1
|
Üremiş N, Üremiş MM. Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases. J Biochem Mol Toxicol 2025; 39:e70133. [PMID: 39799559 PMCID: PMC11725306 DOI: 10.1002/jbt.70133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression. The heterogeneity of genetic and environmental factors involved in the process of neurodegeneration makes current treatment methods inadequate. However, the existence of common molecular mechanisms in the pathogenesis of these diseases may allow the development of new targeted therapeutic strategies. Oxidative and nitrosative stress damages membrane components by accumulating ROS and RNS and disrupting redox balance. This process results in the induction of apoptosis, which is important in the pathogenesis of neurodegenerative diseases through oxidative stress. Studies conducted using postmortem human samples, animal models, and cell cultures have demonstrated that oxidative stress, nitrosative stress, and apoptosis are crucial factors in the development of diseases such as Alzheimer's, Parkinson's, Multiple Sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. The excessive production of reactive oxygen and nitrogen species, elevated levels of free radicals, heightened mitochondrial stress, disturbances in energy metabolism, and the oxidation and nitrosylation of cellular macromolecules are recognized as triggers for neuronal cell death. Challenges in managing and treating neurodegenerative diseases require a better understanding of this field at the molecular level. Therefore, this review elaborates on the molecular mechanisms by which oxidative and nitrosative stress are involved in neuronal apoptosis.
Collapse
Affiliation(s)
- Nuray Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| | - Muhammed Mehdi Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| |
Collapse
|
2
|
Ma Y, Wang F, Zhao Q, Zhang L, Chen S, Wang S. Identifying Diagnostic Markers and Constructing Predictive Models for Oxidative Stress in Multiple Sclerosis. Int J Mol Sci 2024; 25:7551. [PMID: 39062794 PMCID: PMC11276709 DOI: 10.3390/ijms25147551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease characterized by inflammation and neurodegeneration of the central nervous system. Despite the significant role of oxidative stress in the pathogenesis of MS, its precise molecular mechanisms remain unclear. This study utilized microarray datasets from the GEO database to analyze differentially expressed oxidative-stress-related genes (DE-OSRGs), identifying 101 DE-OSRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that these genes are primarily involved in oxidative stress and immune responses. Through protein-protein interaction (PPI) network, LASSO regression, and logistic regression analyses, four genes (MMP9, NFKBIA, NFKB1, and SRC) were identified as being closely related to MS. A diagnostic prediction model based on logistic regression demonstrated good predictive power, as shown by the nomogram curve index and DAC results. An immune-cell infiltration analysis using CIBERSORT revealed significant correlations between these genes and immune cell subpopulations. Abnormal oxidative stress and upregulated expression of key genes were observed in the blood and brain tissues of EAE mice. A molecular docking analysis suggested strong binding potentials between the proteins of these genes and several drug molecules, including isoquercitrin, decitabine, benztropine, and curcumin. In conclusion, this study identifies and validates potential diagnostic biomarkers for MS, establishes an effective prediction model, and provides new insights for the early diagnosis and personalized treatment of MS.
Collapse
Affiliation(s)
- Yantuanjin Ma
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Fang Wang
- Department of Science and Technology, Kunming Medical University, Kunming 650500, China;
| | - Qiting Zhao
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Lili Zhang
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Shunmei Chen
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Shufen Wang
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| |
Collapse
|
3
|
Wu Z, Song Y, Wang Y, Zhou H, Chen L, Zhan Y, Li T, Xie G, Wu H. Biological role of mitochondrial TLR4-mediated NF-κB signaling pathway in central nervous system injury. Cell Biochem Funct 2024; 42:e4056. [PMID: 38812104 DOI: 10.1002/cbf.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.
Collapse
Affiliation(s)
- Zhuochao Wu
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Ying Wang
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Zhou
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lingling Chen
- Department of Ultrasonic, Cixi Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Yunyun Zhan
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Li
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Bielenberg M, Kurelic R, Frantz S, Nikolaev VO. A mini-review: phosphodiesterases in charge to balance intracellular cAMP during T-cell activation. Front Immunol 2024; 15:1365484. [PMID: 38524120 PMCID: PMC10957532 DOI: 10.3389/fimmu.2024.1365484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
T-cell activation is a pivotal process of the adaptive immune response with 3',5'-cyclic adenosine monophosphate (cAMP) as a key regulator of T-cell activation and function. It governs crucial control over T-cell differentiation and production of pro-inflammatory cytokines, such as IFN-γ. Intriguingly, levels of intracellular cAMP differ between regulatory (Treg) and conventional T-cells (Tcon). During cell-cell contact, cAMP is transferred via gap junctions between these T-cell subsets to mediate the immunosuppressive function of Treg. Moreover, the activation of T-cells via CD3 and CD28 co-stimulation leads to a transient upregulation of cAMP. Elevated intracellular cAMP levels are balanced precisely by phosphodiesterases (PDEs), a family of enzymes that hydrolyze cyclic nucleotides. Various PDEs play distinct roles in regulating cAMP and cyclic guanosine monophosphate (cGMP) in T-cells. Research on PDEs has gained growing interest due to their therapeutic potential to manipulate T-cell responses. So far, PDE4 is the best-described PDE in T-cells and the first PDE that is currently targeted in clinical practice to treat autoimmune diseases. But also, other PDE families harbor additional therapeutic potential. PDE2A is a dual-substrate phosphodiesterase which is selectively upregulated in Tcon upon activation. In this Mini-Review, we will highlight the impact of cAMP regulation on T-cell activation and function and summarize recent findings on different PDEs regulating intracellular cAMP levels in T-cells.
