1
|
Guers JJ, Heffernan KS, Campbell SC. Getting to the Heart of the Matter: Exploring the Intersection of Cardiovascular Disease, Sex and Race and How Exercise, and Gut Microbiota Influence these Relationships. Rev Cardiovasc Med 2025; 26:26430. [PMID: 40026503 PMCID: PMC11868917 DOI: 10.31083/rcm26430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with physical inactivity being a known contributor to the global rates of CVD incidence. CVD incidence, however, is not uniform with recognized sex differences as well and racial and ethnic differences. Furthermore, gut microbiota have been associated with CVD, sex, and race/ethnicity. Researchers have begun to examine the interplay of these complicated yet interrelated topics. This review will present evidence that CVD (risk and development), and gut microbiota are distinct between the sexes and racial/ethnic groups, which appear to be influenced by acculturation, discrimination, stress, and lifestyle factors like exercise. Furthermore, this review will address the beneficial impacts of exercise on the cardiovascular system and will provide recommendations for future research in the field.
Collapse
Affiliation(s)
- John J. Guers
- Department of Health Sciences and Nursing, Rider University, Lawrenceville, NJ 08648, USA
| | - Kevin S. Heffernan
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| | - Sara C. Campbell
- Department of Kinesiology and Health, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Centers for Human Nutrition, Exercise, and Metabolism, Nutrition, Microbiome, and Health, and Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Chen Q, Zhou J, Li N, Liu L, Li Y, Long W, Luo Z, Liu Y, Xiao S. Factors influencing changes in the quality of life of the Hainan migratory population with hypertension: a survey of the Chengmai mangrove bay community. BMC Public Health 2025; 25:49. [PMID: 39762810 PMCID: PMC11705895 DOI: 10.1186/s12889-025-21281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hainan is a tropical island in China with a large migratory population. Study have reported that the blood pressure of Hainan elderly hypertensive migratory population decreased significantly, which may be related to the improvement of environment and quality of life (QoL). Understanding the changes of QoL of these people before and after coming to Hainan and its influencing factors can provide a basis for the prevention and control of hypertension. METHODS A cross-sectional study of elderly hypertensive migratory population were conducted in Chengmai Mangrove Bay community of Hainan from December 2021 to January 2022. Convenience sampling was used to recruit elderly hypertensive migratory individuals reside stay of longer than one month. After obtaining informed consent, we investigated the demographic characteristics of the participants and evaluated their QoL with the SF-36 twice; one round of the SF-36 was about their hometown, and the other round was about living in Hainan for 1 month. The Cronbach's α coefficient and KMO value of SF-36 were both greater than 0.8, indicating good reliability and validity. The difference in blood pressure between that observed in Hainan and that observed in their hometowns was used to determine whether the Body Pain change in the subjects decreased or did not decrease after migrating to Hainan. Univariate analysis was performed via paired t tests and Kendall's tau-b tests, and multiple linear regression analysis and logistic regression analysis were used to analyse the factors influencing the QoL of the participants. RESULTS A total of 305 hypertensive migratory individuals participated in this study. Among them, there were 148 males (48.52%) and 157 females (51.48%), with a mean age of 68.61 ± 9.39 years. The postmigration scores for the 8 subscales of QoL, the global score, the Physical Component Score, and the Mental Component Score were all higher than the scores for their hometowns (P < 0.05). Factors such as gender (r = 0.139, P < 0.05), age (r = 0.209, P < 0.05), and level of education (r=-0.133, P < 0.05) were associated with changes in the QoL of the participants. The conditions of green and water spaces in their hometown, sleep habits in their hometown and ventilation habits in their hometown were the major factors influencing the subjects' QoL in their hometown (P < 0.05). The factors that influenced the improvement in the subjects' QoL in Hainan included hypertension classification (OR = 2.336, 95% CI: 1.125 ∼ 4.853, P = 0.023) and BMI (OR = 6.402, 95% CI: 1.009 ∼ 40.624, P = 0.049). CONCLUSION The QoL of hypertensive migratory population in Hainan improved with respect to individual health, physiological function, psychological function and social function. The lower the hypertension classification and BMI are, the greater the improvement in the QoL of hypertensive migratory population.
