a reservoir of multidrug-resistant bacteria harbouring blaCTX-M, blaTEM and blaSHV type ESBL genes. JOURNAL OF WATER AND HEALTH 2021; 19:592-603. [PMID: 34371496 DOI: 10.2166/wh.2021.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Antimicrobial resistance is not restricted to clinics but also spreading fast in the aquatic environment. This study focused on the prevalence and diversity of extended-spectrum β-lactamase (ESBL) genes among bacteria from lentic and effluent water in Delhi-NCR, India. Phenotypic screening of 436 morphologically distinct bacterial isolates collected from diverse sites revealed that 106 (∼24%) isolates were ESBL positive. Antibiotic profiling showed that 42, 60, 78 and 59% ESBL producing isolates collected from Ghazipur slaughterhouse, Lodhi garden pond, Hauz Khas lake and Jasola wastewater treatment plant, respectively, were multidrug-resistant (MDR). The multiple antibiotic resistance (MAR) index varied from 0.20 to 0.32 among selected locations. The prevalence of ESBL gene variants blaSHV, blaTEM and blaCTX-M were found to be 17.64, 35.29 and 64%, respectively. Furthermore, the analysis of obtained gene sequences showed three variants of blaCTX-M (15, 152 and 205) and two variants of blaTEM (TEM-1 and TEM-116) among ESBL producers. The co-existence of 2-3 gene variants was recorded among 48% ESBL positive isolates. New reports from this study include the blaCTX-M gene in Acinetobacter lwoffii, Enterobacter ludwigii, Exiguobacterium mexicanum and Aeromonas caviae. Furthermore, the identification of blaTEM and blaSHV in an environmental isolate of A. caviae is a new report from India.
Collapse
Affiliation(s)
- Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India E-mail: ;
| | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India E-mail: ;
| | - Aftab Hossain Mondal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India E-mail: ;
| | | | - Firdoos Ahmad Gogry
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India E-mail: ;
| | | |
Collapse
|