Collapse
Affiliation(s)
- Marie Bielenberg
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Institute for Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Roberta Kurelic
- Institute for Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Viacheslav O. Nikolaev
- Institute for Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
5
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GES. Role of fenofibrate in multiple sclerosis. Eur J Med Res 2024; 29:113. [PMID: 38336772 PMCID: PMC10854163 DOI: 10.1186/s40001-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Departments, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
6
|
Wang PF, Jiang F, Zeng QM, Yin WF, Hu YZ, Li Q, Hu ZL. Mitochondrial and metabolic dysfunction of peripheral immune cells in multiple sclerosis. J Neuroinflammation 2024; 21:28. [PMID: 38243312 PMCID: PMC10799425 DOI: 10.1186/s12974-024-03016-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by the infiltration of inflammatory cells and demyelination of nerves. Mitochondrial dysfunction has been implicated in the pathogenesis of MS, as studies have shown abnormalities in mitochondrial activities, metabolism, mitochondrial DNA (mtDNA) levels, and mitochondrial morphology in immune cells of individuals with MS. The presence of mitochondrial dysfunctions in immune cells contributes to immunological dysregulation and neurodegeneration in MS. This review provided a comprehensive overview of mitochondrial dysfunction in immune cells associated with MS, focusing on the potential consequences of mitochondrial metabolic reprogramming on immune function. Current challenges and future directions in the field of immune-metabolic MS and its potential as a therapeutic target were also discussed.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Fei Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Qiu-Ming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Wei-Fan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Yue-Zi Hu
- Clinical Laboratory, The Second Hospital of Hunan University of Chinese Medicine, 233 Cai' e North Road, Changsha City, 410005, Hunan, China
| | - Qiao Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China.
| |
Collapse
|
7
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Wu Y, Wang X, Yang L, Kang S, Yan G, Han Y, Fang H, Sun H. Potential of alisols as cancer therapeutic agents: Investigating molecular mechanisms, pharmacokinetics and metabolism. Biomed Pharmacother 2023; 168:115722. [PMID: 37865991 DOI: 10.1016/j.biopha.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Albeit remarkable achievements in anti-cancer endeavors, the prevention and treatment of cancer remain unresolved challenges. Hence, there is an urgent need to explore new and efficacious natural compounds with potential anti-cancer therapeutic agents. One such group of compounds is alisols, tetracyclic triterpene alcohols extracted from alisma orientale. Alisols play a significant role in cancer therapy as they can suppress cancer cell proliferation and migration by regulating signaling pathways such as mTOR, Bax/Bcl-2, CHOP, caspase, NF-kB and IRE1. Pharmacokinetic studies showed that alisols can be absorbed entirely, rapidly, and evenly distributed in vivo. Moreover, alisols are low in toxicity and relatively safe to take. Remarkably, each alisol can be converted into many compounds with different pathways to their anti-cancer effects in the body. Thus, alisols are regarded as promising anti-cancer agents with minimal side effects and low drug resistance. This review will examine and discuss alisols' anti-cancer molecular mechanism, pharmacokinetics and metabolism. Based on a comprehensive analysis of nearly 20 years of research, we evaluate the therapeutic potential of alisols for various types of cancer and offer insights and strategies for developing new cancer treatments.