Collapse
Affiliation(s)
- Qiaochun Chen
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Jing Zhou
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Na Li
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Luming Liu
- Hainan Sanlin Travel Development Co. Ltd., Chengmai R&F Mangrove Bay Hospital, Chengmai, 571900, People's Republic of China
| | - Yixuan Li
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Wenfang Long
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Ziyue Luo
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Yunru Liu
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Sha Xiao
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
3
|
Wang R, Chen Y, Han J, Ye H, Yang H, Li Q, He Y, Ma B, Zhang J, Ge Y, Wang Z, Sun B, Liu H, Cheng L, Wang Z, Lin G. Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure. Nat Commun 2024; 15:10690. [PMID: 39681560 DOI: 10.1038/s41467-024-55295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction, multiple organ failures, and high mortality. Despite decades of research, established ALF has minimal therapeutic options. Here, we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%, even administered 24 hours after ALF establishment. We identify adiponectin receptor 2 (AdipoR2) as a selective target of SCM-198, with the AdipoR2 R335 residue being critical for the binding and signaling of SCM-198-AdipoR2 and AdipoR2 Y274 residue serving as a molecular switch for Ca2+ influx. SCM-198-AdipoR2 binding causes Ca2+ influx and elevates the phosphorylation levels of CaMKII and NOS3 in the AdipoR2-CaM-CaMKII-NOS3 complex identified in this study, rapidly inducing nitric oxide production for liver protection in murine ALF. SCM-198 also protects human ESC-derived liver organoids from APAP/TAA injuries. Thus, selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 is a rapid-acting therapeutic strategy for advanced ALF.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Youwei Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huikang Ye
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huiran Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qianyan Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yizhen He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Bo Sun
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Huahua Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 PMCID: PMC11639989 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y. Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | | |
Collapse
|
5
|
Li W, Chen L, Mohammad Sajadi S, Baghaei S, Salahshour S. The impact of acute and chronic aerobic and resistance exercise on stem cell mobilization: A review of effects in healthy and diseased individuals across different age groups. Regen Ther 2024; 27:464-481. [PMID: 38745840 PMCID: PMC11091462 DOI: 10.1016/j.reth.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Stem cells (SCs) play a crucial role in tissue repair, regeneration, and maintaining physiological homeostasis. Exercise mobilizes and enhances the function of SCs. This review examines the effects of acute and chronic aerobic and resistance exercise on the population of SCs in healthy and diseased individuals across different age groups. Both acute intense exercise and moderate regular training increase circulating precursor cells CD34+ and, in particular, the subset of angiogenic progenitor cells (APCs) CD34+/KDR+. Conversely, chronic exercise training has conflicting effects on circulating CD34+ cells and their function, which are likely influenced by exercise dosage, the health status of the participants, and the methodologies employed. While acute activity promotes transient mobilization, regular exercise often leads to an increased number of progenitors and more sustainable functionality. Short interventions lasting 10-21 days mobilize CD34+/KDR + APCs in sedentary elderly individuals, indicating the inherent capacity of the body to rapidly activate tissue-reparative SCs during activity. However, further investigation is needed to determine the optimal exercise regimens for enhancing SC mobilization, elucidating the underlying mechanisms, and establishing functional benefits for health and disease prevention. Current evidence supports the integration of intense exercise with chronic training in exercise protocols aimed at activating the inherent regenerative potential through SC mobilization. The physical activity promotes endogenous repair processes, and research on exercise protocols that effectively mobilize SCs can provide innovative guidelines designed for lifelong tissue regeneration. An artificial neural network (ANN) was developed to estimate the effects of modifying elderly individuals and implementing chronic resistance exercise on stem cell mobilization and its impact on individuals and exercise. The network's predictions were validated using linear regression and found to be acceptable compared to experimental results.
Collapse
Affiliation(s)
- Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Lingzhen Chen
- Department of Sports and Arts, Zhejiang Gongshang University HangZhou College of Commerce, No. 66, South Huancheng Road, Tonglu, Hangzhou, China
| | | | - Sh. Baghaei
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Iran
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
6
|
Deng C, Aldali F, Luo H, Chen H. Regenerative rehabilitation: a novel multidisciplinary field to maximize patient outcomes. MEDICAL REVIEW (2021) 2024; 4:413-434. [PMID: 39444794 PMCID: PMC11495474 DOI: 10.1515/mr-2023-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/15/2024] [Indexed: 10/25/2024]
Abstract
