1
|
Bagrowska W, Karasewicz A, Góra A. Comprehensive analysis of acetylcholinesterase inhibitor and reactivator complexes: implications for drug design and antidote development. Drug Discov Today 2024; 29:104217. [PMID: 39476946 DOI: 10.1016/j.drudis.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 11/11/2024]
Abstract
The main function of acetylcholinesterase (AChE) is to regulate the levels of one of the most important neurotransmitters: acetylcholine. This makes AChE an ideal molecular target for the treatment of neurodegenerative diseases and dementia (such as Alzheimer's disease), as well as for the neutralisation of natural toxins (e.g., venom peptides) and chemical warfare agents. The significance of AChE inhibitors in slowing the progression of dementia, as well as the role of reactivators in treating poisoned individuals, is reflected in several co-crystallised complexes deposited in the Protein Data Bank. In this study, we analysed all deposited AChE-small-molecule complexes to gain insights into compound binding and to provide guidance for the future design of therapeutic drugs and new antidotes.
Collapse
Affiliation(s)
- Weronika Bagrowska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Angelika Karasewicz
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| |
Collapse
|
2
|
Pidany F, Kroustkova J, Jenco J, Breiterova KH, Muckova L, Novakova L, Kunes J, Fibigar J, Kucera T, Novak M, Sorf A, Hrabinova M, Pulkrabkova L, Janousek J, Soukup O, Jun D, Korabecny J, Cahlikova L. Carltonine-derived compounds for targeted butyrylcholinesterase inhibition. RSC Med Chem 2024; 15:1601-1625. [PMID: 38784455 PMCID: PMC11110763 DOI: 10.1039/d4md00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
The investigation into human butyrylcholinesterase (hBChE) inhibitors as therapeutic agents for Alzheimer's disease (AD) holds significant promise, addressing both symptomatic relief and disease progression. In the pursuit of novel drug candidates with a selective BChE inhibition pattern, we focused on naturally occurring template structures, specifically Amaryllidaceae alkaloids of the carltonine-type. Herein, we explored a series of compounds implementing an innovative chemical scaffold built on the 3- and 4-benzyloxy-benzylamino chemotype. Notably, compounds 28 (hBChE IC50 = 0.171 ± 0.063 μM) and 33 (hBChE IC50 = 0.167 ± 0.018 μM) emerged as top-ranked hBChE inhibitors. In silico simulations elucidated the binding modes of these compounds within hBChE. CNS availability was predicted using the BBB score algorithm, corroborated by in vitro permeability assessments with the most potent derivatives. Compound 33 was also inspected for aqueous solubility, microsomal and plasma stability. Chemoinformatics analysis validated these hBChE inhibitors for oral administration, indicating favorable gastrointestinal absorption in compliance with Lipinski's and Veber's rules. Safety assessments, crucial for the chronic administration typical in AD treatment, were conducted through cytotoxicity testing on human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines.
Collapse
Affiliation(s)
- Filip Pidany
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jana Kroustkova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jaroslav Jenco
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Katerina Hradiska Breiterova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lucie Novakova
- Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jiri Kunes
- Faculty of Pharmacy in Hradec Kralove, Department of Bioorganic and Organic Chemistry, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jakub Fibigar
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Tomas Kucera
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Ales Sorf
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lenka Pulkrabkova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jiri Janousek
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Daniel Jun
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lucie Cahlikova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| |
Collapse
|
3
|
Cao Z, Wang X, Zhang T, Fu X, Zhang F, Zhu J. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson's disease. J Enzyme Inhib Med Chem 2023; 38:2159957. [PMID: 36728713 PMCID: PMC9897792 DOI: 10.1080/14756366.2022.2159957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To discover novel multifunctional agents for the treatment of Parkinson's disease, a series of 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives was designed, synthesized and evaluated. The results revealed that representative compound 3h possessed potent and selective MAO-B inhibitory activity (IC50 = 0.062 µM), and its inhibitory mode was competitive and reversible. Additionally, 3h also displayed excellent anti-oxidative effect (ORAC = 2.27 Trolox equivalent), significant metal chelating ability and appropriate BBB permeability. Moreover, 3h exhibited good neuroprotective effect and anti-neuroinflammtory ability. These results indicated that compound 3h was a promising candidate for further development against PD.
