1
|
Aldaz N, Loaiza K, Larrea-Álvarez CM, Šefcová MA, Larrea-Álvarez M. In Silico Detection of Virulence Genes in Whole-Genome Sequences of Extra-Intestinal Pathogenic Escherichia coli (ExPEC) Documented in Countries of the Andean Community. Curr Issues Mol Biol 2025; 47:169. [PMID: 40136423 PMCID: PMC11941574 DOI: 10.3390/cimb47030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
E. coli pathotypes, which cause extra-intestinal infections, pose significant public health challenges, emphasizing the need for virulence gene surveillance to understand their dynamics. Key virulence genes have been identified in E. coli from Andean community countries, predominantly linked to human and animal sources. However, detailed data on virulence profiles from environmental and food sources remain limited. This study utilized an in silico approach to analyze 2402 whole-genome sequences from EnteroBase, known for associations with antimicrobial resistance genes. Of the isolates, 30% were classified as ExPEC, averaging 39 virulence genes per isolate, with adhesin-related genes being the most predominant. These findings were consistent across human, environmental, animal, and food samples. Human and animal isolates exhibited greater diversity in adhesin, secreted factors, and toxin genes compared to other sources, whereas food samples contained the fewest factors. ST449 isolates exhibited an average of 50 virulence genes per genome, with secreted factors and adhesins equally represented, while ST131, ST38, and ST10 carried around 40 genes, predominantly adhesins. Overall, the diversity and frequency of virulence genes exceeded prior reports in the region, highlighting the importance of monitoring these traits to identify emerging patterns in pathogenic E. coli strains frequently subjected to antibiotic exposure.
Collapse
Affiliation(s)
- Nabila Aldaz
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Karen Loaiza
- Unit of Foodborne Infections, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark
| | | | - Miroslava Anna Šefcová
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
2
|
Solis MN, Loaiza K, Torres-Elizalde L, Mina I, Šefcová MA, Larrea-Álvarez M. Detecting Class 1 Integrons and Their Variable Regions in Escherichia coli Whole-Genome Sequences Reported from Andean Community Countries. Antibiotics (Basel) 2024; 13:394. [PMID: 38786123 PMCID: PMC11117327 DOI: 10.3390/antibiotics13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Various genetic elements, including integrons, are known to contribute to the development of antimicrobial resistance. Class 1 integrons have been identified in E. coli isolates and are associated with multidrug resistance in countries of the Andean Community. However, detailed information on the gene cassettes located on the variable regions of integrons is lacking. Here, we investigated the presence and diversity of class 1 integrons, using an in silico approach, in 2533 whole-genome sequences obtained from EnteroBase. IntFinder v1.0 revealed that almost one-third of isolates contained these platforms. Integron-bearing isolates were associated with environmental, food, human, and animal origins reported from all countries under scrutiny. Moreover, they were identified in clones known for their pathogenicity or multidrug resistance. Integrons carried cassettes associated with aminoglycoside (aadA), trimethoprim (dfrA), cephalosporin (blaOXA; blaDHA), and fluoroquinolone (aac(6')-Ib-cr; qnrB) resistance. These platforms showed higher diversity and larger numbers than previously reported. Moreover, integrons carrying more than three cassettes in their variable regions were determined. Monitoring the prevalence and diversity of genetic elements is necessary for recognizing emergent patterns of resistance in pathogenic bacteria, especially in countries where various factors are recognized to favor the selection of resistant microorganisms.