Collapse
Affiliation(s)
- Yinqi Wu
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Shuyu Kang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Heng Fang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
9
|
Jiang Q, Jiang WJ, Yang CX, Zhang RX, Sun W, Guo DD, Wu JF, Guo B, Wang XR, Bi HS. Inhibitory Effect of Jinkui Shenqi Pills on Glucocorticoid-Enhanced Axial Length Elongation in Experimentally Myopic Guinea Pigs. Chin J Integr Med 2023; 29:989-997. [PMID: 37171548 DOI: 10.1007/s11655-023-3738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To explore the underlying mechanism of inhibition by Jinkui Shenqi Pills (JKSQP) on glucocorticoid-enhanced axial length elongation in experimental lens-induced myopia (LIM) guinea pigs. METHODS Sixty 2-week old male guinea pigs were randomly divided into 4 groups with 15 guinea pigs in each group, according to the random numbers generated by SPSS software: control, LIM, saline and JKSQP groups. The control group includes animals with no treatment, while the guinea pigs in the other 3 groups received lens-induced myopization on the right eyes throughout the experiment (for 8 weeks). The saline and JKSQP groups were given daily intraperitoneal injections of 10 mg/kg hydrocortisone for 2 consecutive weeks at the same time, and then orally administered either saline or JKSQP [13.5 g/(kg•d) for 6 consecutive weeks. Body weight, anal temperature and animal appearance were observed and recorded to evaluate the GC-associated symptoms. The ocular parameters, including refraction and axial length, were measured by streak retinoscopy and A-scan ultrasonography, respectively. The levels of plasma hormones associated with the hypothalamic-pituitary-adrenal axis (HPAA), including free triiodothyronine, free thyroxine, estradiol and testosterone, were measured by radioimmunoassay, and cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate were measured by enzyme-linked immunosorbent assay. In addition, the mRNA and protein expressions of retinal amphiregulin (AREG) was measured by quantitative real-time polymerase chain reaction and Western blotting, respectively. RESULTS JKSQP effectively increased body weight and anal temperature, improved animal appearance and suppressed axial length elongation in glucocorticoid-enhanced myopic guinea pigs with normalization of 4 HPAA-associated plasma hormones (all P<0.05). The plasma level of cAMP was significantly increased, whereas the plasma level of cGMP and the mRNA and protein expressions of retinal AREG were decreased after treatment with JKSQP (all P<0.05). CONCLUSION JKSQP exhibited a significant inhibitory effect on axial length elongation with decreased expression of AREG in the retina, and normalized 4 HPAA-associated plasma hormones and the expression of cAMP and cGMP in GC-enhanced myopic guinea pigs.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Wen-Jun Jiang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Cheng-Xiu Yang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Rui-Xue Zhang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Sun
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Da-Dong Guo
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Jiang-Feng Wu
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Bin Guo
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xing-Rong Wang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hong-Sheng Bi
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
| |
Collapse
|
10
|
Alruwaili M, Al-kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, Saad HM, Batiha GES. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res 2023; 48:3255-3269. [PMID: 37442896 PMCID: PMC10514123 DOI: 10.1007/s11064-023-03981-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
Collapse
Affiliation(s)
- Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Barakat M. ALRashdi
- Biology Department, College of Science, Jouf University, Sakaka, 41412 Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
11
|
Khalil SM, Eltaramsy A, Hegazi MM, Mohamed TM, Alwasel S, Salem ML. Time-dependent changes in the glycolytic pathway in activated T cells are independent of tumor burden or anti-cancer chemotherapy. Int Immunopharmacol 2023; 122:110622. [PMID: 37451014 DOI: 10.1016/j.intimp.2023.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Although activated adoptive T cells therapy (ATC) is an effective approach for cancer treatment, it is not clear how modulation of T cell activation impacts their biochemical signature which significantly impacts the cell function. This study is aimed to investigate the impact of polyclonal activation on the metabolic signature of T cells from tumor-bearing mice under different settings of treatment with chemotherapy. Thirty female Swiss albino mice were divided into 5 groups (n = 6/each), Gp1(PBS), groups Gp2 were inoculated intraperitoneal (i.p) with 1 × 106 cells/mouse Ehrlich ascites carcinoma (EAC), Gp3-Gp5 were treated with cisplatin (20 mg/mice) which were represented as EAC/CIS/1wk Or EAC/CIS/2wk 3 times every other day. Splenocytes were cultured in or presence of concanavalin-A (Con-A) and IL-2 for 24 h or 72 h, then cells were harvested, and processed to determine the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and glucose 6 phosphate dehydrogenase(G6PD) enzymes. The results showed that before culture, T cells harvested from EAC/PBS/1wk of mice or inoculated with EAC/CIS/1wk showed higher activity in HK, PFK, LDH, and G6PH as compared to naive T cells. After 24, and 72 h of culture and activation, the enzyme activities in T cells harvested from EAC/CIS/2wk mice or EAC/CIS/3wk mice decreased compared with their control. The late stage of the tumor without chemotherapy gives a low glycolic rate. In late activation, naive and early stages of the tumor with chemotherapy can give high glycolic metabolism. These results show great significance as an application of adoptive T-cell therapy.