Collapse
Affiliation(s)
- Zhongcheng Cao
- School of Pharmacy, North Sichuan Medical College, Nanchong, China,CONTACT Zhongcheng Cao School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Xingyue Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Tianlong Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xianwu Fu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Fan Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, China,Jiang Zhu Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, 637000, China
| |
Collapse
|
4
|
Vasileva L, Gaynanova G, Valeeva F, Belyaev G, Zueva I, Bushmeleva K, Sibgatullina G, Samigullin D, Vyshtakalyuk A, Petrov K, Zakharova L, Sinyashin O. Mitochondria-Targeted Delivery Strategy of Dual-Loaded Liposomes for Alzheimer's Disease Therapy. Int J Mol Sci 2023; 24:10494. [PMID: 37445673 DOI: 10.3390/ijms241310494] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Liposomes modified with tetradecyltriphenylphosphonium bromide with dual loading of α-tocopherol and donepezil hydrochloride were successfully designed for intranasal administration. Physicochemical characteristics of cationic liposomes such as the hydrodynamic diameter, zeta potential, and polydispersity index were within the range from 105 to 115 nm, from +10 to +23 mV, and from 0.1 to 0.2, respectively. In vitro release curves of donepezil hydrochloride were analyzed using the Korsmeyer-Peppas, Higuchi, First-Order, and Zero-Order kinetic models. Nanocontainers modified with cationic surfactant statistically better penetrate into the mitochondria of rat motoneurons. Imaging of rat brain slices revealed the penetration of nanocarriers into the brain. Experiments on transgenic mice with an Alzheimer's disease model (APP/PS1) demonstrated that the intranasal administration of liposomes within 21 days resulted in enhanced learning abilities and a reduction in the formation rate of Aβ plaques in the entorhinal cortex and hippocampus of the brain.
Collapse
Affiliation(s)
- Leysan Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Farida Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Grigory Belyaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Irina Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Kseniya Bushmeleva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., 420111 Kazan, Russia
- Institute for Radio-Electronics and Telecommunications, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., 420111 Kazan, Russia
| | - Alexandra Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
5
|
Bortolami M, Pandolfi F, Tudino V, Messore A, Madia VN, De Vita D, Di Santo R, Costi R, Romeo I, Alcaro S, Colone M, Stringaro A, Espargaró A, Sabatè R, Scipione L. Design, Synthesis, and In Vitro, In Silico and In Cellulo Evaluation of New Pyrimidine and Pyridine Amide and Carbamate Derivatives as Multi-Functional Cholinesterase Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15060673. [PMID: 35745594 PMCID: PMC9227096 DOI: 10.3390/ph15060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer disease is an age-linked neurodegenerative disorder representing one of the greatest medical care challenges of our century. Several drugs are useful in ameliorating the symptoms, even if none could stop or reverse disease progression. The standard approach is represented by the cholinesterase inhibitors (ChEIs) that restore the levels of acetylcholine (ACh) by inhibiting the acetylcholinesterase (AChE). Still, their limited efficacy has prompted researchers to develop new ChEIs that could also reduce the oxidative stress by exhibiting antioxidant properties and by chelating the main metals involved in the disease. Recently, we developed some derivatives constituted by a 2-amino-pyrimidine or a 2-amino-pyridine moiety connected to various aromatic groups by a flexible amino-alkyl linker as new dual inhibitors of AChE and butyrylcholinesterase (BChE). Following our previous studies, in this work we explored the role of the flexible linker by replacing the amino group with an amide or a carbamic group. The most potent compounds showed higher selectivity against BChE in respect to AChE, proving also to possess a weak anti-aggregating activity toward Aβ42 and tau and to be able to chelate Cu2+ and Fe3+ ions. Molecular docking and molecular dynamic studies proposed possible binding modes with the enzymes. It is noteworthy that these compounds were predicted as BBB-permeable and showed low cytotoxicity on the human brain cell line.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Via Castro Laurenziano 7, 00185 Rome, Italy; (M.B.); (F.P.)
| | - Fabiana Pandolfi
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Via Castro Laurenziano 7, 00185 Rome, Italy; (M.B.); (F.P.)
| | - Valeria Tudino
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Antonella Messore
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Valentina Noemi Madia
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Roberto Di Santo
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Costi
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Isabella Romeo
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (S.A.); (L.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (A.S.)