Regenerative rehabilitation is a novel and rapidly developing multidisciplinary field that converges regenerative medicine and rehabilitation science, aiming to maximize the functions of disabled patients and their independence. While regenerative medicine provides state-of-the-art technologies that shed light on difficult-to-treated diseases, regenerative rehabilitation offers rehabilitation interventions to improve the positive effects of regenerative medicine. However, regenerative scientists and rehabilitation professionals focus on their aspects without enough exposure to advances in each other's field. This disconnect has impeded the development of this field. Therefore, this review first introduces cutting-edge technologies such as stem cell technology, tissue engineering, biomaterial science, gene editing, and computer sciences that promote the progress pace of regenerative medicine, followed by a summary of preclinical studies and examples of clinical investigations that integrate rehabilitative methodologies into regenerative medicine. Then, challenges in this field are discussed, and possible solutions are provided for future directions. We aim to provide a platform for regenerative and rehabilitative professionals and clinicians in other areas to better understand the progress of regenerative rehabilitation, thus contributing to the clinical translation and management of innovative and reliable therapies.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongmei Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhu M, Li X, Liu B, Guo J, Xiao Y, Liu Z, Duan M, Liu Y. Effects of altitude and exercise intensity on cardiac function in rats. Exp Physiol 2024. [PMID: 39325671 DOI: 10.1113/ep092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
High-altitude exercise affects cardiac function. This study investigated how altitude and exercise intensity interacted to affect cardiac function of Sprague-Dawley rats. Four altitudes (410, 3600, 4600 and 5600 m) and three exercise intensities (non-exercise (N), low-intensity exercise (L) and high-intensity exercise (H)) were tested combinatorically. After 4 weeks of exercise, cardiac function and specific markers of myocardial injury were assessed. With regard to cardiac function, (a) at the same intensity, stroke volume and left ventricular end-diastolic volume were higher in the 3600 m group but lower in the 4600 and 5600 m groups; and (b) the heart rate increased with altitude and intensity. The biochemical results showed that the levels of creatine kinase, myoglobin and cardiac troponin I generally increased with increasing altitude and exercise intensity, significantly for creatine kinase and myoglobin at 4600 and 5600 m. For pathological results, (a) in the non-exercise group, pathological damage was observed only in the 5600 N group; and (b) in the exercised state, varying degrees of injury were noted, except for the 410 and 3600 L groups. There may be a turning point at 3600 m where the injury to the heart increases. Myocardial injury markers exhibited abnormalities before cardiac dysfunction. Detecting these markers is crucial to provide warnings for the individual from cardiac disease during high-altitude exercise.
Collapse
Affiliation(s)
- Minxia Zhu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, P. R. China
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Xiaofeng Li
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Bing Liu
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Jing Guo
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, P. R. China
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Yuanyuan Xiao
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Zhiyao Liu
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Mengru Duan
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Yi Liu
- Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
8
|
Wan K, Jin Y, Fan R, Xu Q, Li X, Yan H, Wang R. Exploring molecular mechanisms of exercise on metabolic syndrome: a bibliometric and visualization study using CiteSpace. Front Endocrinol (Lausanne) 2024; 15:1408466. [PMID: 39290329 PMCID: PMC11405195 DOI: 10.3389/fendo.2024.1408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To investigate the molecular mechanisms through which exercise influences metabolic syndrome (MS) and identify key research trends and collaborative networks using bibliometric and visualization techniques. Methods We conducted a systematic literature search using the Web of Science Core Collection for articles published from 2014 to 2023. Using CiteSpace, we performed a bibliometric analysis of 562 eligible papers, generating visual knowledge maps to identify prevailing patterns, popular subjects, and emerging trends in the literature. Results The study reveals that exercise mitigates MS by reversing high-fat diet-induced abdominal obesity, reducing lipid accumulation and inflammation, enhancing insulin sensitivity, and improving cardiovascular function. Key molecular pathways include PPAR-γ/CPT-1/MCAD signaling, AMPK activation, and nitric oxide production. The USA leads in research output, with significant contributions from American institutions. Collaboration among researchers is limited, highlighting the need for more extensive and high-quality research initiatives. Conclusions Regular, moderate-to-high-intensity exercise is crucial for managing MS. Exercise activates beneficial molecular pathways, improving metabolic health and cardiovascular function. Future research should focus on expanding collaborations and exploring novel molecular targets to enhance the therapeutic potential of exercise in metabolic syndrome management.
Collapse
Affiliation(s)
- Kang Wan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Physical Education College, Henan Sport University, Zhengzhou, China
| | - Yue Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Ruobing Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qizi Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoshi Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Sundin A, Ionescu SI, Balkan W, Hare JM. Mesenchymal STRO-1/STRO-3 + precursor cells for the treatment of chronic heart failure with reduced ejection fraction. Future Cardiol 2023; 19:567-581. [PMID: 37933628 PMCID: PMC10652293 DOI: 10.2217/fca-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
The heart is susceptible to proinflammatory and profibrotic responses after myocardial injury, leading to further worsening of cardiac dysfunction. Important developments in the management of heart failure with reduced ejection fraction have reduced morbidity and mortality; however, these therapies focus on optimizing cardiac function through hemodynamic and neurohormonal pathways and not by repairing the underlying cardiac injury. The potential of cell-based therapy to reverse cardiac injury has received substantial attention. Herein are examined the phase II and III studies of bone marrow-derived mesenchymal STRO-1+ or STRO-1/STRO-3+ precursor cells in patients with ischemic and nonischemic heart failure with reduced ejection fraction, addressing the safety and efficacy of cell-based therapy throughout multiple clinical trials, the optimal dose and the steps toward revolutionizing the treatment of heart failure.