Collapse
Affiliation(s)
- Sohaila M Khalil
- Immunology and Biotechnology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt.
| | - Asmaa Eltaramsy
- Physiology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona M Hegazi
- Physiology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Egypt
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed L Salem
- Immunology and Biotechnology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt.
| |
Collapse
|
12
|
Essam RM, Kandil EA. p-CREB and p-DARPP-32 orchestrating the modulatory role of cAMP/PKA signaling pathway enhanced by Roflumilast in rotenone-induced Parkinson's disease in rats. Chem Biol Interact 2023; 372:110366. [PMID: 36706892 DOI: 10.1016/j.cbi.2023.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Recently, phosphodiesterases (PDEs) have gained great attention due to their implication in Parkinson's disease (PD) pathogenesis. Noteworthy, the PDE4 enzyme is highly expressed in the striatum and selectively degrades cyclic adenosine monophosphate (cAMP). The cAMP was shown to play a vital role in dopamine (DA) signaling besides maintaining the plasticity of dopaminergic neurons as well as protecting them from inflammation and oxidative stress-mediated death. Thus, PDE4 inhibition could be a promising strategy for treating PD. Accordingly, the present study investigated the neuroprotective efficacy of roflumilast, a PDE4 inhibitor, in abolishing neurodegeneration in the rotenone-induced PD model. Rotenone (1.5 mg/kg, s.c) was delivered via 11 injections on matching days. Roflumilast treatment (0.5 mg/kg, p.o) was given daily after the fifth rotenone injection. Roflumilast significantly reversed rotenone's adverse effects, as it enhanced trophic factors expression and abrogated inflammation as well as oxidative stress. Thus, promoting dopaminergic neuronal plasticity and survival, as well as restoring striatal DA level and function, which resulted in enhanced motor performance. The beneficial effect of roflumilast was mediated through inhibition of striatal PDE4 with consequent activation of cAMP-dependent protein kinase A (PKA) signaling pathways, including the cAMP response element-binding protein (CREB) pathway and dopamine and cAMP-regulated phosphoprotein 32,000 (DARPP-32) pathway that is essential for maintaining dopaminergic function. Therefore, the present work sheds light on the substantial neuroprotective potential of roflumilast in treating PD through the activation of the cAMP/PKA cascade.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza, 3296121, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
13
|
Signorile A, De Rasmo D. Mitochondrial Complex I, a Possible Sensible Site of cAMP Pathway in Aging. Antioxidants (Basel) 2023; 12:antiox12020221. [PMID: 36829783 PMCID: PMC9951957 DOI: 10.3390/antiox12020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-544-8516
| |
Collapse
|
14
|
Eliseeva DD, Kalashnikova AK, Bryukhov VV, Andreeva NA, Zhorzholadze NV, Murakhovskaya YK, Krilova TD, Tsygankova PG, Zakharova MN, Sheremet NL. [Hereditary optic neuropathy associated with demyelinating diseases of the central nervous system]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:122-132. [PMID: 37560844 DOI: 10.17116/jnevro2023123072122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Demyelinating optic neuritis and hereditary optic neuropathy (HON) take a leading place among the diseases, the leading clinical syndrome of which is bilateral optic neuropathy with a simultaneous or sequential significant decrease in visual acuity. Optic neuritis can occur at the onset or be one of the syndromes within multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody disease (MOGAD). HON are a group of neurodegenerative diseases, among which the most common variants are Leber's hereditary optic neuropathy (LHON), associated with mitochondrial DNA (mtDNA) mutations, and autosomal recessive optic neuropathy (ARON), caused by nuclear DNA (nDNA) mutations in DNAJC30. There are phenotypes of LHON «plus», one of which is the association of HON and CNS demyelination in the same patient. In such cases, the diagnosis of each of these diseases causes significant difficulties, due to the fact that in some cases there are clinical and radiological coincidences between demyelinating and hereditary mitochondrial diseases.
Collapse
Affiliation(s)
| | - A K Kalashnikova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - N A Andreeva
- Research Institute of Eye Diseases, Moscow, Russia
| | | | | | - T D Krilova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - N L Sheremet
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
15
|
Zhao P, Liu X, Wang Y, Zhang X, Wang H, Du X, Du Z, Yang L, Hou J. Discovery of grey matter lesion-related immune genes for diagnostic prediction in multiple sclerosis. PeerJ 2023; 11:e15299. [PMID: 37128203 PMCID: PMC10148642 DOI: 10.7717/peerj.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic debilitating disease characterized by inflammatory demyelination of the central nervous system. Grey matter (GM) lesions have been shown to be closely related to MS motor deficits and cognitive impairment. In this study, GM lesion-related genes for diagnosis and immune status in MS were investigated. Methods Gene Expression Omnibus (GEO) databases were utilized to analyze RNA-seq data for GM lesions in MS. Differentially expressed genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) algorithm and protein-protein interaction (PPI) network were used to screen related gene modules and candidate genes. The abundance of immune cell infiltration was analyzed by the CIBERSORT algorithm. Candidate genes with strong correlation with immune cell types were determined to be hub genes. A diagnosis model of nomogram was constructed based on the hub genes. Gene set enrichment analysis (GSEA) was performed to identify the biological functions of hub genes. Finally, an MS mouse model was induced to verify the expression levels of immune hub genes. Results Nine genes were identified by WGCNA, LASSO regression and PPI network. The infiltration of immune cells was significantly different between the MS and control groups. Four genes were identified as GM lesion-related hub genes. A reliable prediction model was established by nomogram and verified by calibration, decision curve analysis and receiver operating characteristic curves. GSEA indicated that the hub genes were mainly enriched in cell adhesion molecules, cytokine-cytokine receptor interaction and the JAK-STAT signaling pathway, etc. Conclusions TLR9, CCL5, CXCL8 and PDGFRB were identified as potential biomarkers for GM injury in MS. The effectively predicted diagnosis model will provide guidance for therapeutic intervention of MS.