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (A.S.)
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; (A.E.); (R.S.)
- Institute of Nanoscience and Nanotechnology (INUB), 08028 Barcelona, Spain
| | - Raimon Sabatè
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; (A.E.); (R.S.)
- Institute of Nanoscience and Nanotechnology (INUB), 08028 Barcelona, Spain
| | - Luigi Scipione
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Correspondence: (S.A.); (L.S.)
| |
Collapse
|
6
|
Da Silva O, Probst N, Landry C, Hanak AS, Warnault P, Coisne C, Calas AG, Gosselet F, Courageux C, Gastellier AJ, Trancart M, Baati R, Dehouck MP, Jean L, Nachon F, Renard PY, Dias J. A New Class of Bi- and Trifunctional Sugar Oximes as Antidotes against Organophosphorus Poisoning. J Med Chem 2022; 65:4649-4666. [PMID: 35255209 PMCID: PMC8958973 DOI: 10.1021/acs.jmedchem.1c01748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent events demonstrated that organophosphorus nerve agents are a serious threat for civilian and military populations. The current therapy includes a pyridinium aldoxime reactivator to restore the enzymatic activity of acetylcholinesterase located in the central nervous system and neuro-muscular junctions. One major drawback of these charged acetylcholinesterase reactivators is their poor ability to cross the blood-brain barrier. In this study, we propose to evaluate glucoconjugated oximes devoid of permanent charge as potential central nervous system reactivators. We determined their in vitro reactivation efficacy on inhibited human acetylcholinesterase, the crystal structure of two compounds in complex with the enzyme, their protective index on intoxicated mice, and their pharmacokinetics. We then evaluated their endothelial permeability coefficients with a human in vitro model. This study shed light on the structural restrains of new sugar oximes designed to reach the central nervous system through the glucose transporter located at the blood-brain barrier.
Collapse
Affiliation(s)
- Ophélie Da Silva
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| | - Nicolas Probst
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Christophe Landry
- Université d'Artois (UArtois), UR 2465, LBHE Laboratoire de la Barrière Hémato-Encéphalique, F-62307 Lens, France
| | - Anne-Sophie Hanak
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| | - Pierre Warnault
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Caroline Coisne
- Université d'Artois (UArtois), UR 2465, LBHE Laboratoire de la Barrière Hémato-Encéphalique, F-62307 Lens, France
| | - André-Guilhem Calas
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| | - Fabien Gosselet
- Université d'Artois (UArtois), UR 2465, LBHE Laboratoire de la Barrière Hémato-Encéphalique, F-62307 Lens, France
| | - Charlotte Courageux
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| | - Anne-Julie Gastellier
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| | - Marilène Trancart
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| | - Rachid Baati
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement, et la Santé: UMR CNRS 7515 ICPEES, Université de Strasbourg - École de Chimie Polymères et Matériaux, ECPM 25 rue Becquerel, 67087 Strasbourg cedex 2, France
| | - Marie-Pierre Dehouck
- Université d'Artois (UArtois), UR 2465, LBHE Laboratoire de la Barrière Hémato-Encéphalique, F-62307 Lens, France
| | - Ludovic Jean
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| | - Pierre-Yves Renard
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale Des Armées, F-91220 Brétigny-Sur-Orge, France
| |
Collapse
|
7
|
Hicke FJ, Puerta A, Dinić J, Pešić M, Padrón JM, López Ó, Fernández-Bolaños JG. Straightforward access to novel mitochondriotropics derived from 2-arylethanol as potent and selective antiproliferative agents. Eur J Med Chem 2022; 228:113980. [PMID: 34847410 DOI: 10.1016/j.ejmech.2021.113980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022]
Abstract