Collapse
Affiliation(s)
- Andrew Sundin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Simona I Ionescu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Scalise M, Marino F, Salerno L, Amato N, Quercia C, Siracusa C, Filardo A, Chiefalo A, Pagano L, Misdea G, Salerno N, De Angelis A, Urbanek K, Viglietto G, Torella D, Cianflone E. Adult Multipotent Cardiac Progenitor-Derived Spheroids: A Reproducible Model of In Vitro Cardiomyocyte Commitment and Specification. Cells 2023; 12:1793. [PMID: 37443827 PMCID: PMC10341123 DOI: 10.3390/cells12131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Three-dimensional cell culture systems hold great promise for bridging the gap between in vitro cell-based model systems and small animal models to study tissue biology and disease. Among 3D cell culture systems, stem-cell-derived spheroids have attracted significant interest as a strategy to better mimic in vivo conditions. Cardiac stem cell/progenitor (CSC)-derived spheroids (CSs) provide a relevant platform for cardiac regeneration. METHODS We compared three different cell culture scaffold-free systems, (i) ultra-low attachment plates, (ii) hanging drops (both requiring a 2D/3D switch), and (iii) agarose micro-molds (entirely 3D), for CSC-derived CS formation and their cardiomyocyte commitment in vitro. RESULTS The switch from a 2D to a 3D culture microenvironment per se guides cell plasticity and myogenic differentiation within CS and is necessary for robust cardiomyocyte differentiation. On the contrary, 2D monolayer CSC cultures show a significant reduced cardiomyocyte differentiation potential compared to 3D CS culture. Forced aggregation into spheroids using hanging drop improves CS myogenic differentiation when compared to ultra-low attachment plates. Performing CS formation and myogenic differentiation exclusively in 3D culture using agarose micro-molds maximizes the cardiomyocyte yield. CONCLUSIONS A 3D culture system instructs CS myogenic differentiation, thus representing a valid model that can be used to study adult cardiac regenerative biology.
Collapse
Affiliation(s)
- Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nunzia Amato
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Claudia Quercia
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Loredana Pagano
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Giuseppe Misdea
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121 Naples, Italy;
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| |
Collapse
|
11
|
Xi Y, Li Y, Ren W, Bo W, Ma Y, Pan S, Gong DAW, Tian Z. ELABELA-APJ-Akt/YAP Signaling Axis: A Novel Mechanism of Aerobic Exercise in Cardioprotection of Myocardial Infarction Rats. Med Sci Sports Exerc 2023; 55:1172-1183. [PMID: 36878020 DOI: 10.1249/mss.0000000000003143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE The aim of this study was to investigate the function and mechanisms of ELABELA (ELA) in the aerobic exercise-induced antiapoptosis and angiogenesis of ischemic heart. METHODS The myocardial infarction (MI) model of Sprague-Dawley rat was established by the ligation of the left anterior descending coronary artery. MI rats underwent 5 wk of Fc-ELA-21 subcutaneous injection and aerobic exercise training using a motorized rodent treadmill. Heart function was evaluated by hemodynamic measures. Cardiac pathological remodeling was evaluated by Masson's staining and the calculation of left ventricular weight index. Cell proliferation, angiogenesis, and Yes-associated protein (YAP) translocation were observed by immunofluorescence staining. Cell apoptosis was analyzed by TUNEL. Cell culture and treatment were used to elucidate the molecular mechanism of ELA. Protein expression was detected by Western blotting. Angiogenesis was observed by tubule formation test. One-way or two-way ANOVA and Student's t -test were used for statistical analysis. RESULTS Aerobic exercise stimulated the endogenous ELA expression. Exercise and Fc-ELA-21 intervention significantly activated APJ-Akt-mTOR-P70S6K signaling pathway, kept more cardiomyocytes alive, and increased angiogenesis, so as to inhibit the cardiac pathological remodeling and improved the heart function of MI rats. Fc-ELA-32 also had the cellular and functional cardioprotective activities in vivo . In vitro , ELA-14 peptide regulated the phosphorylation and nucleoplasmic translocation of YAP and activated the APJ-Akt signaling pathway so as to increase the proliferation of H9C2 cells. Moreover, the antiapoptosis and the tubule formation of HUVECs were also enhanced by ELA-14, whereas the inhibition of Akt activity weakened such effects. CONCLUSIONS ELA is a potential therapeutic member that plays a key role through APJ-Akt/YAP signaling axis in aerobic exercise-induced cardioprotection of MI rats.