Collapse
Affiliation(s)
- Peiyuan Zhao
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xihong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunqian Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyan Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Han Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodan Du
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhixin Du
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Yang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junlin Hou
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
16
|
Liu C, Liu Z, Fang Y, Liao Z, Zhang Z, Yuan X, Yu T, Yang Y, Xiong M, Zhang X, Zhang G, Meng L, Zhang Z. Exposure to dithiocarbamate fungicide maneb in vitro and in vivo: Neuronal apoptosis and underlying mechanisms. ENVIRONMENT INTERNATIONAL 2023; 171:107696. [PMID: 36563597 DOI: 10.1016/j.envint.2022.107696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Maneb, a widely-used dithiocarbamate fungicide, remains in the environment and exerts adverse health effects. Epidemiological evidence shows that maneb exposure is associated with a higher risk of Parkinson's disease (PD), one of the most common neurodegenerative diseases. However, the molecular mechanisms underlying maneb-induced neurotoxicity remain unclear. Here we investigated the toxic effects and the underlying mechanisms of maneb on the degeneration of dopaminergic cells and α-synuclein in A53T transgenic mice. In SH-SY5Y cells, exposure to maneb reduces cell viability, triggers neuronal apoptosis, induces mitochondrial dysfunction, and generates reactive oxidative species (ROS) in a dose-dependent manner. Furthermore, Western blot analysis found that the mitochondrial apoptosis pathway (Bcl-2, Bax, cytochrome c, activated caspase-3) and the PKA/CREB signaling pathway (PKA, PDE10A, CREB, p-CREB) were changed by maneb both in vitro and in vivo. In addition, the activation of the mitochondrial apoptosis pathway induced by maneb was attenuated by activating PKA. Therefore, these results suggest that the PKA/CREB signaling pathway is involved in maneb-induced apoptosis. This study provides novel insights into maneb-induced neurotoxicity and the underlying mechanisms, which may serve as a guide for further toxicological assessment and standard application of maneb.
Collapse
Affiliation(s)
- Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yanyan Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Zizhuo Liao
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; TaiKang Center for Life and Medical Science, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
17
|
Sauerland MB, Helm C, Lorentzen LG, Manandhar A, Ulven T, Gamon LF, Davies MJ. Identification of galectin-1 and other cellular targets of alpha,beta-unsaturated carbonyl compounds, including dimethylfumarate, by use of click-chemistry probes. Redox Biol 2022; 59:102560. [PMID: 36493513 PMCID: PMC9731849 DOI: 10.1016/j.redox.2022.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
α,β-Unsaturated carbonyls are a common motif in environmental toxins (e.g. acrolein) as well as therapeutic drugs, including dimethylfumarate (DMFU) and monomethylfumarate (MMFU), which are used to treat multiple sclerosis and psoriasis. These compounds form adducts with protein Cys residues as well as other nucleophiles. The specific targets ('adductome') that give rise to their therapeutic or toxic activities are poorly understood. This is due, at least in part, to the absence of antigens or chromophores/fluorophores in these compounds. We have recently reported click-chemistry probes of DMFU and MMFU (Redox Biol., 2022, 52, 102299) that allow adducted proteins to be visualized and enriched for further characterization. In the current study, we hypothesized that adducted proteins could be 'clicked' to agarose beads and thereby isolated for LC-MS analysis of DMFU/MMFU targets in primary human coronary artery smooth muscle cells. We show that the probes react with thiols with similar rate constants to the parent drugs, and give rise to comparable patterns of gene induction, confirming similar biological actions. LC-MS proteomic analysis identified ∼2970 cellular targets of DMFU, ∼1440 for MMFU, and ∼140 for the control (succinate-probe) treated samples. The most extensively modified proteins were galectin-1, annexin-A2, voltage dependent anion channel-2 and vimentin. Other previously postulated DMFU targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cofilin, p65 (RELA) and Keap1 were also identified as adducted species, though at lower levels with the exception of GAPDH. These data demonstrate the utility of the click-chemistry approach to the identification of cellular protein targets of both exogenous and endogenous compounds.