Collapse
Affiliation(s)
- María Nicole Solis
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Karen Loaiza
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Lilibeth Torres-Elizalde
- Graduate School Life Sciences and Health (GS LSH), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Ivan Mina
- School of Biological Science and Engineering, Yachay-Tech University, Urcuquí 100650, Ecuador
| | - Miroslava Anna Šefcová
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
3
|
Silva LC, Sanches MS, Guidone GHM, Montini VH, de Oliva BHD, do Nascimento AB, Galhardi LCF, Kobayashi RKT, Vespero EC, Rocha SPD. Clonal relationship, virulence genes, and antimicrobial resistance of Morganella morganii isolated from community-acquired infections and hospitalized patients: a neglected opportunistic pathogen. Int Microbiol 2024; 27:411-422. [PMID: 37479959 DOI: 10.1007/s10123-023-00400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Morganella morganii is a bacterium belonging to the normal intestinal microbiota and the environment; however, in immunocompromised individuals, this bacterium can become an opportunistic pathogen, causing a series of diseases, both in hospitals and in the community, being urinary tract infections more prevalent. Therefore, the objective of this study was to evaluate the prevalence, virulence profile, and resistance to antimicrobials and the clonal relationship of isolates of urinary tract infections (UTI) caused by M. morganii, both in the hospital environment and in the community of the municipality of Londrina-PR, in southern Brazil, in order to better understand the mechanisms for the establishment of the disease caused by this bacterium. Our study showed that M. morganii presents a variety of virulence factors in the studied isolates. Hospital strains showed a higher prevalence for the virulence genes zapA, iutA, and fimH, while community strains showed a higher prevalence for the ireA and iutA genes. Hospital isolates showed greater resistance compared to community isolates, as well as a higher prevalence of multidrug-resistant (MDR) and extended-spectrum beta lactamase (ESBL)-producing isolates. Several M. morganii isolates from both sources showed high genetic similarity. The most prevalent plasmid incompatibility groups detected were FIB and I1, regardless of the isolation source. Thus, M. morganii isolates can accumulate virulence factors and antimicrobial resistance, making them a neglected opportunistic pathogen.
Collapse
Affiliation(s)
- Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, 86051-980, Londrina, Paraná, Brazil
| | - Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, 86051-980, Londrina, Paraná, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, 86051-980, Londrina, Paraná, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, 86051-980, Londrina, Paraná, Brazil
| | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, 86051-980, Londrina, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, 86051-980, Londrina, Paraná, Brazil
| | - Lígia Carla Faccin Galhardi
- Laboratory of Virology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Paraná, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, 86051-980, Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Salinas L, Cárdenas P, Graham JP, Trueba G. IS 26 drives the dissemination of bla CTX-M genes in an Ecuadorian community. Microbiol Spectr 2024; 12:e0250423. [PMID: 38088550 PMCID: PMC10783052 DOI: 10.1128/spectrum.02504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The horizontal gene transfer events are the major contributors to the current spread of CTX-M-encoding genes, the most common extended-spectrum β-lactamase (ESBL), and many clinically crucial antimicrobial resistance (AMR) genes. This study presents evidence of the critical role of IS26 transposable element for the mobility of bla CTX-M gene among Escherichia coli isolates from children and domestic animals in the community. We suggest that the nucleotide sequences of IS26-bla CTX-M could be used to study bla CTX-M transmission between humans, domestic animals, and the environment, because understanding of the dissemination patterns of AMR genes is critical to implement effective measures to slow down the dissemination of these clinically important genes.