Collapse
Affiliation(s)
| | - Yongxia Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Wujing Ren
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Wenyan Bo
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Yixuan Ma
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Shou Pan
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - DA-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| |
Collapse
|
12
|
Molinaro C, Scalise M, Leo I, Salerno L, Sabatino J, Salerno N, De Rosa S, Torella D, Cianflone E, Marino F. Polarizing Macrophage Functional Phenotype to Foster Cardiac Regeneration. Int J Mol Sci 2023; 24:10747. [PMID: 37445929 DOI: 10.3390/ijms241310747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is an increasing interest in understanding the connection between the immune and cardiovascular systems, which are highly integrated and communicate through finely regulated cross-talking mechanisms. Recent evidence has demonstrated that the immune system does indeed have a key role in the response to cardiac injury and in cardiac regeneration. Among the immune cells, macrophages appear to have a prominent role in this context, with different subtypes described so far that each have a specific influence on cardiac remodeling and repair. Similarly, there are significant differences in how the innate and adaptive immune systems affect the response to cardiac damage. Understanding all these mechanisms may have relevant clinical implications. Several studies have already demonstrated that stem cell-based therapies support myocardial repair. However, the exact role that cardiac macrophages and their modulation may have in this setting is still unclear. The current need to decipher the dual role of immunity in boosting both heart injury and repair is due, at least for a significant part, to unresolved questions related to the complexity of cardiac macrophage phenotypes. The aim of this review is to provide an overview on the role of the immune system, and of macrophages in particular, in the response to cardiac injury and to outline, through the modulation of the immune response, potential novel therapeutic strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Drapkina OM, Skripnikova IA, Yaralieva EK, Myasnikov RP. Body composition in patients with heart failure. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2023. [DOI: 10.15829/1728-8800-2022-3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The redistribution of body composition components in heart failure (CHF) is an urgent and poorly understood issue. Despite the significant impact of a decrease in muscle mass, redistribution of fat mass on the course and prognosis of HF, body composition is rarely taken into account in the treatment of this disease. In this regard, the purpose of this review was to systematize the available data and draw the attention of clinicians to this problem. The data presented in the review make it possible to consider the components of body composition as controllable factors, the normalization of which improves the prognosis in patients with HF. The study of pathophysiological mechanisms for the development of body composition anomalies in HF will make it possible to search for new therapeutic targets. Assessment of body composition will make it possible to develop an individual strategy for the treatment of HF, including a set of non-drug measures.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - I. A. Skripnikova
- National Medical Research Center for Therapy and Preventive Medicine
| | - E. K. Yaralieva
- National Medical Research Center for Therapy and Preventive Medicine
| | - R. P. Myasnikov
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
14
|
Marino F, Salerno N, Scalise M, Salerno L, Torella A, Molinaro C, Chiefalo A, Filardo A, Siracusa C, Panuccio G, Ferravante C, Giurato G, Rizzo F, Torella M, Donniacuo M, De Angelis A, Viglietto G, Urbanek K, Weisz A, Torella D, Cianflone E. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. Int J Mol Sci 2023; 24:ijms24021132. [PMID: 36674648 PMCID: PMC9860590 DOI: 10.3390/ijms24021132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The main cause of morbidity and mortality in diabetes mellitus (DM) is cardiovascular complications. Diabetic cardiomyopathy (DCM) remains incompletely understood. Animal models have been crucial in exploring DCM pathophysiology while identifying potential therapeutic targets. Streptozotocin (STZ) has been widely used to produce experimental models of both type 1 and type 2 DM (T1DM and T2DM). Here, we compared these two models for their effects on cardiac structure, function and transcriptome. Different doses of STZ and diet chows were used to generate T1DM and T2DM in C57BL/6J mice. Normal euglycemic and nonobese sex- and age-matched mice served as controls (CTRL). Immunohistochemistry, RT-PCR and RNA-seq were employed to compare hearts from the three animal groups. STZ-induced T1DM and T2DM affected left ventricular function and myocardial performance differently. T1DM displayed exaggerated apoptotic cardiomyocyte (CM) death and reactive hypertrophy and fibrosis, along with increased cardiac oxidative stress, CM DNA damage and senescence, when compared to T2DM in mice. T1DM and T2DM affected the whole cardiac transcriptome differently. In conclusion, the STZ-induced T1DM and T2DM mouse models showed significant differences in cardiac remodeling, function and the whole transcriptome. These differences could be of key relevance when choosing an animal model to study specific features of DCM.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Carlo Ferravante
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Michele Torella
- Department of Translational Medical Science, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121 Naples, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- Correspondence: (D.T.); (E.C.); Tel.: +39-0961369-7564 (D.T.); +39-0961369-4185 (E.C.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
- Correspondence: (D.T.); (E.C.); Tel.: +39-0961369-7564 (D.T.); +39-0961369-4185 (E.C.)