Collapse
Affiliation(s)
- Max B. Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Christina Helm
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G. Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, Jagtvej 162, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Jagtvej 162, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Luke F. Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark,Corresponding author.
| |
Collapse
|
18
|
Blagov AV, Sukhorukov VN, Orekhov AN, Sazonova MA, Melnichenko AA. Significance of Mitochondrial Dysfunction in the Progression of Multiple Sclerosis. Int J Mol Sci 2022; 23:12725. [PMID: 36361513 PMCID: PMC9653869 DOI: 10.3390/ijms232112725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 07/22/2023] Open
Abstract
The prevalence of multiple sclerosis and the complexity of its etiology and pathogenesis require further study of the factors underlying the progression of this disease. The prominent role of mitochondria in neurons makes this organelle a vulnerable target for CNS diseases. The purpose of this review is to consider the role of mitochondrial dysfunction in the pathogenesis of multiple sclerosis, as well as to propose new promising therapeutic strategies aimed at restoring mitochondrial function in multiple sclerosis.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| |
Collapse
|
19
|
Guerrero Aznar MD, Villanueva Guerrero MD, Cordero Ramos J, Eichau Madueño S, Morales Bravo M, López Ruiz R, Beltrán García M. Efficacy of diet on fatigue, quality of life and disability status in multiple sclerosis patients: rapid review and meta-analysis of randomized controlled trials. BMC Neurol 2022; 22:388. [PMID: 36266639 PMCID: PMC9583472 DOI: 10.1186/s12883-022-02913-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Multiple sclerosis is an inflammatory and neurodegenerative disease. People with multiple sclerosis (pwMS) experience chronic fatigue which is difficult to deal with therapeutically and greatly affects health-related quality of life (QOL). PwMS are aware of the lack of generalized dietary advice related to their disease, leading to self-experimentation with diet. It is necessary to provide objective information about dietary interventions for pwMS. We aim to provide an objective synthesis of the evidence for efficacy and safety of specific diets in pwMS through a rapid review and meta-analyses of randomized controlled trials (RCTs), examining symptomatic fatigue (MFIS), QOL, Expanded-Disability-Status-Scale (EDSS), and severe adverse events. Methods We have carried out a rapid review (MEDLINE and EMBASE) up to December 2021, with PRISMA methodology, and meta-analyses, of (RCTs). All statistical analyses were performed using the comprehensive meta-analysis (CMA) -RStudio 4.1.3. The analysis used weighted mean differences (WMD) and a 95% confidence interval (CI) using a random-effects model to compare the effects of the dietary intervention with the control. Results Eight studies met the inclusion criteria. Of these eight studies, five analyzed EDSS, three MFIS, and three QOL. A total of 515 patients were analyzed. These meta-analyses cumulative evidence support that dietary intervention is associated with a trend of reduction in fatigue (308 patients studied) -the difference between means (SMD) of the control group and intervention group was -2,033, 95%-IC (-3,195, -0,152), a p-value of 0.0341)-, an increase in QOL (77 patients studied), no significant effect on EDSS (337 patients studied), and no severe adverse events. Conclusions It is difficult to reach a high level of evidence in dietary studies. Our findings show that dietary intervention is associated with a trend of reduction in fatigue in MS. Taking into account the potential of dietary interventions and the benefit/risk ratio in their favor, neurologists must be aware of the great importance of making interventions on diet in MS if necessary. There are dietary interventions with some evidence of benefit for patients with MS, which could be chosen based on adherence, patient preferences, and individual outcomes. Large prospective clinical trials are needed to shed further light on this topic. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02913-w.
Collapse
Affiliation(s)
| | | | - Jaime Cordero Ramos
- Pharmacy Clinical Management Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Sara Eichau Madueño
- Neurology Clinical Management Unit, Virgen Macarena University Hospital, Seville, Spain
| | - María Morales Bravo
- Neurology Clinical Management Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Rocío López Ruiz
- Neurology Clinical Management Unit, Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
20
|
Logan A, Belli A, Di Pietro V, Tavazzi B, Lazzarino G, Mangione R, Lazzarino G, Morano I, Qureshi O, Bruce L, Barnes NM, Nagy Z. The mechanism of action of a novel neuroprotective low molecular weight dextran sulphate: New platform therapy for neurodegenerative diseases like Amyotrophic Lateral Sclerosis. Front Pharmacol 2022; 13:983853. [PMID: 36110516 PMCID: PMC9468270 DOI: 10.3389/fphar.2022.983853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Acute and chronic neurodegenerative diseases represent an immense socioeconomic burden that drives the need for new disease modifying drugs. Common pathogenic mechanisms in these diseases are evident, suggesting that a platform neuroprotective therapy may offer effective treatments. Here we present evidence for the mode of pharmacological action of a novel neuroprotective low molecular weight dextran sulphate drug called ILB®. The working hypothesis was that ILB® acts via the activation of heparin-binding growth factors (HBGF). Methods: Pre-clinical and clinical (healthy people and patients with ALS) in vitro and in vivo studies evaluated the mode of action of ILB®. In vitro binding studies, functional assays and gene expression analyses were followed by the assessment of the drug effects in an animal model of severe traumatic brain injury (sTBI) using gene expression studies followed by functional analysis. Clinical data, to assess the hypothesized mode