Collapse
Affiliation(s)
- Liseth Salinas
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| | - Paúl Cárdenas
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| | - Jay P. Graham
- Environmental Health Sciences Division, University of California, Berkeley, California, USA
| | - Gabriel Trueba
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| |
Collapse
|
5
|
Furlan JPR, Ramos MS, Dos Santos LDR, da Silva Rosa R, Stehling EG. Multidrug-resistant Shiga toxin-producing Escherichia coli and hybrid pathogenic strains of bovine origin. Vet Res Commun 2023; 47:1907-1913. [PMID: 37199834 DOI: 10.1007/s11259-023-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Antimicrobial-resistant Escherichia coli strains have been circulating in various sectors and can be cross-transferred between them. Among pathogenic E. coli strains, Shiga toxin-producing E. coli (STEC) and hybrid pathogenic E. coli (HyPEC) emerged as responsible for outbreaks worldwide. As bovine are reservoir of STEC strains, these pathogens primarily spread to food products, exposing humans to risk. Therefore, this study aimed to characterize antimicrobial-resistant and potentially pathogenic E. coli strains from fecal samples of dairy cattle. In this regard, most E. coli strains (phylogenetic groups A, B1, B2, and E) were resistant to β-lactams and non-β-lactams and were classified as multidrug-resistant (MDR). Antimicrobial resistance genes (ARGs) related to multidrug resistance profiles were detected. Furthermore, mutations in fluoroquinolone and colistin resistance determinants were also identified, highlighting the deleterious mutation His152Gln in PmrB that may have contributed to the high level (> 64 mg/L) of colistin resistance. Virulence genes of diarrheagenic and extraintestinal pathogenic E. coli (ExPEC) pathotypes were shared among strains and even within the same strain, evidencing the presence of HyPEC (i.e., ExPEC/STEC), which were assigned as unusual B2-ST126-H3 and B1-ST3695-H31. These findings provide phenotypic and molecular data of MDR, ARGs-producing, and potentially pathogenic E. coli strains in dairy cattle, contributing to the monitoring of antimicrobial resistance and pathogens in healthy animals and alerting to potential bovine-associated zoonotic infections.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
6
|
Redha MA, Al Sweih N, Albert MJ. Multidrug-Resistant and Extensively Drug-Resistant Escherichia coli in Sewage in Kuwait: Their Implications. Microorganisms 2023; 11:2610. [PMID: 37894268 PMCID: PMC10609297 DOI: 10.3390/microorganisms11102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In Kuwait, some sewage is discharged into the sea untreated, causing a health risk. Previously, we investigated the presence of pathogenic E. coli among the 140 isolates of E. coli cultured from the raw sewage from three sites in Kuwait. The aim of the current study was to characterize the antimicrobial resistance of these isolates and the implications of resistance. Susceptibility to 15 antibiotic classes was tested. Selected genes mediating resistance to cephalosporins and carbapenems were sought. ESBL and carbapenemase production were also determined. Two virulent global clones, ST131 and ST648, were sought. A total of 136 (97.1%), 14 (10.0%), 128 (91.4%), and 2 (1.4%) isolates were cephalosporin-resistant, carbapenem-resistant, multidrug-resistant (MDR), and extensively drug-resistant (XDR), respectively. Among the cephalosporin-resistant isolates, ampC, blaTEM, blaCTX-M, blaOXA-1, and blaCMY-2 were found. Eighteen (12.9%) samples were ESBL producers. All carbapenem-resistant isolates were negative for carbapenemase genes (blaOXA-48, blaIMP, blaGES, blaVIM, blaNDM, and blaKPC), and for carbapenemase production. Resistance rates in carbapenem-resistant isolates to many other antibiotics were significantly higher than in susceptible isolates. A total of four ST131 and ST648 isolates were detected. The presence of MDR and XDR E. coli and global clones in sewage poses a threat in treating E. coli infections.
Collapse
Affiliation(s)
| | | | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya 46300, Kuwait; (M.A.R.); (N.A.S.)
| |
Collapse
|
7
|
Identification of mcr-1 Genes and Characterization of Resistance Mechanisms to Colistin in Escherichia coli Isolates from Colombian Hospitals. Antibiotics (Basel) 2023; 12:antibiotics12030488. [PMID: 36978355 PMCID: PMC10044228 DOI: 10.3390/antibiotics12030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
We report the presence of the mcr-1 gene among 880 Escherichia coli clinical isolates collected in 13 hospitals from 12 Colombian cities between 2016 and 2019. Seven (0.8%) isolates were colistin resistant (MIC ≥ 4 µg/mL). These colistin-resistant isolates were screened for the presence of the mcr-1 gene; five carried the gene. These five isolates were subjected to whole genome sequencing (WGS) to identify additional resistomes and their ST. In addition, antimicrobial susceptibility testing revealed that all E. coli isolates carrying mcr-1 were susceptible to third generation-cephalosporin and carbapenems, except one, which carried an extended-spectrum β-lactamase (CTX-M-55), along with the fosfomycin resistance encoding gene, fosA. WGS indicated that these isolates belonged to four distinct sequence types (ST58, ST46, ST393, and a newly described ST14315) and to phylogroups B1, A, and D. In this geographic region, the spread of mcr-1 in E. coli is low and has not been inserted into high-risk clones such as ST131, which has been present in the country longer.
