1
|
Zhang W, Song Q, Bi X, Cui W, Fang C, Gao J, Li J, Wang X, Qu K, Qin X, An X, Zhang C, Zhang X, Yan F, Wu G. Preparation of Pueraria lobata Root-Derived Exosome-Like Nanovesicles and Evaluation of Their Effects on Mitigating Alcoholic Intoxication and Promoting Alcohol Metabolism in Mice. Int J Nanomedicine 2024; 19:4907-4921. [PMID: 38828197 PMCID: PMC11141763 DOI: 10.2147/ijn.s462602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.
Collapse
Affiliation(s)
- Wenjin Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Qiang Song
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xiaofei Bi
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Wei Cui
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Chengmei Fang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Jianya Gao
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Jinan Li
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xiang Wang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Kai Qu
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xian Qin
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xuan An
- Department of Hepatology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Cheng Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Xianxiang Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People’s Hospital, Chengdu, People’s Republic of China
| | - Guicheng Wu
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- Department of Hepatology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
DNMT1/PKR double knockdowned HepG2 (HepG2-DP) cells have high hepatic function and differentiation ability. Sci Rep 2022; 12:21173. [PMID: 36476676 PMCID: PMC9729623 DOI: 10.1038/s41598-022-25777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
HepG2 cells are widely used as a human hepatocytes model, but their functions, including drug metabolism, are inferior to primary hepatocytes. We previously reported that the hepatic gene expressions in HepG2 cells were upregulated by treatment with zebularine, which is an inhibitor of DNA methylation, through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). In this study, we established a new HepG2 cell subline, HepG2-DP cells, by stable double knockdown of DNMT1 and PKR and evaluated its function. Albumin production, expression of CYP1A2 genes, and accumulation of lipid droplets were increased in HepG2-DP cells compared with the original HepG2 cells. Comprehensive gene expression analysis of transcription factors revealed that the expression of important genes for hepatic function, such as HNF1β, HNF4α, ONECUT1, FOXA1, FOXA2, FOXA3, and various nuclear receptors, was upregulated in HepG2-DP cells. These results indicate that the newly established HepG2-DP cells are a highly functional hepatocyte cell line. In addition, we investigated whether HepG2-DP cells are able to mature by differentiation induction, since HepG2 cells are derived from hepatoblastoma. The gene expression of major CYPs and Phase II, III drug-metabolizing enzyme genes was significantly increased in HepG2-DP cells cultured in differentiation induction medium. These results suggest that HepG2-DP cells can be further matured by the induction of differentiation and could therefore be applied to studies of drug metabolism and pharmacokinetics.
Collapse
|
3
|
Cui Y, Ning M, Chen H, Zeng X, Yue Y, Yuan Y, Yue T. Microbial diversity associated with Tibetan kefir grains and its protective effects against ethanol-induced oxidative stress in HepG2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Electrolyzed-Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects. Int J Mol Sci 2022; 23:ijms232314750. [PMID: 36499079 PMCID: PMC9738607 DOI: 10.3390/ijms232314750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Numerous benefits have been attributed to alkaline-electrolyzed-reduced water (ERW). Sometimes these claims are associated with easily debunked concepts. The observed benefits have been conjectured to be due to the intrinsic properties of ERW (e.g., negative oxidation-reduction potential (ORP), alkaline pH, H2 gas), as well enigmatic characteristics (e.g., altered water structure, microclusters, free electrons, active hydrogen, mineral hydrides). The associated pseudoscientific marketing has contributed to the reluctance of mainstream science to accept ERW as having biological effects. Finally, through many in vitro and in vivo studies, each one of these propositions was examined and refuted one-by-one until it was conclusively demonstrated that H2 was the exclusive agent responsible for both the negative ORP and the observed therapeutic effects of ERW. This article briefly apprised the history of ERW and comprehensively reviewed the sequential research demonstrating the importance of H2. We illustrated that the effects of ERW could be readily explained by the known biological effects of H2 and by utilizing conventional chemistry without requiring any metaphysical conjecture (e.g., microclustering, free electrons, etc.) or reliance on implausible notions (e.g., alkaline water neutralizes acidic waste). The H2 concentration of ERW should be measured to ensure it is comparable to those used in clinical studies.
Collapse
|
5
|
Mizuno K, Watanabe K, Yamano E, Ebisu K, Tajima K, Nojima J, Ohsaki Y, Kabayama S, Watanabe Y. Antioxidant effects of continuous intake of electrolyzed hydrogen water in healthy adults. Heliyon 2022; 8:e11853. [DOI: 10.1016/j.heliyon.2022.e11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/28/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
|
6
|
Lemaitre M, Chevalier B, Jannin A, Bourry J, Espiard S, Vantyghem MC. Multiple symmetric and multiple familial lipomatosis. Presse Med 2021; 50:104077. [PMID: 34687914 DOI: 10.1016/j.lpm.2021.104077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
Lipomas are the most common soft tissue tumors and are malignant in only 1% of cases. Lipomatosis is defined as the presence of multiple benign lipomas on the body, without lipoatrophy. Their impact on quality of life is significant. Different entities have been described such as symmetrical multiple lipomatosis (MSL), also called Madelung's disease and familial multiple lipomatosis (FML). MSL occurs preferentially in men (but also women) who are alcohol abuser. There are different subtypes of the disease, the most classic of which affects the upper body and the nuchal region with a buffalo hump appearance. A metabolic component with obesity is frequent. In contrast to Dercum's disease, there is no pain. SAOS, complications of the metabolic syndrome and of alcohol abuse including cancers, may be associated and should be screened. FML has been little described in the literature since Brodie's first report in 1846. FML occurs preferentially in the third decade but equally in women and men. Its autosomal dominant component is classically accepted with variable penetrance within the same family. Association with naevi, angiomas, polyneuropathies and with gastrointestinal comorbidities has been reported. Interestingly, and in contrast with most lipodystrophy disorders, the patients show an insulin sensitivity profile. A better understanding of the underlying pathophysiological mechanisms would open up avenues on therapeutic research, since treatments are only symptomatic to date.
Collapse
Affiliation(s)
- Madleen Lemaitre
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France.
| | - Benjamin Chevalier
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France
| | - Arnaud Jannin
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France
| | - Julien Bourry
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France
| | - Stéphanie Espiard
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000 Lille, France; Inserm U1190, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France
| | - Marie-Christine Vantyghem
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000 Lille, France; Inserm U1190, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France.
| |
Collapse
|