of action, are also presented from early phase clinical trials. Results: ILB® lengthened APTT time, acted as a competitive inhibitor for HGF-Glypican-3 binding, effected pulse release of heparin-binding growth factors (HBGF) into the circulation and modulated growth factor signaling pathways. Gene expression analysis demonstrated substantial similarities in the functional dysregulation induced by sTBI and various human neurodegenerative conditions and supported a cascading effect of ILB® on growth factor activation, followed by gene expression changes with profound beneficial effect on molecular and cellular functions affected by these diseases. The transcriptional signature of ILB® relevant to cell survival, inflammation, glutamate signaling, metabolism and synaptogenesis, are consistent with the activation of neuroprotective growth factors as was the ability of ILB® to elevate circulating levels of HGF in animal models and humans. Conclusion: ILB® releases, redistributes and modulates the bioactivity of HBGF that target disease compromised nervous tissues to initiate a cascade of transcriptional, metabolic and immunological effects that control glutamate toxicity, normalize tissue bioenergetics, and resolve inflammation to improve tissue function. This unique mechanism of action mobilizes and modulates naturally occurring tissue repair mechanisms to restore cellular homeostasis and function. The identified pharmacological impact of ILB® supports the potential to treat various acute and chronic neurodegenerative disease, including sTBI and ALS.
Collapse
Affiliation(s)
- Ann Logan
- Department of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
- Axolotl Consulting Ltd., Droitwich, United Kingdom
- *Correspondence: Ann Logan,
| | - Antonio Belli
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barbara Tavazzi
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | | | | | | | - Nicholas M. Barnes
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zsuzsanna Nagy
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Zha Z, Liu S, Liu Y, Li C, Wang L. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants (Basel) 2022; 11:antiox11081495. [PMID: 36009214 PMCID: PMC9404913 DOI: 10.3390/antiox11081495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system (CNS) characterized by immune cell infiltration, demyelination and axonal injury. Oxidative stress-induced inflammatory response, especially the destructive effect of immune cell-derived free radicals on neurons and oligodendrocytes, is crucial in the onset and progression of MS. Therefore, targeting oxidative stress-related processes may be a promising preventive and therapeutic strategy for MS. Animal models, especially rodent models, can be used to explore the in vivo molecular mechanisms of MS considering their similarity to the pathological processes and clinical signs of MS in humans and the significant oxidative damage observed within their CNS. Consequently, these models have been used widely in pre-clinical studies of oxidative stress in MS. To date, many natural products have been shown to exert antioxidant effects to attenuate the CNS damage in animal models of MS. This review summarized several common rodent models of MS and their association with oxidative stress. In addition, this review provides a comprehensive and concise overview of previously reported natural antioxidant products in inhibiting the progression of MS.
Collapse
|
22
|
Sammad A, Luo H, Hu L, Zhao S, Gong J, Umer S, Khan A, Zhu H, Wang Y. Joint Transcriptome and Metabolome Analysis Prevails the Biological Mechanisms Underlying the Pro-Survival Fight in In Vitro Heat-Stressed Granulosa Cells. BIOLOGY 2022; 11:839. [PMID: 35741360 PMCID: PMC9220676 DOI: 10.3390/biology11060839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Previous studies reported the physical, transcriptome, and metabolome changes in in vitro acute heat-stressed (38 °C versus 43 °C for 2 h) bovine granulosa cells. Granulosa cells exhibited transient proliferation senescence, oxidative stress, an increased rate of apoptosis, and a decline in steroidogenic activity. In this study, we performed a joint integration and network analysis of metabolomic and transcriptomic data to further narrow down and elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways in acute heat-stressed granulosa cells. Among the significant (raw p-value < 0.05) metabolic pathways where metabolites and genes converged, this study found vitamin B6 metabolism, glycine, serine and threonine metabolism, phenylalanine metabolism, arginine biosynthesis, tryptophan metabolism, arginine and proline metabolism, histidine metabolism, and glyoxylate and dicarboxylate metabolism. Important significant convergent biological pathways included ABC transporters and protein digestion and absorption, while functional signaling pathways included cAMP, mTOR, and AMPK signaling pathways together with the ovarian steroidogenesis pathway. Among the cancer pathways, the most important pathway was the central carbon metabolism in cancer. Through multiple analysis queries, progesterone, serotonin, citric acid, pyridoxal, L-lysine, succinic acid, L-glutamine, L-leucine, L-threonine, L-tyrosine, vitamin B6, choline, and CYP1B1, MAOB, VEGFA, WNT11, AOX1, ADCY2, ICAM1, PYGM, SLC2A4, SLC16A3, HSD11B2, and NOS2 appeared to be important enriched metabolites and genes, respectively. These genes, metabolites, and metabolic, cellular, and cell signaling pathways comprehensively elucidate the mechanisms underlying the intricate fight between death and survival in acute heat-stressed bovine granulosa cells and essentially help further our understanding (and will help the future quest) of research in this direction.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Lirong Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (J.G.)
| | - Jianfei Gong
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (J.G.)
| | - Saqib Umer
- Department of Theriogenology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Adnan Khan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (J.G.)