| |
Collapse
|
15
|
da Silva Filho PM, Paz IA, Nascimento NRFD, Abreu DS, Lopes LGDF, Sousa EHS, Longhinotti E. Nitroprusside─Expanding the Potential Use of an Old Drug Using Nanoparticles. Mol Pharm 2023; 20:6-22. [PMID: 36350781 DOI: 10.1021/acs.molpharmaceut.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For more than 70 years, sodium nitroprusside (SNP) has been used to treat severe hypertension in hospital emergency settings. During this time, a few other clinical uses have also emerged such as in the treatment of acute heart failure as well as improving mitral incompetence and in the intra- and perioperative management during heart surgery. This drug functions by releasing nitric oxide (NO), which modulates several biological processes with many potential therapeutic applications. However, this small molecule has a short lifetime, and it has been administered through the use of NO donor molecules such as SNP. On the other hand, SNP also has some setbacks such as the release of cyanide ions, high water solubility, and very fast NO release kinetics. Currently, there are many drug delivery strategies that can be applied to overcome many of these limitations, providing novel opportunities for the use of old drugs, including SNP. This Perspective describes some nitroprusside properties and highlights new potential therapeutic uses arising from the use of drug delivery systems, mainly silica-based nanoparticles. There is a series of great opportunities to further explore SNP in many medical issues as reviewed, which deserves a closer look by the scientific community.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Laboratório de Métodos de Análises e Modificação de Materiais (LABMA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil.,Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Iury Araújo Paz
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, 60714-110, Fortaleza, Ceará, Brazil
| | | | - Dieric S Abreu
- Laboratory of Materials & Devices (Lab MaDe), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Elisane Longhinotti
- Laboratório de Métodos de Análises e Modificação de Materiais (LABMA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil.,Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| |
Collapse
|
16
|
Salerno N, Marino F, Scalise M, Salerno L, Molinaro C, Filardo A, Chiefalo A, Panuccio G, De Angelis A, Urbanek K, Torella D, Cianflone E. Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice. Mech Ageing Dev 2022; 208:111740. [PMID: 36150603 DOI: 10.1016/j.mad.2022.111740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are predominantly an aging disease. Important sex-specific differences exist and the mechanism(s) by which this sex-by-age interaction influences CVD development and progression remains elusive. Accordingly, it is still unknown whether cell senescence, a main feature of cardiac male aging, is a significant feature also of the female aged mouse heart and whether senolytics, senescence-clearing compounds, promote myocardial repair and regeneration after myocardial infarction (MI) in aged female mice. To this aim, the combination of two senolytics, dasatinib and quercetin (D+Q) or just their vehicle was administered to 22-24 months old C57BL/6 female mice after MI. D+Q improved global left ventricle function and myocardial performance after MI whereby female cardiac aging is characterized by accumulation of cardiac senescent cells that are further increased by MI. Despite their terminal differentiation nature, also cardiomyocytes acquire a senescent phenotype with age in females. D+Q removed senescent cardiac non-myocyte and myocyte cells ameliorating cardiac remodeling and regeneration. Senolytics removed aged dysfunctional cardiac stem/progenitor cells (CSCs), relieving healthy CSCs with normal proliferative and cardiomyogenic differentiation potential. In conclusions, cardiac senescent cells accumulate in the aged female hearts. Removing senescent cells is a key therapeutic target for efficient repair of the aged female heart.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
| |
Collapse
|
17
|
Bonavida V, Ghassemi K, Ung G, Inouye K, Thankam FG, Agrawal DK. Novel Approaches to Program Cells to Differentiate into Cardiomyocytes in Myocardial Regeneration. Rev Cardiovasc Med 2022; 23:392. [PMID: 39076655 PMCID: PMC11270456 DOI: 10.31083/j.rcm2312392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/31/2024] Open
Abstract
With heart failure (HF) being one of the leading causes of hospitalization and death worldwide, multiple stem cell therapies have been attempted to accelerate the regeneration of the infarct zone. Versatile strategies have emerged to establish the cell candidates of cardiomyocyte lineage for regenerative cardiology. This article illustrates critical insights into the emerging technologies, current approaches, and translational promises on the programming of diverse cell types for cardiac regeneration.