Collapse
|
8
|
Montes-Robledo A, Baldiris-Avila R, Galindo JF. D-Mannoside FimH Inhibitors as Non-Antibiotic Alternatives for Uropathogenic Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10091072. [PMID: 34572654 PMCID: PMC8465801 DOI: 10.3390/antibiotics10091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
FimH is a type I fimbria of uropathogenic Escherichia coli (UPEC), recognized for its ability to adhere and infect epithelial urinary tissue. Due to its role in the virulence of UPEC, several therapeutic strategies have focused on the study of FimH, including vaccines, mannosides, and molecules that inhibit their assembly. This work has focused on the ability of a set of monosubstituted and disubstituted phenyl mannosides to inhibit FimH. To determine the 3D structure of FimH for our in silico studies, we obtained fifteen sequences by PCR amplification of the fimH gene from 102 UPEC isolates. The fimH sequences in BLAST had a high homology (97–100%) to our UPEC fimH sequences. A search for the three-dimensional crystallographic structure of FimH proteins in the PDB server showed that proteins 4X5P and 4XO9 were found in 10 of the 15 isolates, presenting a 67% influx among our UPEC isolates. We focused on these two proteins to study the stability, free energy, and the interactions with different mannoside ligands. We found that the interactions with the residues of aspartic acid (ASP 54) and glutamine (GLN 133) were significant to the binding stability. The ligands assessed demonstrated high binding affinity and stability with the lectin domain of FimH proteins during the molecular dynamic simulations, based on MM-PBSA analysis. Therefore, our results suggest the potential utility of phenyl mannoside derivatives as FimH inhibitors to mitigate urinary tract infections produced by UPEC; thus, decreasing colonization, disease burden, and the costs of medical care.
Collapse
Affiliation(s)
- Alfredo Montes-Robledo
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
| | - Rosa Baldiris-Avila
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
- Grupo de Investigación CIPTEC, Facultad de Ingeniería, Fundacion Universitaria Tecnologico Comfenalco—Cartagena, Cartagena de Indias 13001, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 11321, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| |
Collapse
|
9
|
Molecular Epidemiology of Escherichia coli Clinical Isolates from Central Panama. Antibiotics (Basel) 2021; 10:antibiotics10080899. [PMID: 34438949 PMCID: PMC8388621 DOI: 10.3390/antibiotics10080899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
Escherichia coli represents one of the most common causes of community-onset and nosocomial infections. Strains carrying extended spectrum β-lactamases (ESBL) are a serious public health problem. In Central America we have not found studies reporting the molecular epidemiology of E. coli strains implicated in local infections, so we conducted this study to fill that gap. Materials and Methods: We report on an epidemiological study in two reference hospitals from central Panama, identifying the susceptibility profile, associated risk factors, and molecular typing of E. coli strains isolated between November 2018 and November 2019 using Pasteur’s Multilocus Sequence Typing (MLST) scheme. Results: A total of 30 E. coli isolates with antimicrobial resistance were analyzed, 70% of which came from inpatients and 30% from outpatients (p < 0.001). Two-thirds of the samples came from urine cultures. Forty-three percent of the strains were ESBL producers and 77% were resistant to ciprofloxacin. We identified 10 different sequence types (STs) with 30% of the ESBL strains identified as ST43, which corresponds to ST131 of the Achtman MLST scheme—the E. coli pandemic clone. Thirty-eight percent of the E. coli strains with the ESBL phenotype carried CTX-M-15. Conclusions: To the best of our knowledge, this is the first report confirming the presence of the pandemic E. coli clone ST43/ST131 harboring CTX-M-15 in Central American inpatients and outpatients. This E. coli strain is an important antimicrobial-resistant organism of public health concern, with potential challenges to treat infections in Panama and, perhaps, the rest of Central America.