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| |
Collapse
|
23
|
Tragni V, Primiano G, Tummolo A, Cafferati Beltrame L, La Piana G, Sgobba MN, Cavalluzzi MM, Paterno G, Gorgoglione R, Volpicella M, Guerra L, Marzulli D, Servidei S, De Grassi A, Petrosillo G, Lentini G, Pierri CL. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Molecules 2022; 27:3494. [PMID: 35684429 PMCID: PMC9182050 DOI: 10.3390/molecules27113494] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Lucas Cafferati Beltrame
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Gianluigi La Piana
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Domenico Marzulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| |
Collapse
|
24
|
Yu W, He J, Cai X, Yu Z, Zou Z, Fan D. Neuroimmune Crosstalk Between the Peripheral and the Central Immune System in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:890958. [PMID: 35592701 PMCID: PMC9110796 DOI: 10.3389/fnagi.2022.890958] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration and death of motor neurons. Systemic neuroinflammation contributes to the pathogenesis of ALS. The proinflammatory milieu depends on the continuous crosstalk between the peripheral immune system (PIS) and central immune system (CIS). Central nervous system (CNS) resident immune cells interact with the peripheral immune cells via immune substances. Dysfunctional CNS barriers, including the blood–brain barrier, and blood–spinal cord barrier, accelerate the inflammatory process, leading to a systemic self-destructive cycle. This review focuses on the crosstalk between PIS and CIS in ALS. Firstly, we briefly introduce the cellular compartments of CIS and PIS, respectively, and update some new understanding of changes specifically occurring in ALS. Then, we will review previous studies on the alterations of the CNS barriers, and discuss their crucial role in the crosstalk in ALS. Finally, we will review the moveable compartments of the crosstalk, including cytokines, chemokines, and peripheral immune cells which were found to infiltrate the CNS, highlighting the interaction between PIS and CIS. This review aims to provide new insights into pathogenic mechanisms and innovative therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiying Cai
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
25
|
Singh K, Nassar N, Bachari A, Schanknecht E, Telukutla S, Zomer R, Piva TJ, Mantri N. The Pathophysiology and the Therapeutic Potential of Cannabinoids in Prostate Cancer. Cancers (Basel) 2021; 13:4107. [PMID: 34439262 PMCID: PMC8392233 DOI: 10.3390/cancers13164107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the second most frequently occurring cancer diagnosed among males. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation. In this review, we focused on studies that demonstrated anticancer effects of cannabinoids and their possible mechanisms of action in prostate cancer. Besides the palliative effects of cannabinoids, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of cancers. This analysis may provide pharmacological insights into the selection of specific cannabinoids for the development of antitumor drugs for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Kanika Singh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Srinivasareddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, WA 6005, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
26
|
Alpinetin Attenuates Persistent Inflammation, Immune Suppression, and Catabolism Syndrome in a Septic Mouse Model. J Immunol Res 2021; 2021:9998517. [PMID: 34285925 PMCID: PMC8275435 DOI: 10.1155/2021/9998517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Patients who survive the acute phase of sepsis can progress to persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which usually results in extended recovery periods and multiple complications. Alpinetin is a flavonoid isolated from Alpinia katsumadai Hayata that has been demonstrated to have anti-inflammatory, antibacterial, and antioxidant activities. The aim of this study was to investigate whether the administration of alpinetin could attenuate PICS in a septic mouse model. Mice were randomly divided into four groups: the (1) sham-operated group, (2) sham+alpinetin (1 mg/kg intravenously infused for once per day after sham operation), (3) cecal ligation and puncture (CLP), and (4) CLP+alpinetin (50 mg/kg intravenously infused for once per day after CLP). Eight days after sham operation or CLP surgery, mice were euthanized for subsequent examination. Alpinetin significantly improved the survival of septic mice. Also, it attenuated the CLP-induced persistent inflammation, immunosuppression, and catabolism syndrome. The level of plasma proinflammatory cytokines and apoptosis of T lymphocytes were obviously decreased by alpinetin as well. Moreover, oxidative stress in the organs was compelling lower in the alpinetin-treated CLP mice. In this clinically relevant model of sepsis, alpinetin ameliorates CLP-induced organ dysfunction and improves the likelihood of survival, possibly through suppressing the inflammatory response, oxidative stress, and apoptosis. These findings suggested that alpinetin could be a potential novel therapeutic approach to prevent sepsis-induced PICS.
Collapse
|