Collapse
Affiliation(s)
- Victor Bonavida
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kaitlyn Ghassemi
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Gwendolyn Ung
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Keiko Inouye
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
18
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
19
|
Salerno N, Salerno L, Marino F, Scalise M, Chiefalo A, Panuccio G, De Angelis A, Cianflone E, Urbanek K, Torella D. Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine 2022; 50:101530. [PMID: 35799845 PMCID: PMC9253597 DOI: 10.1016/j.eclinm.2022.101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Heart failure secondary to cardiomyocyte loss and/or dysfunction is the number one killer worldwide. The field of myocardial regeneration with its far-reaching primary goal of cardiac remuscularization and its hard-to-accomplish translation from bench to bedside, has been filled with ups and downs, steps forward and steps backward, controversies galore and, unfortunately, scientific scandals. Despite the present morass in which cardiac remuscularization is stuck in, the search for clinically effective regenerative approaches remains keenly active. Starting with a concise overview of the still highly debated regenerative capacity of the adult mammalian heart, we focus on the main interventions, that have reached or are close to clinical use, critically discussing key findings, successes, and failures. Finally, some promising and innovative approaches for myocardial repair/regeneration still at the pre-clinical stage are discussed to offer a holistic view on the future of myocardial repair/regeneration for the prevention/management of heart failure in the clinical scenario. FUNDING This research was funded by Grants from the Ministry of University and Research PRIN2015 2015ZTT5KB_004; PRIN2017NKB2N4_005; PON-AIM - 1829805-2.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80125, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Corresponding author.
| |
Collapse
|
20
|
Adams JA, Lopez JR, Nadkarni V, Zolkipli‐Cunningham Z, Ischiropoulos H, Sackner MA. The effects of a motorized passive simulated jogging device on descent of the arterial pulse waveform dicrotic notch: A single arm placebo-controlled cross-over trial. Physiol Rep 2022; 10:e15418. [PMID: 35924333 PMCID: PMC9350470 DOI: 10.14814/phy2.15418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2023] Open
Abstract
Whole Body Periodic Acceleration (WBPA, pGz), is a bed that moves the body headward to forward, adds pulses to the circulation inducing descent of the dicrotic notch (DN) on the pulse waveform with an increase in a/b ratio (a = the height of the pulse waveform and b = the height of the secondary wave). Since the WBPA is large, heavy, and non-portable, we engineered a portable device (Jogging Device, JD). JD simulates passive jogging and introduces pulsations to the circulation. We hypothesized that JD would increase the a/b ratio during and after its use. In Study A, a single-arm placebo-controlled cross-over trial was conducted in24 adults (53.8 ± 14.4 years) using JD or control (CONT) for 30 min. Blood pressure (BPs and BPd) and photoplethysmograph pulse (a/b) were measured at baseline (BL), during 30 min of JD or CONT, and 5 and 60 min after. In Study B (n = 20, 52.2 ± 7 years), a single-arm observational trial of 7 consecutive days of JD on BP and a/b, measured at BL, and after 7 days of JD and 48 and 72 hr after its discontinuation. In Study A, BPs, and BPd decreased during JD by 13% and 16%, respectively, while in CONT both increased by 2% and 2.5%, respectively. The a/b increased by 2-fold and remained greater than 2-fold at all-time points, with no change in a/b during CONT. In Study B, BPs and BPd decreased by 9% and remained below BL, at 72 hr after discontinuation of JD. DN descent also occurred after 7 days of JD with a/b increase of 80% and remained elevated by 60% for at least 72 h. JD improves acute and longer-term vascular hemodynamics with an increase in a/b, consistent with increased effects of nitric oxide (NO). JD may have significant clinical and public health implications.
Collapse
Affiliation(s)
- Jose A. Adams
- Division NeonatologyMt Sinai Medical Center of Greater MiamiMiami BeachFloridaUSA
| | - Jose R. Lopez
- Department of ResearchMt Sinai Medical Center of Greater MiamiMiami BeachFloridaUSA
| | - Vinay Nadkarni
- Anesthesiology, Critical Care, and Pediatrics, The Children's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Zarazuela Zolkipli‐Cunningham
- Mitochondrial Medicine Frontier Program (MMFP), Center for Mitochondrial and Epigenomic Medicine (CMEM), Division of Human Genetics, The Children's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marvin A. Sackner
- Department of ResearchMt Sinai Medical Center of Greater MiamiMiami BeachFloridaUSA
| |
Collapse
|
21
|
Saheli M, Khoramipour K, Vosough M, Piryaei A, Rahmati M, Suzuki K. Athletes' Mesenchymal Stem Cells Could Be the Best Choice for Cell Therapy in Omicron-Infected Patients. Cells 2022; 11:1926. [PMID: 35741055 PMCID: PMC9221912 DOI: 10.3390/cells11121926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
New severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Omicron, contains 32 mutations that have caused a high incidence of breakthrough infections or re-infections. These mutations have reduced vaccine protection against Omicron and other new emerging variants. This highlights the need to find effective treatment, which is suggested to be stem cell-based therapy. Stem cells could support respiratory epithelial cells and they could restore alveolar bioenergetics. In addition, they can increase the secretion of immunomodulatory cytokines. However, after transplantation, cell survival and growth rate are low because of an inappropriate microenvironment, and stem cells face ischemia, inflammation, and oxidative stress in the transplantation niche which reduces the cells' survival and growth. Exercise-training can upregulate antioxidant, anti-inflammatory, and anti-apoptotic defense mechanisms and increase growth signaling, thereby improving transplanted cells' survival and growth. Hence, using athletes' stem cells may increase stem-cell therapy outcomes in Omicron-affected patients.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, and Pathology and Stem Cell Research Centre, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran;
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1434875451, Iran
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad 6815144316, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Saitama, Japan
| |
Collapse
|
22
|
Gather F, Ihrig-Biedert I, Kohlhas P, Krutenko T, Peitz M, Brüstle O, Pautz A, Kleinert H. A specific, non-immune system-related isoform of the human inducible nitric oxide synthase is expressed during differentiation of human stem cells into various cell types. Cell Commun Signal 2022; 20:47. [PMID: 35392923 PMCID: PMC8991583 DOI: 10.1186/s12964-022-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Freiburg, Germany
| | - Irmgard Ihrig-Biedert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Kohlhas
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Cell Programming Core Facility, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
23
|
Caballano-Infantes E, Cahuana GM, Bedoya FJ, Salguero-Aranda C, Tejedo JR. The Role of Nitric Oxide in Stem Cell Biology. Antioxidants (Basel) 2022; 11:497. [PMID: 35326146 PMCID: PMC8944807 DOI: 10.3390/antiox11030497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field. Moreover, optimal conditions to promote pluripotency in vitro are essential for their use in advanced therapies. In this sense, the molecular mechanisms underlying stemness regulation by NO have been studied intensively over the current years. Recently, we have reported the role of low NO as a hypoxia-like inducer in pluripotent stem cells (PSCs), which supports using this molecule to maintain pluripotency under normoxic conditions. In this review, we stress the role of NO levels on stem cells (SCs) fate as a new approach for potential cell therapy strategies. Furthermore, we highlight the recent uses of NO in regenerative medicine due to their properties regulating SCs biology.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
| | - Gladys Margot Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Salguero-Aranda
- Department of Pathology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, CSIC-University of Seville, 41013 Seville, Spain;
- Spanish Biomedical Research Network Centre in Oncology-CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants (Basel) 2022; 11:antiox11020208. [PMID: 35204091 PMCID: PMC8868283 DOI: 10.3390/antiox11020208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
Collapse
|
25
|
From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. Int J Mol Sci 2021; 22:ijms222413180. [PMID: 34947977 PMCID: PMC8708686 DOI: 10.3390/ijms222413180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.
Collapse
|
26
|
Quon H, Bunz F. Preventing collateral damage. eLife 2021; 10:74319. [PMID: 34726152 PMCID: PMC8562994 DOI: 10.7554/elife.74319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In pigs, nitrate supplements can protect salivary glands from the damage caused by radiation therapy to the head and neck.
Collapse
Affiliation(s)
- Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
27
|
Shi J, Liu S, Guo Y, Liu S, Xu J, Pan L, Hu Y, Liu Y, Cheng Y. Association between eNOS rs1799983 polymorphism and hypertension: a meta-analysis involving 14,185 cases and 13,407 controls. BMC Cardiovasc Disord 2021; 21:385. [PMID: 34372765 PMCID: PMC8351409 DOI: 10.1186/s12872-021-02192-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Essential hypertension is a complex disease determined by the interaction of genetic and environmental factors, eNOS is considered to be one of the susceptible genes for hypertension. Our study aimed to evaluate the association between eNOS rs1799983 polymorphism and hypertension, and to provide evidence for the etiology of hypertension. METHODS Case-control studies of eNOS rs1799983 polymorphism and hypertension were included by searching PubMed, Embase, Web of Science, Medline, Scopus, WanFang datebase, Vip datebase, and CNKI database according to PRISMA guideline. Eligible data were extracted and pooled, and were analyzed using R software based on five different genetic models. RESULTS A total of 60 eligible articles involving 14,185 cases and 13,407 controls were finally selected. We found significant association between eNOS rs1799983 polymorphism and hypertension under any genetic model (T vs G: OR = 1.44, 95% CI 1.26-1.63; GT vs GG: OR 1.34, 95% CI 1.18-1.52; TT vs GG: OR 1.80, 95% CI 1.41-2.31; GT + TT vs GG: OR 1.42, 95% CI 1.25-1.63; TT vs GG + GT: OR 1.68, 95% CI 1.35-2.08; GT vs GG + TT: OR 1.24, 95% CI 1.11-1.40). CONCLUSIONS We found that eNOS rs1799983 polymorphism is associated with the increased risk of hypertension under any genetic model. Moreover, investigations of gene-gene and gene-environment interactions are needed to give more insight into the association between eNOS rs1799983 polymorphism and hypertension.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyu Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jiayi Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingfeng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yueyang Hu
- Department of Children and Adolescence Health, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yi Cheng
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|