Collapse
|
10
|
Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist 2021; 3:dlab092. [PMID: 34286272 PMCID: PMC8284625 DOI: 10.1093/jacamr/dlab092] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Gram-negative pathogens are a major cause of resistance to expanded-spectrum β-lactam antibiotics. Since their discovery in the early 1980s, they have spread worldwide and an are now endemic in Enterobacterales isolated from both hospital-associated and community-acquired infections. As a result, they are a global public health concern. In the past, TEM- and SHV-type ESBLs were the predominant families of ESBLs. Today CTX-M-type enzymes are the most commonly found ESBL type with the CTX-M-15 variant dominating worldwide, followed in prevalence by CTX-M-14, and CTX-M-27 is emerging in certain parts of the world. The genes encoding ESBLs are often found on plasmids and harboured within transposons or insertion sequences, which has enabled their spread. In addition, the population of ESBL-producing Escherichia coli is dominated globally by a highly virulent and successful clone belonging to ST131. Today, there are many diagnostic tools available to the clinical microbiology laboratory and include both phenotypic and genotypic tests to detect β-lactamases. Unfortunately, when ESBLs are not identified in a timely manner, appropriate antimicrobial therapy is frequently delayed, resulting in poor clinical outcomes. Several analyses of clinical trials have shown mixed results with regards to whether a carbapenem must be used to treat serious infections caused by ESBLs or whether some of the older β-lactam-β-lactamase combinations such as piperacillin/tazobactam are appropriate. Some of the newer combinations such as ceftazidime/avibactam have demonstrated efficacy in patients. ESBL-producing Gram-negative pathogens will continue to be major contributor to antimicrobial resistance worldwide. It is essential that we remain vigilant about identifying them both in patient isolates and through surveillance studies.
Collapse
|
11
|
An Update on Wastewater Multi-Resistant Bacteria: Identification of Clinical Pathogens Such as Escherichia coli O25b:H4-B2-ST131-Producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca. Microorganisms 2021; 9:microorganisms9030576. [PMID: 33799747 PMCID: PMC8001128 DOI: 10.3390/microorganisms9030576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are significant reservoirs of bacterial resistance. This work aims to identify the determinants of resistance produced by Gram-negative bacteria in the influent and effluent of two WWTPs in Portugal. A total of 96 wastewater samples were obtained between 2016 and 2019. The numbers of total aerobic and fecal contamination bacteria were evaluated, and genomic features were searched by polymerase chain reaction (PCR) and Next-Generation Sequencing (NGS). Enterobacteriaceae corresponded to 78.6% (n = 161) of the 205 isolates identified by 16sRNA. The most frequent isolates were Escherichia spp. (57.1%, n = 117), followed by Aeromonas spp. (16.1%, n = 33) and Klebsiella spp. (12.7%, n = 26). The remaining 29 isolates (14.1%) were distributed across 10 different genera. Among the 183 resistant genes detected, 54 isolates produced extended spectrum β-lactamases (ESBL), of which blaCTX-M-15 was predominant (37 isolates; 68.5%). A KPC-3 carbapenemase-producing K. oxytoca was identified (n = 1), with blaKPC-3 included in a transposon Tn4401 isoform b. A higher number of virulence genes (VG) (19 genes) was found in the E. coli 5301 (O25b-ST131-B2) isolate compared with a commensal E. coli 5281 (O25b-ST410-A) (six genes). Both shared five VG [Enterobactin; Aerobactin, CFA/1 (clade α); Type1 (clade γ1); Type IV]. In conclusion, this work highlights the role of relevant clinical bacteria in WWTPs, such as KPC-3-producing K. oxytoca, and, for the first time, a CTX-M-15-producing Ochromobactrum intermedium, a human opportunistic pathogen, and a SED-1-producing Citrobacter farmeri, an uncommon CTX-M-type extended-spectrum beta-lactamase.
Collapse
|