The necessity for developing novel cytostatic agents with improved activities and reduced side-effects to tackle cancer prompted us to investigate mitochondria-targeted compounds, an approach that is gaining attention for the selective transportation of cytotoxic agents. We envisioned the possibility of conjugating a phenethyl alcohol motif, decorated with a series of phenol-based substituents on the aryl moiety, with a triphenyl phosphonium scaffold (a mitochondria-directed vector), through a hydrocarbon chain of different lengths. Thus, such compounds that incorporate the phenethyl skeleton can be considered as masked phenolic compounds derived from relevant natural counterparts found in olive tree (e.g. tyrosol, hydroxytyrosol). Title compounds exhibited very strong in vitro antiproliferative activities against the panel of six human tumor cell lines tested, with GI50 values ranging from the nanomolar (0.026 ± 0.010 μM for 36) to the submicromolar range in most of the cases; this represents an improvement of up to 350-fold compared to classical chemotherapeutic agents, like 5-fluorouracil or cisplatin. Interestingly, decrease in the linker length led to an increase of GI50 values against non-tumor cells, thus allowing a remarkable improvement of selectivity (SI up to 269). The very promising antiproliferative activities prompted us to further investigate their behaviour against multidrug resistant cell lines (MDR). The results indicated a reduced sensitivity of the multidrug resistant cells to compounds, probably due to P-gp-mediated efflux of these antiproliferative agents. Interestingly, activities were completely restored to the same levels by co-administration of tariquidar, a well-known inhibitor of P-gp. Flow cytometry analysis on sensitive cell lines revealed a decrease in the percentage of cells in G1 phase accompanied by increase in S and G2/M phases. In addition, a significant increase in subG1 area, was observed. These results are compatible with the necrotic and apoptotic cell death detected in the Annexin V assay, and with the depolarization of the mitochondria membrane. Thus, the new mitochondriotropic agents reported herein can be considered as promising antiproliferative agents, endowed with remarkable potency and selectivity, including MDR cells, upon co-administration with a pump-efflux inhibitor.
Collapse
Affiliation(s)
- Francisco J Hicke
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO Box 1203, E-41071, Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206, La Laguna, Spain
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206, La Laguna, Spain.
| | - Óscar López
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO Box 1203, E-41071, Seville, Spain.
| | - José G Fernández-Bolaños
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO Box 1203, E-41071, Seville, Spain.
| |
Collapse
|
8
|
From virtual screening hits targeting a cryptic pocket in BACE-1 to a nontoxic brain permeable multitarget anti-Alzheimer lead with disease-modifying and cognition-enhancing effects. Eur J Med Chem 2021; 225:113779. [PMID: 34418785 DOI: 10.1016/j.ejmech.2021.113779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aβ42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.
Collapse
|
9
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
10
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Almyasheva NR, Ivanova ES, Smolyaninova SA, Pashchenko KP, Poddel'sky AI, Berberova NT. Catechol‐ and Phenol‐Containing Thio‐Schiff Bases: Synthesis, Electrochemical Properties and Biological Evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Daria A. Burmistrova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nailya R. Almyasheva
- Gause Institute of New Antibiotics 11/1 Bolshaya Pirogovskaya str. Moscow 119021 Russian Federation
| | - Ekaterina S. Ivanova
- Blokhin National Medical Research Center of Oncology 24 Kashirskoye Shosse Moscow 115478 Russian Federation
| | - Susanna A. Smolyaninova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Konstantin P. Pashchenko
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| | - Andrey I. Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina str. 603137 Nizhny Novgorod Russia
| | - Nadezhda T. Berberova
- Department of Chemistry Astrakhan State Technical University 16 Tatischeva str. Astrakhan 414056 Russia
| |
Collapse
|